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I. INTRODUCTION 

After the pioneering work of L. D, Faddeev on the formulation and solu- 
. 

tion of the three-body problem, ’ several attempts have been made to obtain 

viable systems of equations for N-particles. Among these, two approaches 

are particularly interesting, namely the ones presented by 0, A, Yakubovskii, 2 

and by E. 0. Alt, P. Grassberger and W. Sandhas’ (AGS). 

The method of Yakubovskii relies on a powerful index notation to handle 

the channel structure arising from the separation of N-particles into subgroups. 

It can be understood as a repeated application of the Faddeev procedure of re- 

moving from the kernel of the N-body Lippmann-Schwinger equations the pieces 

representing disconnected subprocesses. 

The AGS approach is based on a scheme for writing down three-body rela- 

tions as matrix versions of two-body relations; in particular the three-body 

Faddeev equations correspond to matrix Lippmann-Schwinger-type equations. 

For the four-body case, a matrix version of the Faddeev procedure is applied 

to such LS equations, and the resulting Faddeev-type matrix equations are 

again written in two-body-like form. In this way, an inductive prescription is 

established for the generation of matrices of operators for the N-body case; 

their equations are obtained by simply writing down the N-body matrix version 

of the corresponding two -body relations. 

In this paper we show that these two approaches are equivalent, but that 

neither of them provides the most concise description of the hierarchy of N- 

body equations with Faddeev-type kernels. By generalizing to the N-body case 

an alternative formalism based on the three-body K-operators, 4 we obtain a 

hierarchy of equations for precisely the operators of the kernels, and we 

identify these as the minimal hierarchy for the N-body problem. 
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A detailed description of the Faddeev-Yakubovskii (FY) procedure for 

N=4 is given in section II, where, in addition to reproducing the Yakubovskii’ 

results, we obtain symmetric four-body M-operators that form a more natural 

generalization of the three-body Faddeev M 
Pa 

‘s than the operators obtained by 

Yakubovskii. 

The AGS formalism for N= 4 is outlined in section III; M-operators are 

also obtained within this scheme. 

In section IV, the three-body K-operators and their equations are general- 

ized to the four-body case. In order to see the relevance of the K-operators, 

we show that all the four-body equations obtained in sections II to IV have the 

same kernel, namely maximal5 subsystem K-operators. In other words, 

just as the two-body t-operators make up the three-body Faddeev kernel, the 

(3+ 1) - and (2+2)-subsystem K-operators make up the four-body Faddeev-type 

kernel. Since they produce four-body equations with identical kernels, we 

conclude that the AGS and FY four-body formalisms are equivalent. We end 

the section with a detailed explanation of the minimal characteristics of the N- 

body K-operator hierarchy and its relation to other hierarchies. 

The N-body scattering problem is treated in section V, The K-operator 

hierarchy is constructed within both the AGS and FY formalisms, thereby prov- 

ing that the N-body equations of both formalisms have identical kernels. The 

equivalence of these two formalisms is thus established for an arbitrary number 

of particles. 

Finally, in section VI, the wavefunction formulation of the N-body problem 

is discussed, and it is shown that the N-body K-operators yield the Faddeev- 

type components of the full wavefunction out of the initial state components. 

Their Faddeev-type equations have as a driving term the components of the 
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initial state wavefunction and, as do all N-body equations, the maximal sub- 

system K-operators as elements of the kernel. 

II. THE FADDEEV FORMALISM 

In two-body scattering theory, the basic equation for the transition opera 

t in terms of the potential v and the resolvent operator go = (ho - z) -1 is the 

Lippmann-Schwinger equation 

tar 

t = v - vg()t = v - tg()v . (2-l) 

As is well-known, by removing the two-body disconnected piece of the 

kernel in the three-body version of the first of Eqs. (2, l), Faddeev obtains 

operators P T with equations 

‘T = tP - tpGo z F 
Y Pr 

yT 

and 

‘T = v/TGOV, 

(20 2) 

- 
where 6Pr = 1 - 15~~’ Equation (2 0 2) is a mathematically satisfactory three- 

body equation for ‘T, but (2.3) is not. However, by applying the same proce- 

dure again to (2.3)) Faddeev obtains equations for operators M 1 
Pa 

that are 

symmetric in the sense that the counterparts of both (2,2) and (2,3) have con- 

nected kernels: 

(20 4) 

In (2.4) the three-body indices a, p, y label pairs of particles and run over 

the values 12, 13, 23. 
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If we now turn to the four-body problem- still with pair-wise potentials - 

we can interpret (2.4) as being equations for a four-body operator M (4) 
Pa’ 

where 

now@ and 01 run over all possible values 12, 13, 23, 14, 24, 34. So interpreted, 

(2.4) does not form a satisfactory set of four-body equations, since the kernel 

contains three-body disconnected pieces. This problem is solved by general- 

izing to the four-body level the basic Faddeev procedure of removing disconnected 

parts from the kernels. 

To do so, we introduce four-body indices V, T, p, which label the seven 

different ways in which four particles can be separated in two groups, 

(l=)(4), (@l)(3) s t341)(2), (432)(l) 

(W(W, (13)W), (14)(23) (2.5) 

They define channels in the four-body system when it is understood that particles 

within the same group can interact, but no interaction exists between particles 

belonging to different groups. The indices a!, /3, and y label the six ways in 

which four particles can be split into three groups ( . O )( D )( O ), i.e., they label 

interacting pairs as before. Pair indices will usually appear as subordinate 

indices, in the sense that they label interacting pairs within a certain channel 

of the type o. In such a case we write p C c O 

When applying the Faddeev procedure at the four-body level, it is convenient 

to exclude the two-body disconnected pieces in (2.4) from the definition of four- 

body operators; we thus define 

y;, = -$Go yc~ c 2 (4) pJ/Myo,, (2.6) 

where y in the sum is now restricted to g, and it is understood that p c c’. 
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From (2.4) we see that 

where the sum in (2.7) runs over all values of (r in (2.5) such that /3 C fl, 

Continuing the generalization of the Faddeev procedure, we now shift the 

Y Be (4) 
Ya 

piece of M 
YQ 

in (2.6) to the left-hand side, and multiply by the operator 
- 

Wppf - y&,. dyp, Miy Go), where Mi y satisfies (2.4) with Q, B, y all restricted 

to g, For v of the type ( D O O )( D ), MV 
Pa 

is the familiar three-body Faddeev opera- 

tor. For fl of the type ( D O )( D. ), MO 
Pa 

is a “2 + 2” operator, discussed for 

instance in Ref. (6) O We thus obtain the equation 

y;i = w;a6(cmJ) - 
= (c 

-2 
u 

YCF 
y’ca Y’Y MpY’ 

Go c 6”‘Y;; 
P3Y 

(2.8) 

where W 
w 
Pa 

= M” 
Pa 

- 6 t is the connected part of MT 
PQ P Pa’ 

and 6(01~g) indicates 

that the driving term in (2.8) is non-zero only when a! c CT. YVO also satisfies 
Pa 

the relation 

(2.9) 

In addition to YPa 
Pa 

, it is sometimes useful to define four-body operators 

that do include two-body disconnected pieces: 

(2.10) 

The operators YV T are the ones obtained by Yakubovskii. 2 

Pa 
They satisfy 

an equation similar to (2.8) but with 6°TMu 
Pa 

as driving term. 
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From (2.8) and (2.9) we see that Ya’ - and also Yc’ - has an asymmetric 
Pa Pa 

character, as was the case for the @T in (2.2) and (2,3). In other words, only 

(2.8) is satisfactory as a four-body equation. 

As in the three-body case, we proceed to construct symmetric four-body 

operators by an additional splitting from the opposite side: 

M;; = - 6uT$2tpGota + tpGo c c 6py ME, xyfcr ycu y’cT 

(2.11) 
with 

(2.12) 

Equation (2.11) clearly displays the symmetric character of Ma T. 
Pff 

These 

operators satisfy the equations 

(2.13) 

We thus see that from a one-sided Faddeev procedure Yakubovskii obtains 

operators with an asymmetric character, and that it is easy to proceed in a way 

that yields symmetric four-body operators more in analogy with the three-body 

case, We finally note that 

is the four-body connected part of Ma’ 
Pa ’ 

and that, if T stands for the full four- 
body transition operator, 

c c M;;= T-xty, 5,T PC5 Y 
CYCT 
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i.e., the six transition amplitudes corresponding to two-body disconnected pro- 

cesses are not present in Ma T0 
Pa 

III. THE AGS FORMALISM 

Consider now the Faddeev-type equations for the AGS three-body transition 

operators U 
Pa’ 

u@! = -6 pa! co’ - y c s py tyGoUycl! 

Q3! = -; -l- pa! Go c s 
Y 

yo! y?yGoty l 
(30 1) 

If matrices of operators T, V, and Co are defined according to3 

T = I, 1 
1. poll 

V = [-spa! G; \ 11 

co = [-Apa Gotp Go , I 

(3.1) can be recast into a form similar to (2.1)) 

(3.2) 

T= V-VG,T=V-TC,V. (3.3) 

Other three-body operator relations can also be written as matrix versions of 

familiar two-body relations, For instance, Eqs. (2.4) take the form 

G= Co-C,VG = c,-cv~,, (3.4) 

where 

(3.5) 
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Moreover, M 
Pa 

is related to U 
Pa 

through 

CV= COT , VC=Tc,, 

T= V-VGV. (306) 

The AGS matrix notation clearly displays the structural similarity of the 

two- and three-body scattering equations. 

Using a matrix version of the Faddeev procedure, one can now construct 

matrix Faddeev equations for the four-body case. However, the resulting 

equations can also be obtained by direct analogy, 

T = V-&T =V-TC,V 

G= Go-CoV =G,-GVC,~ (3.7) 

using (3.2) to guide the definition of appropriate four-body matrices of operators 

i(and co, ’ 

v = j-duT G,‘\ = 1”“’ dpJGotpGo)-l\ 

co = J 
P 

o-T co Tr C,j = ( -60TGotpGoU;Q GotaGo 1 = 1 -6°7GOW;aGO/ 0 

(3.8) 

In fact, it can be shown that all four-body equations within the AGS formalism 

can be obtained by analogy. We shall always do so in the present work. 

With the notation 

-G MVTG 2 
0 pa! of ) (3.9) 

-9- 



we obtain from (3.7) more explicit four-body equations 

TUT= -OTT G,‘_ c zgp -f Go TPT 

P 

GUT= - $' C,T" Go - Gof c sup GPT , 
P 

or 

-aP 
-ST 6pa(GotpGo)-1 + c c 6 Up G t G Up’ 

P’>pYCP 
PY OY 0 Ya 

(30 10) 

(3.11) 

and similarly for the remaining equations in (3.7). The operators Up in (3.11) 
PY 

can be obtained from (3.1) with CX!, p,#y all restricted to p. For p of the type 

(0 0 o)(*), qy is the familiar three-body AGS operator. As in the previous 

section the compatibility conditions between four- and three-body indices must 

be taken into account when carrying out the double sums in (3,ll). 

The interpretation of the first of Eqs. (3.11) as an operator relation in the 

four-body Hilbert space is made dubious by the presence of the term (GotpGo)-1 

arising from the prescription (3.8) for V . However, if we formally rewrite 

(3.11) as an equation for the difference ULi - s”r 6pa(G0 to? Go)-l, this problem 

disappears. Furthermore, UiL is eventually to be evaluated between Faddeev- 

4) type components 9, of the initial and final states (T), and in that case the 

meaning of (Got@ Go) -1 is clear: indeed, since ea! (‘) = - GOvol c$(~) and 

we have the on-the-energy-shell relation (GotaGo)-’ 1 $I:) > 

= - G-l 1 q&q > o 
o! 
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The four-body M-operators in (3,9) and the lower equation in (3.11) differ 

from the corresponding ones introduced by AGS in Ref, (3). The reasons for 

the present choice will be explained in the next section. 

IV. THE K-OPERATOR FORMALISM7 

Consider now the three-body operators K 
P@ 

of Ref. (4) ; they are inter- 

mediate between the operators M 
PQf 

and U 
@a’ 

in the sense that 

and satisfy Faddeev equations 4 

K/30f = E pa! tp - tp Go x 8 K 
y PY Ya 

(4.2) 

We now incorporate these operators into the AGS scheme. Defining a 

matrix of operators N= /N@,[ = [G,K~~~ and using (3 D 2), we can write 

(4.1) and (4.2) in matrix form as 

N = GV = GOT 

T = v (1 - N) 

N = G,v (1 - N) = (I - N) GoV 0 (4.3) 

From (4.3) it can be seen that N is the matrix of three-body operators than 

corresponds to the two-body operator n = got = gv. 

-ll- 



Proceeding as in the previous section, the matrix of four-body operators 

N can be obtained by generalizing (4.3) O We define 

N = {NffT) = { GoK;;} 3 (404) 

where a factor Go has been made explicit, just as was done for M (77 
Pa in t303)o 

Then the first of the four-body equations 

N = C,V (I -N>= (1 - N> G,V 

becomes 

NgT = ;gT NC - N” c sup NpT, 
P 

(405) 

(4.6) 

or 

With the above procedure we obtain f&r-body operators that correspond to the 

three -body operators 
1 

K 
Pa” 

Alternatively, by directly defining 

_sPT 
c 8 YflP, 

ycp ya Py 
(4.8) 

the same operators Km7 
Pa 

can be obtained within the FY formalism. In this case 

we recover Eq. (4.7) from the Faddeev-Yakubovskii equations for y3i! in Section 

II. 

With the aid of (4.1) and the relation K 
PQ! = -tpGoUpol, we now realize that 

the kernels of the four-body equations for the M-operators of sections II and III 

are nothing but Ka 
Pa 

-operators (or their adjoints). For example, the first of 

Eqs. (2.13) and the second of Eqs, (3.11) both become 
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We thus see that by defining a symmetric four-body operator within the Faddeev 

formalism, and by a straightforward definition of the elements of the matrix c 

within the AGS scheme, we obtain identical M-operators in both formalisms. 

In addition, we note that Eq. (4.9) for Ma7 and Eq, (4.7) for Kii have identical 
Pa 

kernels. This is in fact the case for all four-body equations considered here, 

as is particularly evident from the matrix formulation, where c oV , or 

possibly V G o, is the only kernel that occurs. That is, just as C ,V 
I 1 - = Gt-8 

OP PJ 
is the Faddeev kernel in the three-body case, 

is the kernel of all four-body Faddeev-type equations. 

The above considerations establish the equivalence between the Faddeev- 

Yakubovskii and the Alt, Grassberger and Sandhas formalisms for N=4. 

It should be clear that both the FY and the AGS formalisms can be extended 

to the N-body case by successive applications of the procedures described in ’ 
3 7 

the previous sections. A closer look at the kernels for all the N-body matrix 

equations so obtained, 

G ov = { Gotpspa! } = { n&3a ) 
G,V = { C,T”6gT’={ $2”’ } \ 1 

(4.10) 

* 0 

shows that their elements are simply maximal subsystem K-operators, that is 

operators describing the two-cluster subsystems (N-l) + (l), (N-2) + (2), etc. 

We can thus identify the hierarchy of K-operators as being the hierarchy of 

N-body Faddeev-type kernel operators, Therefore, they will be central to any 

Faddeev-type N-body theory. 

We also note that the N-body K-operators are directly obtainable from the 

maximal subsystem K-operators, with no additional input. This feature follows 
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from the fact that the driving term of the K-operator equations is identical to 

the kernel, and should be compared to the situation for other N-body operators, 

such as the U-operators. There, in order to construct the kernel, it is 

necessary to evaluate products of U-operators belonging to all subsystems. For 

example, the kernel in the five-body U-operator equations is simply the adjoint 

of (4+1) - and (3+2)-subsystem K-operators; however, when rewritten in terms 

of subsystem U-operators, it becomes 

z 
Y 

up”; Go ty Go UGLY Go ta Go o 

Schematically, 

I t- T- 
t 

T\ - l 0 
T 
t I 

1-l - N - N -0. 

where the first line corresponds to the AGS hierarchy for the U-operators as 

presented in section III, the second line to the equivalent hierarchy for the 

M-operators, and the last line to the hierarchy of kernel operators. 

The above considerations single out the K-operators and their equations as 

forming the minimal hierarchy for the N-body problem, This can also be seen 

directly from the fact that they can be obtained from a simplified version of the 

AGS formalism. Indeed, (4.5) indicates that it is not necessary to consider 

separate hierarchies for Go and V, as was done in section II; instead it is 

sufficient to use the simple prescription for the product GOV suggested 
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by (4. lo), 

GoV = lnpbpo,} 

G,V = {NUT ‘+} (4.12) 

and so on, in order to generate the complete hierarchy of K-operators and 

their equations, 

We thus see that the hierarchy of kernel operators in itself contains the 

basic structure of all Faddeev-type N-body formalisms. On the other hand, the 

more elaborate AGS scheme has the advantage of supplying the hierarchies for 

all operators needed to construct physical transition amplitudes. 8 

Finally, we point out that with the matrix formalism, one can easily define 

a variety of operators other than the ones considered so far, which will also 
.I/ 

satisfy Faddeev-type equations, In fact, the number of different N-body operators 
- 

that can be defined from the basic G- and T-hierarchies increases rapidly with 

increasing number of particles. As an example, instead of taking 

as in (3.9) and (4.4), we can write 

N = GOK;; l 00 , 
i i 

(4.13) 

G= [-Go mgTGo -GtG %i”-‘GtG op 0 pa! ocl! 0 9*o- 

N= = [-GotpGo$;}, l *= (4.14) 

where M -ii forms a different set of four-body operators, in fact the ones defined 

by AGS. The K-operators in (4.14) will also differ from the K-operators of this 

section. We have preferred the choice of Eq, (4.13) since in that case the M-, 

K- and U-operators are related to the G-, N- and T-hierarchies in a most 
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straightforward manner , and the hierarchy of kernel operators is obtained 

directly. 

V. THE N-BODY CASE 

For the detailed discussion of the N-body case, we must introduce a more 

general subsystem labelling than we have done so far. Following Yakubovskii, 

we will use the concept of a partition ai of N particles into i different groups, 

such that only particles within the same group are interacting. For instance, 

a2$ b2, ooo denote different possible partitions of the N particles into two groups 

that do not interact with each other; aNs2, bNT2, 0 0. denote configurations of 

the type (0)0 D 0(0)(0 0 0) or to). . D (.)(. .)(. 0), - such as (r, T, ..a., - and “N-1’ 

bNpl, 0. l denote interacting pairs - such as 01, /3, . . . - in the preceding 

set tions 0 Partitions can be performed one after another to form a sequence. 

In such a case they will be denoted by the same letter and symbolized by 

sic a-p 9\ i > k. Only sequences whose last partition is of the type aNml will be 

considered; they will be denoted by a greek letter, and their subscript will 

be that of the first partition in the sequence. In this way, a2 = (a,, a3, D 0. aNml) 

= (a23a33 .OO 3 aNel ) determines one way in which the N-body system is 

ultimately separated into N-l groups that do not interact with each other. At 

times, we will make part of a sequence explicit, as in cx2 = (a,, a3)” Finally, 

each possible partition ai defines a particular, disconnected N-body scattering 

problem, in which specific interactions have been set equal to zero. 

The dynamical equations for N-body scattering are now written in terms of 

matrices of operators which are labelled by full sequences p2, a2, 

A = {A~,,,~ = (Ab2a2} (5.1) 
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III (5. l), the first bracket contains the simple elements of the matrix of operators 

A , and the second the submatrices obtained when the first partition label is 

made explicit O Matrices of operators related to disconnected (partitioned) N- 

body systems will be denoted 

Bbk ’ bk ZZ -i SBPk+l crk+l 
(5Q2) 

where it is understood that CV~+~ is included in bkO 

The notation just introduced will be recognized as the general form of the 

notation used in previous sections for N=-l. 

We can now write down the N-body generalization of (4.6)) 

b2a2 
KP3Q3 = 

3b2a2 b2 
c 

b2 --a 
KB3”3 - 63 KP363 Go %2 

b2d2 d2a2 
Ktj3cY3 ’ 

(5.3) 

(5.4) 

where Cj2 denotes the sequence G2 = (d2, . . . , dNml), and c stands for c 

cc c 
O3 

d3 d4 
000 

dN-l 
. For N=4, by writing b2 = g, p3 = b3 = bNml = 6, etc., in 

L 
(5.41, we simply recover (4.7). N 2 in (5.3) is the K-operator matrix for an 

N-body system which has been split into two groups according to the partition 

b2’ This matrix satisfies an equation similar to (5.3), but with a matrix Nb3 

in the driving term and the kernel, In general we have for any k, 3 5 k ( N-l, 

Nbk-1 = Tbkak Nbk b 
bkak 

- Nk c 
_,bkdk Nbk-l 

dk ali 
(5.5) 

dkCbk-l 
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or, in component form, 

bk-l 
I(pk”lk = 

xbkak Kbk 
P k+l+k+l - 6 

c 
bk 

Kpk+l’ *k+l Go 
c 

,bkdk Kbk-l 

k+lcbk dkcbk-l ‘kak ’ 

(5.6) 
b 

Since for k=N-1, KbNb2 o 
N-l’ “N-l 

is just K 
Pa’ 

and (5,7) is the Faddeev equation (4.2) 

with 01, p, y C a, we identify K 
bNel 

@flN 
as being simply t 

P 
O 

bl With K 
p2012 

3K 
p2Q2 

= Kb2a2 , 
p3a3 

we can include (5.4) in (5.6) by including 

k=2 among the allowed values for k. In this way (5.6) becomes the complete 

hierarchy of K-operator equations, as obtained within the AGS scheme. 

Let us now turn to the FY formalism, and consider Eq. (4.1) of Ref, (2) 

for i=k-1, and with k=2,3, O.. , N-l, lo 

ybk-l = gbkek ybk AL 
\ 6 

? k+l bk 6‘ -bkdk 

‘k+l’ ‘k+l 6k+lcbk 

ybk-l 

Pkek ?/k+lcbk 
yPk+l’yk+l Go - 6 

dkcbk-l 
dkC k 

(5.7) 

Here, yk=(Ck~O”OO~cN-l)~ Ek=(ek’“*09eN-l)’ and 

c ‘k+l - 
c 

\‘ . . . . . . - c E 
Yk+lcbk Ck+13dk+2 ck+2’dk+3 CN-2’dN-l ‘N-1’ dN-l 

‘k+l+ dk+l ‘k+2 + dkc2 ‘N-2 + dN-2 

‘k+l Cbk 

The two sums in (5.7) correspond to the sums in the concatenation of Ref o (2)) 

but their order has been inverted. For k=N, 
bN-l Y 
PNaN 

equals t 
P 

by definition. 

For N=4 and k=2, bl Y b2 

P2e2 
and Y 

fi3e3 
are simply the operators (TT and MC 

yB@- Pa 
of section II, and (5.7) is just the FY equation for YcrT ., 

PQ! 
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Consider now the following operators: 

“bk-l o-k 

K!$f$ = 
bk-l 

’ kcbk-I 
‘@kEk ’ (5.8) 

Summing over the indices ek in (5,7) as indicated in (5.8), we get 

b A k-l Tbkak Kbk b * k-l 

KPk(yk 

Ak = 
&+lak+I 6 KPk+l’ ‘kc1 Go 

x 
5bkdk b 

k+lcbk dk’bk-l 
Kgkak 

(509) 

This equation is clearly equivalent to the original FY equation (5 ,, 7) ) since the 

summation over the parameter index E k leaves the kernel of the equation un- 

changed. 

A comparison of (5,9) and (5.6) now shows that 

bk-l b 

KPkak 
= K k-1 

@k@k 
, all k (5.10) 

b N-l b 
provided the operators at the bottom of the two hierarchies, K A N-l 

WN 
and K 

pNa N’ 
coincide. However, this is the case since both are identical to tP by definition. 

We therefore conclude that the N-body equations generated by the AGS 

formalism are equivalent to the N-body FY equations, in the sense that both 

have the same kernel. 

VI. THE WAVEFUNCTION FORMALISM 

The K-operators of sections IV and V are very closely related to the 

Faddeev-type components of the N-body wavefunction. At the three-body level 

we have 

Qcy) = *pcY - Go (Ea! + io) Kpol(Ea! + io) 1 %a ) (6.1) 
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where the initial state $ 
(a) 

corresponds to a bound state in the a! channel and 

a third particle free. As indicated in (6.1) all operators of this section are to 

be taken at an energy corresponding to that of the initial state. From (6,l) we 

also see that the operator 6 
Pa 

-GK 
0 Pa 

directly yields the Faddeev components 

of the scattered wavefunction out of the initial state wavefunction. 

If we now introduce column matrices 

the relation (6.1) and the Faddeev equations for the wavefunction components take 

the form 

Q!) = ycu) - cov $Y) O (6.2) 

As in previous sections, these results can be generalized to the N-body case. 

For the four-body Faddeev-type components we get 

&) = (1 - N, dT) 

,m zz (p) _ cov dT) (I (6.3) 

The initial state in (6,3), labelled by (T) , is considered to be either a three-body 

bound state and a free particle, or a pair of two-body bound states. With 

(6.4) 
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we can write (6,3) in explicit form, 

W) = 
% 

fT (7) 
@P - Go c Kiy c -?? $py(‘), (6.5) 

YC5 PIY 

where $i) is a Faddeev component of the initial state wavefunction. It is not 

difficult to verify that the second equation in (6.5) is identical to the corresponding 

Faddeev-Yakubovskii equation, e,g, , as given by Kharchenko and Kuzmichev. 6 

The analogous relations for the N-body case are 

rl, 
b2ta2) = gb2a2 (a ) 

ti2 - NbZa2 0 (a,) 

tita2) _ Nb2, $ ,b2d2 &d2(a2) (6.6) 

2 

Here we again see that the operator 1 - N E 6 “za2 _ Nbzaaj yields the 

Faddeev-type components of the N-body scattered wavefunction out of the Faddeev- 

type components of the initial state wavefunctions, and that the K-operators, 

Nb2 = 1 GoK)013\ form the kernel of the N-body equations. 

VII. CONCLUSIONS 

The different formalisms of Alt, Grassberger and Sandhas, and Faddeev- 

Yakubovskii have been shown to be equivalent generalizations of the Faddeev 

treatment of the three-body system to the N-body case. In particular, the 

partition notation of FY and the matrix index notation of AGS describe the 

channel structure of the N-particle system in equivalent ways. Consequently, 

the advantages of the intiutively appealing AGS notation can now be fully ex- 

ploited when handling N-body operator relations. 
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The structure of the Faddeev-type N-body theories is best described in 

terms of the hierarchy of K-operators obtained by generalizing to the N-body 

level the three-body K-operators discussed in Ref. (4). In fact, this 

hierarchy is precisely the hierarchy of Faddeev-type kernels, and the K-operators 

will therefore play a central role in any Faddeev-type treatment of the N-body 

problem. 

By exploiting the close connection between wavefunctions and this minimal 

hierarchy of K-operators, the Faddeev-type components of the N-body full 

wavefunction and their equations have been obtained in a most straightforward 

manner. In a subsequent paper, it will be shown that the transition amplitudes 

for elastic, rearrangement and breakup scattering - obtained in terms of Faddeev- 

type N-body operators and wavefunction components - are algebraically equivalent 

to the well-known expressions for these amplitudes in terms of potentials and 

full wavefunctions. 
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