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ABSTRACT 

General properties of the spin motion in e+e- storage rings are 

studied in order to determine the conditions where radiative beam 

polarization is likely to occur. A general first-order theory of depo- 

larization is developed and applied to specific examples of nonresonant , 

depolarization in storage rings. It is found that under many practical 

conditions radiative beam polarization should occur and therefore the 
. 

beam polarization will be a significant parameter in high energy e+e- 

colliding beam experiments. 
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In view of the interest in the possibilities of significant beam polarization 

occurring in modern high-energy electron-positron storage rings, it is useful to 

review some facts concerning spin motion in storage rings, with emphasis on 

depolarization effects. A general method for solving equations of spin n&ion 

is developed and applied to the approximate treatment of depolarization in 

several specific storage ring examples. A convenient method for handling 

quantum fluctuations necessary for understanding depolarization away from spin 

resonances is also developed. Some of the results that follow have appeared in 

the published literature. 1,2,3,4,8 

As is well known, 1,5 the process of synchrotron radiation in an eSe- storage 

ring leads to transversely polarized beams where the electrons (positrons) are 

polarized antiparallel (parallel) to the guide magnetic field. The magnitude of 

the polarization builds up in time, according to: 

P(t) = PO (1 - e -t/r ) 

1 1 1 
7 

z-----+7. 
Tpol ’ dep 

r dep is the ‘fdepolarization” time constant and is the primary subject of this 

note. Tpol is the polarization buildup time and is given by: 

N 98 seconds x 
Ri(meters) R 

Tpol x- . 
E5(GeV) RO 

(2) 

R. is the magnetic bending radius of the storage ring, R is the average radius, 

and E is the single-beam energy. For example, in the case of the Stanford 
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3-GeV e+e- storage ring SPEAR, r 
PO1 

is numerically: 

165 hours 
‘SPEAR = E5 (GeV) ’ 

The general form of the equation of spin motion of a particle in an electro- 

6 magnetic field, neglecting damping terms, is 

St= axg , (3) 

where 1 denotes differentiation with respect to the azimuthal coordinate 0 = oat; 

w. is a constant equal to the orbital rotation frequency in the case of closed- 

orbital motion, as in a storage ring; a is a function of the laboratory electric 

and magnetic fields and the state of motion (6, $) of the particle. In the case of 

a storage ring, 3i can be split into a periodic parton and a part due to motion 

away from the equilibrium orbit W. In this note, ; is treated as a small pertur- 

bation to 3, and only first-order effects are calculated. The important point, 

however, is that a0 may describe a very general guide field composed of, say, 

uniform field-bending magnets, quadrupoles, electrostatic deflection plates, 

solenoids, etc. Yet, due to the fact that there exists a closed-equilibrium orbit, 

Do is periodic, i. e. , 

il,(s + 274 = W,(e) . (4) 

An important rule2 which follows directly from the general equation of spin 

motion [Eq. (3)] is that the scalar product of any two solutions to Eq. (3) is a 

constant of the motion: 

-&pa(e) * RJe)] = wo(Sa - SJ = 0 . (5) 

The general solution for the spin motion along the equilibrium orbit can be 

written as a linear combination of three orthonormal-basis vectors f;o, satisfying 

(6) 
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The orthonormality of the basis vectors, 

is preserved in time by virtue of Eq. (5). The general solution to Eq. (6) is 

therefore written: 

s(e) = c S&p) . (8) a! 
Now, consider the relationship between s at some azimuth 0 and its evolved 

spin s”, one orbital period later. 

ifye) = 7 sp;Cp(8-t-2~) = C s$$e) 3 AS(e) , (9) 

It is easily shown that the matrix connecting spin vectors on successive orbital 

revolutions A 
w 

is given by 

A 
@P 

= i,(e) a Ap x (e + 2~) . 

From the periodicity of % it follows that x&B + 27r) is also a solution of Eq. (6) 

and therefore Eq. (5) applies, indicating that the matrix elements of R are con- 

stants of the motion. Since the transformation A preserves the scalar product 

and its matrix elements are constants in time, we arrive at the very important 

conclusion that at any given position on the equilibrium orbit of a storage ring 

the spin vector of a particle is related to the spin vector in the previous revolu- 

tion by a simple rotation of constant magnitude about a constant direction in space. 

Thus, once established, a net polarization along this direction will not change in 

time. Depolarization occurs when an aperiodic term ; is added to a0 in the 

equation of motion. An example of such a term would be one due to the betatron 

motion of a particle in a storage ring, where the electric and magnetic fields on 
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the trajectory of the particle are not periodic because the trajectory does not 

close after one orbital period, Depolarization also occurs with or without the 

term & when the spin-precession frequency is equal to an integer, for in that 

case the matrix A is the identity matrix and no polarization direction can be 

defined. 

Because A is a rotation operator, it can be expressed in the following 

exponential form: 

A = e-2n-iVl;. J 
, (11) 

where the precession frequency Y , polarization direction n, and the usual angu- 

lar momentum operators 9 (3 is a set of 3x3 matrices satisfying 3 x 7 = i’l and 

J2 = 2 ) have been introduced. The requirement that zand 3 each satisfy the 

same equations of motion Eq. (3) with a = a0 forces G to obey these equations 

and to be a periodic function of 0. Therefore, G is a particular solution of the 

spin motion on the equilibrium orbit. This fact is used to write the general 

solution to the spin motion on the equilibrium orbit in a form suggested by 

Eq. (11): 

S(e) = e -i@(O)< -9 - 
x(e) , w 

where 

and x(6) is a periodic function of 0 . Application of the transformation A shows 

that the spin-precession frequency is given by: 

1 
“=z e / 

e+27r _ _ 1 

de’na 520=TG 0 J 

27f 
den. Z$ . (13) 

Equation (13) explicitly shows that v is independent of 0 for arbitrary periodic 

guide fields. 
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It is useful to express 2(e) as a sum of the eigenvectors of the operator 

i. 7 which are defined by: f; + 
0 f; 0 

f; - 

= 

+;t + 
i) 0 

4 

(14) 

go is obviously equal to G and the other eigenvectors are most easily constructed 

from a knowledge of G, the properties of 7, and the eigenvalue properties of 

Eq. (14). All three eigenvectors are periodic functions of 0 and are related to 

each other in the following manner: 

i-ix;; f = * if; f G+XE; = i;i 

(15) 
ii.: =f; 4 =;I .; =() 2 .f; f-f--i- -- + - 

&.;;=l. 

field w is: 

&I zz q) x&+;xr; . 

The eigenvectors of the transformation A can now be wr tten down by inspec- 

tion and form a very useful set of basis vectors for the description of spin motion 

on the equilibrium orbit and for perturbation calculations of spin motion away 

from the equilibrium orbit. They are: 

S*(e) = e Ti%(e) G 
It 

S,(e)=i? , 
(16) 

with corresponding eigenvalues e r:27riv 
, 0. 

When aperiodic perturbing fields are present, the projection of the spin 

along G is no longer conserved and depolarization results. Instead, the projec- 

tion of the spin along a new direction f;+ 6; is a constant of the motion and the 

equation of motion for the difference vector &i to first order in the perturbing 

(17) 
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The procedure for solving Eq. (17) is straightforward; 66 is expressed as a sum 

of the eigenvectors of the unperturbed motion with coefficients that depend on 0. 

Equation (17) yields a set of differential equations for the coefficients and they 

are easily integrated to give: 

i s 8 
Si?=2Im S+(e) de’ S (ef) . ; . 

0 - i 
(18) 

Up to an overall phase, 6; can be written as a sum over contributions from 

.th successive orbital revolutions ~3~6, the index j referring to the J orbit. The 

sjG are given by: 

sjii = 2 h 
I J 

ef27Tj 
S,(e) de’ S-(e’) . ; . 

e+ 2n(j-1) I 
(1% 

In Eq. (19), the angle 0 refers to the position along the orbit and is bounded by 

0 and 2n. The reason we choose to study SjG is that quantum fluctuations often 

dominate the depolarization when the spin-precessionfrequency is sufficiently 

far away from certain resonance values and in many practical cases the effect 

of these fluctuations is negligible during a single orbital period, but comes into 

play over many revolutions. 

The derivations leading to Eq. (18) and Eq. (19) are completely general 

and depend only on certain basic properties of the spin motion, such as the 

periodicity of a,. Therefore, these equations are valid first-order expressions 

for arbitrary storage rings, although there may be rather formidable technical 

problems in the computation of the eigenvectors i?, G* in cases where a0 does 

not always point in the same direction. 

Let us now turn to the specific case of spin motion in a storage ring where 

the particles move primarily in the horizontal plane in a nearly uniform vertical 

magnetic field. Radial and longitudinal magnetic fields are treated as perturbations 
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and only first-order terms in these fields are retained. The main guide field 

is taken to point vertically down in the y direction. The unit vector points 

along the direction of motion of the positively charged particle and x points 

radially outward. In this approximation, k = -5 and i+ = (f; -F il)/fi . Expanding 

the BMT’ equation to first order in magnetic fields away from the i direction 

and motion away from the i direction and ignoring electric fields, an expres- 

sion for ; is found: 

G(e) = - &= C (l+ya) B,; + 5 By;] + a(y - up(e) G(e); . (20) 

<B> is the average value of the main magnetic field taken over an entire orbit; 

BR, BZ are the perturbing radial and longitudinal fields, respectively; y is the 

electron energy in units of the electron rest mass; a is the anomalous part of 

the electron gyromagnetic ratio a = (g-2)/2; G(B) is the “bendingf’ function of 

the storage ring, defined by Sands’ and is related to the guide magnetic field. 

y(B) is the vertical (downward) excursion of the particle from the equilibrium 

orbit. Again, the 1 denotes differentiation with respect to 8. %I is given by: 

ifjo = yaRG(f3)i; , (21) 

where R is the mean radius of the storage ring and is related to G(0) by: 

1 1 27r _ =- 
R s 27r 0 

G(B) de . 

The spin-precession frequency v is equal to ya . 

Since radial magnetic fields give rise to vertical focusing, the equations 

of particle motion can be used to simplify Eq. (2) to the following form: 

gB 
ii(e) =&(l+ya)yll(e)f;+a(y-l)y’(e) G(e)z -&i . (22) 
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We see from Eq. (22) that the contributions to w fall into two categories: 

(1) those terms which are due to the normal focusing 

properties of the storage ring, and 

(2) terms due to the inclusion on the guide field of the 

storage ring, of special elements, such as a solenoid 

magnet, which can give rise to longitudinal magnetic 

fields. 

Let us consider terms of the first category and ignore, for the time being, 

longitudinal fields. The expression for sjn requires calculating the following 

integral: 

/ 

o!+2n 
I= d 8’ ;. ;; ,WW 

- 
CY 

1 
J 

a+2n 

=x CL! de1 
{i Q -I-ya) yyey -t i a(y - 1) y’(e)G(e ‘)} eiqe’) (23) 

-. 

where 

J 

81 
+(el) = ya R de” c(e”) . 

0 

Note that Eq. (23) is particularly simple to calculate in the case of a separated- 

function storage ring because of the following property of such machines: 

G(e) p(e) = 0 . 

Rather than compute I for some particular machine, it is instructive to make 

the sinusoidal approximation to the betatron motion and assume that G(B) is a 

constant. With these approximations and assuming y is large compared to 1, 

I can be written: 

I-1 2?i 
J2 F k@-+2T 0 

de vy(l+V) cOs(vye’++O) -iv sin(vye’++o) e ‘1 1 
-i-MY 

Y 
(24) 
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where ay is the vertical-betatron amplitude parameter, vy is the vertical Yune” 

of the storage ring, v = ya is the spin-precession frequency, by is the mean 

value of the vertical-betatron function (= R/vy in the sinusoidal approximation), 

and $. is a constant. Evaluating Eq. (24) gives the following expression for the 

z projection of SjA at 0 = 0’ (the i projection has the same form, merely 

differing in phase by 90’): 

Sj;l(0)2 = JY- f 

JpY 

1 cos [t(j+$) --Go] + f2 cos[sjj*$j-$01 

fi =* 
[ 
1+ v(v =+l) 1 f = sin (s/2) 

Y Y 2 (v+vy) l+v(vy- l) * [ 1 
s = 2n(v f vy) 

t = @ - vY) (25) 

s and t are to be evaluated modulo 2n. 

In the absence of quantum fluctuations, Eq. (25) shows that there will be 

no net depolarization after many revolutions through the perturbing fields, 

provided that the spin-precession frequency is not equal to a betatron frequency 

sideband of some integer. That is to say, the betatron motion in a storage ring 

introduces a new set of spin resonances whose frequencies are given by integral 

multiples, sums, and differences of the betatron tune of the storage ring. 

Since, in general, there is coupling between the vertical and horizontal betatron 

motions, the general conditions on the spin-precession frequency v for a 

depolarization resonance to occur can be written: 

v = i 5 jvx + kv 
Y 

, (26) 

where i, j, k are integers; v x, vy are the horizontal, vertical storage ring 

tunes, respectively. 

The so-called stochastic depolarization comes about from quantum fluctua- 

tions to the particle motion during the synchrotron radiation process and will 
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lead to depolarization even when Eq. (26) is not satisfied. In our model of 

depolarization, quantum fluctuations are introduced through the amplitude 

parameter ay by noting that on the jth revolution, ay can be written as the sum 

of the radiation-damped amplitude Tom some previous orbital revolution plus 

an uncorrelated part due to quantum excitations following that revolution: 

-t.WMNo 
ayj = ayk e + au 

(27) 

No = w. 7y> kj . 

7y is the vertical damping time of the storage ring and a typical value for No 

would be -1000. These quantum fluctuations lead to a distribution of the &, 

where Sg is the change in the polarization direction after N orbital periods 

/ 6i.i = 
N, *\ 
L fijn . 
j=l I 

Since 6; has the same form in both the x and z directions, the distribution 
P 

function of the x and z projections of 6; are equal. It is easily seen that the 

relative depolarization after N revolutions, -AP/P is given by one minus the 

cosine of the angle between the original polarization direction and the new 

direction, which is simply equal to 1 - ;( sii)2. Since 6n has a distribution of 

values, we have to perform an ensemble average to find the beam depolari- 

zation: 

- <$>=$<(6E;)2> =-$<nz+nt> 
(28) 

<O T>=-<n2> . 

The symbol <n2> stands for the ensemble average of the second moment of 

the distribution function of the x or z projection of 6n and includes an average 

over the parameter Go introduced in Eq. (24). We calculate this quantity 
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using Eq. (25). 

cos t(j-k) f fi cos s(j-k) 

+ 2flf2 cos [F(j-k)l (29) 

The last term in Eq. (29) oscillates in the sum of j and k, while all other 

terms are even in the difference. Since the double summation can be expressed 

as a summation over the sums and differences of j and k, this last term will 

be negligible compared with the others, when N is large (except when v is 

equal to an integer, in which case this term will give rise to an integer 

resonance). Finally, since we are interested in depolarization times long 

compared to the radiation damping time, the summation over the difference in 

j and k is replaced by an integral. That is to say, 

F y f(j-k) - 2N J;~ dv f(v) . 
j=l k=l 

With this approximation, we obtain 

f2 
l + 

f2 2 

(1/No)2+t2 (1/No)2+s2 1 ’ 
(30) 

where the running time t (= N/we) has been introduced. 

We see that the relative depolarization is proportional to the running time 

and, therefore, the beam polarization decays exponentially in time with a time 

constant 7dep, given by: 

2 
1 v <a > 

1 
f2 1 

f2 
-= Y 

(1/N;)+t2 + 

2 

‘YR (l/N;) + s2 1 ’ rdep 1 

(31) 
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From the theory7 of quantum fluctuations on the orbital motion of particles in 

a storage ring, we know 

2CP2 
<at> = -L , (32) 

3 

where C* 
Y’ pY 

* is the standard deviation of the vertical beam size, vertical 

betatron function, evaluated at the interaction point. 

In order to maintain the periodicity of Eq. (29) in the variables s and t, 

Eqs. (30) and (31) should be averaged with a similar expression in the variables 

2n-t and 27r-s. The ful 

1 -= 
rdep 

expression for 7 
dep 

is therefore: 

(33) 

S(x) = 4 sin2(x/2) ’ 
1 

l/N; + x2 
+ 

l/N;+ (27~x)’ * 
1 

To a good approximation, S(x) = 1, and in many applications v + v >> v - v 
Y Y’ 

so the second term in Eq. (33) can be neglected. For order-of-magnitude 

estimates, we can neglect 1 compared to v, v 
Y’ 

and we arrive at the simple 

result found by other authors, 1,4,3 

(34) 

From Eq. (l), we see that the critical parameter determining whether or 

not there will be a significant buildup of beam polarization is the ratio r pol”dep ’ 

Since 7 pol’ the normalized horizontal beam size og/q , and the horizontal 

damping time rx are all related to the emission of synchrotron radiation, we 

might expect some simple relation to hold among these parameters. 
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Using simplified assumptions discussed by Sands, 
7 there is, in fact, such a 

relationship and we can use it to write the ratio T /T pol dep in the following 

simple form: 

TPol - 
rdep 

(35) 

In most practical cases, 9-x z T , and the vertical beam size is dominated by 
Y 

coupling, so Eq. (35) can be simplified to: 

, (36) 

where K is the coupling constant of the storage ring Note that, strictly 

speaking, the preceding derivation is inconsistent with respect to coupling 

because we have used K to determine the vertical beam size, but have not 

included the x motion in the various integrals leading up to Eq. (34) and 

therefore there are no horizontal-betatron-frequency resonance sidebands in 

Eqs. (34) and (36); yet we expect them to occur. For this reason, Eq. (36) 

should be relied on for only those v values that are well away from the 

resonance condition of Eq. (26). 

Since K is usually on the order of a few percent, Eq. (36) indicates that 

the depolarization time is long compared with the polarization buildup time 

for typical storage-ring parameters. On the other hand, Eq. (36) also indi- 

cates certain conditions when depolarization effects are not negligible and 

therefore careful studies of the depolarization effects must be performed for 

specific machine conditions if the beam polarization is an important experi- 

mental parameter. 

Let us now examine the effect of longitudinal magnetic fields by calculating 

the depolarization to be expected from a nearly compensated solenoid placed 

- 14 - 



in a drift region of the equilibrium orbit. Fringing fields at the ends of the 

solenoid will give rise to radial magnetic fields for particles that are displaced 

horizontally from the equilibrium orbit. The expression for ; in this example 

is: 

[ 

dB 
40) = & U+ 74 $x(e) SLgBs(e$? 1 . (37) 

We assume that the x (horizontal) motion which is linear in z in a drift section, 

is not affected to first order by the solenoid, and therefore Eq. (19) is easily 

integrated by parts to give: 

I Bsdz 
sjii(s)- ii = - 2<B>R (l+ya) cos [2nv(j - I)) x 

x sin r 2nvx(j - 1) f $. 
3 

- g sin[27n,(j - l)] \ 

) 
, (38) 

where the horizontal betatron parameters ax, px, vx, similar to those defined 

in Eq. (24) have been introduced. Note that J Bsdz is generally designed to be 

as close to zero as possible by the addition of compensating antisolenoids in 

order that the storage ring performance is not degraded by the solenoid. The 

second term in Eq. (38) only contributes to the integer resonances and is 

therefore neglected in what follows. Using the same procedure for evaluating 

the ensemble average <n2 > as was used previously, the depolarization rate 

due to the solenoid is found to be: 

tl+v)’ Ftv, vx) , (39) 

where the resonance function F(v, vx) has been defined by: 

Ftv, vx) = l + 1 
l/N;+ t2 

+ l -!- 1 

l/N;+ (2n-t )2 1/N;+s2 l/N;+ (2~s)~ 
. 
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s = 27r(v + vx) 

modulo 27r , 
t = 27r(v - vx) 

Equation (29) exhibits horizontal-betatron-frequency sideband resonances for 

all the integers but, unless the solenoid is grossly uncompensated or some 

other pathology arises, depolarization due to a partially compensated solenoid 

is negligible, except very close to the resonant energies. 

As a final example, we use Eqs. (15)) (18) and the ensemble-averaging 

procedure developed above to calculate the depolarization effect of a “low-p” 

insert. 7 The result is: 

cv2 
sin26/2(1+v)2 l+$ F(v,vy) , (46) 

where p 
Y’ @Y 

refer to the vertical betatron function and its derivative evalu- 

ated at the entrance to the low-p insert. 6 is the betatron phase shift of the 

low-p insert, and the other quantities have been defined previously. Since 6 

is usually very close to 2n, we again see that the depolarization is negligible 

except near spin resonances. 

It is interesting to note that the three examples of spin depolarization 

considered above can all be characterized by a “strength” which multiplies a 

universal function of the storage-ring parameters to give the depolarization 

rate. The strength associated with the normal vertical betatron motion is 

approximately: 

K2(2my)3 . 

The strength for a nearly compensated solenoid is: 
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while the strength of the low-p insert is given by: - 
Under most practical conditions, the first expression dominates, so we can 

conclude that the normal vertical-focusing properties of a storage ring account 

for most of the beam depolarization and the inclusion of special magnetic 

elements on a machine, such as low- ,B insertions or compensated solenoids, 

will not significantly change the polarization except near spin resonances. 

In summary, procedures for calculating the spin motion of particles in 

storage rings have been developed and applied to certain examples of beam 

depolarization. Conditions are found where the transverse radiative polari- 

zation predicted by Sokolov and Ternov5 should occur in modern high-energy 

e+e- storage rings. 
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