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I. INTRODUCTION

After the pioneering work of L. D. Faddeev on the formulation and solu-
tion of the three-body problem, 1 several attempts have been made to obtain
viable systems of equations for N-particles. Among these, two approaches
are particularly interesting, namely the ones presented by O. A, Yakubovskii, 2
and by E. O. Alt, P. Grassberger and W, Sandhas3 (AGS).

The method of Yakubovskii relies on a powerful index notation to handle
the channel structure arising from the separation of N-particles into subgroups.
It can be understood as a repeated application of the Faddeev procedure of re-
moving from the kernel of the N-body Lippmann-Schwinger equations the pieces
representing disconnected subprocesses.

The AGS approach is based on a scheme for writing down three-body rela-
tions as matrix versions of two-body relations; in particular the three-body
Faddeev equations correspond to matrix Lippmann—SchWinger—type equations.
For the four-body caise, a matrix version of the Faddeev procedure is applied
to such LS equations, and the resulting Faddeev-type matrix equations are
again written in two-body-like form. In this way, an inductive prescription is
established for the generation of matrices of operators for the N-body case;
their equations are obtained by simply writing down the N-body matrix version
of the corresponding two-body relations.

In this paper we show that these two approaches are equivalent, but that
neither of them provides the most concise description of the hierarchy of N-
body equations with Faddeev-type kernels. By generalizing to the N-body case
an alternative formalism based on the three-body K-operators, 4 we obtain a
hierarchy of equations for precisely the operators of the kernels, and we

identify these as the minimal hierarchy for the N-body problem.
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A detailed description of the Faddeev-Yakubovskii (FY) procedure for
N=4 is given in section II, where, in addition to reproducing the St'a_kubovskii2
results, we obtain symmetric four-body M-operators that form a more natural
generalization of the three-body Faddeev M Ba's than the operators obtained by
Yakubovskii.

The AGS formalism for N=4 is outlined in section III; M-operators are
also obtained within this scheme.

In section 1V, the three-body K-operators and their equations are general -
ized to the four-body case. In order to see the relevance of the K-operators,
we show that all the four-body equations obtained in sections II to IV have the
same kernel, namely maxima15 subsystem K-operators. In other words,
just as the two-body t-operators make up the three-body Faddeev kernel, the
(3+1) - and (2+2)-subsystem K-operators make up the four-body Faddeev-type
kernel. Since they produce four-body equations with identical kernels, we
conclude that the AGS and FY four-body formalisms are equivalent. We end
the section with a detailed explanation of the minimal characteristics of the N-
body K-operator hierarchy and its relation to other hierarchies.

The N-body scattering problem is treated in section V. The K-operator
hierarchy is constructed within both the AGS and FY formalisms, thereby prov-
ing that the N-body equations of both formalisms have identical kernels. The
equivalence of these two formalisms is thus established for an arbitrary number
of particles.

Finally, in section VI, the wavefunction formulation of the N-body problem
is discussed, and it is shown that the N-body K-operators yield the Faddeev-
type components of the full wavefunction out of the initial state components.

Their Faddeev-type equations have as a driving term the components of the
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initial state wavefunction and, as do all N-body equations, the maximal sub-
system K-operators as elements of the kernel.
II. THE FADDEEV FORMALISM
In two-body scattering theory, the basic equation for the transition operator
1

t in terms of the potential v and the resolvent operator gy = (h0 - z) ~ is the

Lippmann-Schwinger equation
=v—vg0t=v—tg0v. (2.1)

As is well-known, by removing the two-body disconnected piece of the
kernel in the three-body version of the first of Egs. (2.1), Faddeev obtains

operators B T with equations

B = ¢ . = Y
T tﬁ tGyg . 55y ' T | (2.2)

and

By _ 8
T = vg-"TGV, (2.3)

where EB')/: 1- 65V°

body equation for B T, but (2.3) is not. However, by applying the same proce-

Equation (2.2) is a mathematically satisfactory three-

dure again to (2.3), Faddeev obtains equations for operators M 1 that are

po

symmetric in the sense that the counterparts of both (2.2) and (2.3) have con-

nected kernels:

Mﬁa = %atﬁ - tBGO ; 637 Mw
(2.4)
MBOZ= 5Batﬁ” ; Svoz MmGOta.

In (2.4) the three-body indices a, 8, vy label pairs of particles and run over

the values 12, 13, 23.



If we now turn to the four-body problem— still with pair-wise potentials —
we can interpret (2.4) as being equations for a four-body operator M é;ll), where
now 3 and o run over all possible values 12, 13, 23, 14, 24, 34. So interpreted,
(2.4) does not form a satisfactory set of four-body equations, since the kernel
contains three-body disconnected pieces. This problem is solved by general-
izing to the four-body level the basic Faddeev pfocedure of removing disconnected
parts from the kernels.

To do so, we introduce four-body indices o, 7, p, which label the seven

different ways in which four particles can be separated in two groups,

(123)(4), (421)(3), (341)(2), (432)(1)

(12)(34), (13)(24), (14)(23) (2.5)

They define channels in the four-body system when it is understood that particles
within the same group can interact, but no interaction exists between particles
belonging to different groups. The indices &, 5, and v label the six ways in
which four particles can be split into three groups (.. ){(.){(.), i.e., they label
interacting pairs as before. Pair indices will usually appear as subordinate
indices, in the sense that they label interacting pairs within a certain channel

of the type . In such a case we write 8 C0o .,

When applying the Faddeev procedure at the four-body level, it is convenient
to exclude the two-body disconnected pieces in (2.4) from the definition of four-
body operators; we thus define

Y;a = -, G, y;g 55 M(y‘g : (2. 6)

where v in the sum is now restricted to o, and it is understood that g o.



From (2.4) we see that

o° (4)
E Y, =M. - 5.t , (2.7)
iS5 he T Vpe T Upa'p

where the sum in (2.7) runs over all values of o in (2.5) such that g C 0.
Continuing the generalization of the Faddeev procedure, we now shift the
Yi.a piece of M(4) in (2.6) to the left-hand side, and multiply by the operator

(6 3. 14 GO), where MY, satisfies (2.4) with «, B, v all restricted

>,
BB' yCo "yg' "By
too. For o of the type (.. )(.), M

BY
o
po

tor. For o of the type (.. )(..), Mgoz is a "2 + 2" operator, discussed for

is the familiar three-body Faddeev opera-

instance in Ref. (6). We thus obtain the equation

o 5P P
6’}/'7M5'Y')G0 Z R 2V

ge ag e
vyCo \y'co

Yﬁa = Wﬁa laCo) -~

o g a
where W_ =M ~ &  t_1is the connected part of M
g~ Vga T “pa’p P Bor

that the driving term in (2.8) is non-zero only when aC o. Y7" also satisfies

po

, and 6(eZ o) indicates

the relation

Oe _ —_ o°
Yo ™ - tGo by, 5/3 s(ac o) %: 6 1ar Vg 1 Gty * (2.9)

In addition to Y7 , it is sometimes useful to define four-body operators

Ba

that do include two-body disconnected pieces:

Ty 4 5%t (2.10)

Yo~ Ypo po's

The operators Y27 are the ones obtained by Yakubovskii. 2 They satisfy

Ba

-
an equation similar to (2.8) but with 57 M% as driving term.

o
Bo



From (2.8) and (2.9) we see that Y;;M — and also Ygo: — has an asymmetric
character, as was the case for the BT in (2.2) and (2.3). In other words, only
(2.8) is satisfactory as a four-body equation.

As in the three-body case, we proceed to construct symmetric four-body

operators MO- out of Y’ by an additional splitting from the opposite side:

,3
oT _ 075 § (4)
M, = -6 t G.t +t G E 5, M . 6 G,t
Ba ﬁaﬁ 0°c (VCU vier BY vy voz) 0"
(2.11)
with

\m oo
MIT =y . (2.12)
5, Moa™ Yo

Equation (2.11) clearly displays the symmetric character of MZ;. These

operators satisfy the equations

MZT = 57 TwW” X = o =0p 0T
ﬁa 0 Vgﬁa / (ZGOY"Y Mﬁv‘) G . 0 Mw

YCo \ v C p oV
TT _ 0T, O =pT gp = T \
M, =6 W, - > T Mol a ( > 5, M,
pBa pa T Sy By O\ g, YV v .

(2.13)
We thus see that from a one-sided Faddeev procedure Yakubovskii obtains
operators with an asymmetric character, and that it is easy to proceed in a way
that yields symmetric four-body operators more in analogy with the three-body

case, We finally note that

OT _ 0T 0T T
Wﬁa_Mﬁa 6 WBa

is the four-body connected part of Mg; , and that, if T stands for the full four-

body transition operator,

Z 7 M —Z t , (2.14)
o, T BCO Y Y
alT



i.e., the six transition amplitudes corresponding to two-body disconnected pro-

: aT
cesses are not present in M .

Bo
Ii. THE AGS FORMALISM
Consider now the Faddeev-type equations for the AGS three-body transition

operators U o’

— _1 -—
U = -6, G.© - 6. t G.U
Bo pa 0 ;vaova
——— _1 —
U 2‘6 G - 6 U G’t . 301
Ba pa 0 Z.Y:voz By 0% (3.1)

If matrices of operators [, V, and CO are defined according to3

ey
T= l.Uﬁoﬂ
_ = -1
V= |50 0|
G, = {—GBQGOtBGO , (3.2)

(3.1) can be recast into a form similar to (2.1),

T= V—VGOT= V—TGOV° (3.3)

Other three-body operator relations can also be written as matrix versions of

familiar two-body relations. For instance, Egs. (2.4) take the form
G=G,-GVG=G,-GVG,» (3.4)
where

G = % —GOMBa GO; . (3.5)



Moreover, M is related to U o through

Bo B
GV=G,T . VG=TG,,
T= V-VGV. (3.6)

The AGS matrix notation clearly displays the structural similarity of the
two- and three-body scattering equations.

Using a matrix version of the Faddeev procedure, one can now counstruct
matrix Faddeev equations for the four-body case. However, the resulting

equations can also be obtained by direct analogy,
T= V-VG,T =V-TGV
G-G,-GV =G,-GVG,. (3.7)

using (3.2) to guide the definition of appropriate four-body matrices of operators

V o= 1-3877 G(')l} = -}73’” 5Ba(G0tﬁG0)—1
) o7 T | oT o | _ | .oT o )
Go“ |- ¢ GOT Go$ = %—5 GOtBGOUﬁaGOtaGOs = |0 GOWﬁaGoso
(3.8)

In fact, it can be shown that all four-body equations within the AGS formalism
can be obtained by analogy. We shall always do so in the present work.

With the notation

Ba

G- 2(]”1; = {-GOMEJGO; , (3.9)



we obtain from (3.7) more explicit four-body equations

oT_  TOT -1 S0P O pT
7= - Gy - ; 577 T7G, T

G7= ~6"" Gy 17 Gy - GoT” ;5“" G°T, (3.10)
or

oT _ 0T -1 —op 0 pT
Ugy = 0 855(GotsGo) DI Us,, Cot, G Ub,
poBYCP

M.'=6 "W, +t,G E 9 e Y 5 M (3.11)
o o 0 0 = o’
g g B0y FY 0 Sy Y

and similarly for the remaining equations in (3.7). The operators U‘g,y in (3.11)
can be obtained from (3.1) with &, g,y all restricted to p. For p of the type
(oea)(e)s Ug'y is the familiar three-body AGS operator. As in the previous
section the compatibility conditions between four- and three-body indices must
be taken into account when carrying out the double sums in (3.11).

The interpretation of the first of Eqs. (3.11) as an operator relation in the
four-body Hilbert space is made dubious by the presence of the term (GrOtBGO)—1
arising from the prescription (3.8) for V . However, if we formally rewrite
(3.11) as an equation for the difference Ug; -5 5304((}0 t, G:O)_1

disappears. Furthermore, UZ; is eventually to be evaluated between Faddeev-

, this problem

type components qbg) of the initial and final states (r), and in that case the
meaning of (Gotﬁ GO)—1 is clear: indeed, since ¢0(1T) =-Gyv,, ¢(T) and

¢(T) = L ¢(T) , we have the on-the-energy-shell relation (G .t G )_1 |¢(T) >
act © Oa 0 o

=-a e,
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The four-body M-operators in (3.9) and the lower equation in (3.11) differ
from the corresponding ones introduced by AGS in Ref. (3). The reasons for

the present choice will be explained in the next section.

IV. THE K-OPERATOR FORMALISM'

Consider now the three-body operators K o of Ref. (4); they are inter-

B

mediate between the operators M o and U o’ in the sense that

8 8
Ko = 2 Oy Mgy

= - =+ K ’ 4:o
Uﬁa %QGO . 6137 v (4.1)

Kﬁa= 6,8& tﬁ_tﬁ GO 2 6,8')/K')/oz

Koo = 054 tﬁ-%daw Kg Gt - (4.2)

We now incorporate these operators into the AGS scheme. Defining a

f S

matrix of operators N = ( N ; = lGO Kﬁai and using (3.2), we can write

Ba
(4.1) and (4.2) in matrix form as

N=GCV = G,T

0

i

T=v{a-N
N=GoV (T-N)=(1-N)GyV - (43

From (4.3) it can be seen that N is the matrix of three-body operators than

corresponds to the two-body operator n = got =gv.

~11-



Proceeding as in the previous section, the matrix of four-body operators

N can be obtained by generalizing (4.3). We define

{
N- v = o]
N = {\N § = GOKBQ , (4.4)
where a factor G, has been made explicit, just as was done for Mg; in (3.3).
Then the first of the four-body equations
N =GV (1-N=(1-N) GV (4.5)
becomes
T - —a
N7 = 5T N7 LN Z g : (4.6)
or
K°T= 39T x© = Op p’T
Koy = 0 Koy - Bv G, f 5 TP kP (4.7)

With the above procedure We obtain fdur—body operators that correspond to the

three-body operators K S

oT _ =pT v P
KOT= > % > 5 (4.8)
pa & A Ova gy

. Alternatively, by directly defining

the same operators Kg; can be obtained within the FY formalism. In this case
we recover Eq. (4.7) from the Faddeev-Yakubovskii equations for Y(';; in Section
III

With the aid of (4. 1) and the relation K B tﬁGOUﬁ » We now realize that
the kernels of the four-body equations for the M-operators of sections II and III
are nothing but K;-a -operators (or their adjoints). For example, the first of

Egs. (2.13) and the second of Egs. (3.11) both become

oT 0T, 0\ ) - pT
M = § W K G 590 M o (4.9)
T hd 0 Lot
Ba Ba Vo BY 0o ya
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We thus see that by defining a symmetric four-body operator within the Faddeev
formalism, and by a straightforward definition of the elements of the matrix G
within the AGS scheme, we obtain identical M-operators in both formalisms.

oT aT . .
B far have identical

kernels. This is in fact the case for all four-body equations considered here,

In addition, we note that Eq. (4.9) for M, and Eq. (4.7) for K
as is particularly evident from the matrix formulation, where G OV , Or
possibly VG 0’ is the only kernel that occurs. That is, justas (G oV
= {Got /36 1301} is the Faddeev kernel in the three-body case, (G OV = {GOKZOZE o T}
is the kernel of all four-body Faddeev-type equations.

The above considerations establish the equivalence between the Faddeev-
Yakubovskii and the Alt, Grassberger and Sandhas formalisms for N=4.

It should be clear that both the FY and the AGS formalisms can be extended
to the N-body case by successive applications of the procedures descgibed in
the previous sections. A closer look at the kernels for all the N-body matrix

equations so obtained,

GV = { Gotsdsa | = { *Fa
GV = { GOT”50T2={ NTs7T } (4.10)

e . e

a ° °

shows that their elements are simply maximal subsystem K-operators, that is
operators describing the two-cluster subsystems (N-1) + (1), (N-2) + (2), etc.
We can thus identify the hierarchy of K-operators as being the hierarchy of
N-body Faddeev-type kernel operators. Therefore, they will be central to any
Faddeev-type N-body theory.

We also note that the N-body K-operators are directly obtainable from the
maximal subsystem K-operators, with no additional input. This feature follows

~-13~



from the fact that the driving term of the K-operator equations is identical to
the kernel, and should be compared to the situation for other N~body operators,
such as the U-operators. There, in order to construct the kernel, it is
necessary to evaluate products of U-operators belonging to all subsystems. For
example, the kernel in the five-body U-operator equations is simply the adjoint
of (4+1)- and (3+2)-subsystem K-operators; however, when rewritten in terms

of subsystem U-operators, it becomes

}_, Ugy oty Go U Gty Gy -

Schematically,

t — Tl-» Tl — e
t :I:]

g~ G|l— G- -
g G
g]
pn—- N - N - .. (4.11)

where the first line corresponds to the AGS hierarchy for the U-operators as
presented in section IT, the second line to the equivalent hierarchy for the
M-operators, and the last line to the hierarchy of kernel operators.

The above considerations single out the K-operators and their equations as
forming the minimal hierarchy for the N-body problem. This can also be seen
directly from the fact that they can be obtained from a simplified version of the
AGS formalism. Indeed, (4.5) indicates that it is not necessary to consider
separate hierarchies for GO and V, as was done in section II; instead it is

sufficient to use the simple prescription for the product GOV suggested
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by (4.10),

GV = o3,

I

GV {NGS m} (4.12)

and so on, in order to generate the complete hieraréhy of K-operators and
their equations.
We thus see that the hierarchy of kernel operators in itself contains the
basic structure of all Faddeev-type N-body formalisms. On the other hand, the
more elaborate AGS scheme has the advantage of supplying the hierarchies for
all operators needed to construct physical transition amplitudes. 8
Finally, we point out that with the matrix formalism, one can easily define
a variety of operators other than the ones considered so far, which will also
satisfy Faddeev-type equations. In fact, the number of different N-body operafois/

that can be defined from the basic G- and T-hierarchies increases rapidly with

increasing number of particles. As an example, instead of taking

= O-T o e - GT * 00
G= {— GoM g o : N = {GOKBQ} , (4.13)
as in (3.9) and (4.4), we can write
_ 0T _ 0T
G-= {—GO MG, }— {—GOtBGOMBa GotaGO;
N= { G, KT }= {—GOtBGO—IE;;}, (4.14)

where _1\7[;7; forms a different set of four-body operators, in fact the ones defined
by AGS. The E—operators in (4.14) will also differ from the K-operators of this
section. We have preferred the choice of Eq. (4.13) since in that case the M-,

K- and U-operators are related to the G-, N- and T-hierarchies in a most
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straightforward manner, and the hierarchy of kernel operators is obtained
directly.
V. THE N-BODY CASE

For the detailed discussion of the N-body case, we must introduce a more
general subsystem labelling than we have done so far. Following Yakubovskii,
we will use the concept of a partition a, of N particles into i different groups,
such that only particles within the same group are interacting. For instance,
g bZ’ ... denote different possible partitions of the N particles into two groups
that do not interact with each other; aN-2° bN—Z’ ..« denote configurations of
the type (¢)eoefc}(oao) O (c)eee (+Wes)(e0)y, —suchaso, 7, ..., — and aN-1’
bN—l’ .++ denote interacting pairs — such as o, 3, ... — in the preceding
sections. Partitions can be performed one after another to form a sequence.
In such a case they will be dehoted by the same letter and symbolized by

N\
2;Ca, i> k.9 Only sequences whose last partition is of the type a will be

N-1
considered; they will be denoted by a greek letter, and their subscript will
be that of the first partition in the sequence. In this way, 0, = (az, Bgyeoe aN—l)
= (.912 D830 .00 D aN-l) determines one way in which the N-body system is
ultimately separated into N-1 groups that do not interact with each other. At
times, we will make part of a sequence éxplicit, as in a, = (az, ozg)o Finally,
each possible partition a, defines a particular, disconnected N-body scattering
problem, in which specific interactions have been set equal to zero.

The dynamical equations for N-body scattering are now written in terms of

matrices of operators which are labelled by full sequences Bz, Qo

N
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In (5.1), the first bracket contains the simple elements of the matrix of operators
A , and the second the submatrices obtained when the first partition label is
made explicit. Matrices of operators related to disconnected (partitioned) N-
body systems will be denoted

b ;b b
B k _ k _ k
{Bﬁkﬂ ak+1} {Bbk+1 ak+1} ©-2

where it is understood that g is included in bk°

The notation just introduced will be recognized as the general form of the
notation used in previous sections for N=4,
We can now write down the N-body generalization of (4.6),
b, a b,a b b b,d d,a
272 =272 2 2 - 22 272
NZ2 =322 N2 N2 322N 5.9

d

For individual matrix elements, (5.3) takes the form

b,a b,a, b b b,d, d,a
Kﬁza?':"a PR, - > KBZ(5 Gy 2 820K, E, (5.4)
3%3 %3 5, Pf3 0 °q 3%3

where 62 denotes the sequence 62 = (dz, cees dN—l)’ and %: stands for
3
Zl: %: dz . For N=4, bywritingb2 =7 Bg =b3 =bN_1 =B, etc., in
3 4 N-1 b

(5.4), we simply recover (4.7). N 2 in (5.3) is the K-operator matrix for an
N-body system which has been split into two groups according to the partition

b
bz., This matrix satisfies an equation similar to (5.3), but with a matrix N 3

in the driving term and the kernel. In general we have for any k, 3 < k < N-1,

b _b b b b, d b
Nk—lzékak Nk~Nk Z = kk Ndk—l

;
b2y a,Ch K

(5.5)
k-1
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or, in component form,

b _b,a, b b _b,d_ b _
Kﬁk&l___ 5kkKﬁk ., _ Z K‘Bk . G, Z 6kkK6kalo
k7k k+1’ "k+1 6k+1Cbk k+1° "k+1 dkak—l k7k
(5. 6)
bN—Z o
Since for k=N-1, K is just K ,and (5.7) is the Faddeev equation (4. 2)
bN-12N-1 by ., PY
with o, 8, ¥ C 0, we identify K‘BN_1 as being simply tB,
N
by bods
With K = = K » We can include (5.4) in (5. 6) by including

= K =
Boe  Ba%g B33
k=2 among the allowed values for k. In this way (5.6) becomes the complete

hierarchy of K-operator equations, as obtained within the AGS scheme.
Let us now turn to the FY formalism, and consider Eq. (4.1) of Ref. (2)

for i=k-1, and with k=2,3, ..., N-1,°

Pt _ Pk Pk 5 N — bde b,
Y o o=6 Yo e T ? Yg G, . 0O Y,
Pk k+1’ kel 0y, b v, Thy k1 Verl O = 51
K k-1
(5.7)

Here, Yk = (ck, evoos cN—l)’ €k = (ek, ceny eN—l)’ and

PORL I D DT D >

Y+ 1Pk Ct1°%+2 ka2 O 943 Cxo2 %1 ON-17 IN-1
Crp1” Ge1  Cen ¥ Gero 2 7 Oy o
Ck+1 Cbk

The two sums in (5.7) correspond to the sums in the concatenation of Ref. (2),
b

but their order has been inverted. For k=N, Y ,BN;zl equals t ] by definition.
b b N'N

For N=4 and k=2, Y 1 andY 2 are simply the operators Y27 and M7
Ba€s  B3%3 pa Ba

oT

of section II, and (5.7) is just the FY equation for Yﬁa
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Consider now the following operators:

o

b ; k b
AN — —
Kﬁkal = E Yﬁkel . (5.8)
k'k
ekcbk_l k k
Summing over the indices €) in (5.7) as indicated in (5.8), we get
L « 2k o 5 Px%kp k-
IXB o - v AN o = L 1\5 6 \IO ‘g v 1;6 o
1<%k S e T o i 5 4 - K
k+17 'k kTk-1
- (5.9)
This equation is clearly equivalent to the original FY equation (5.7), since the
summation over the parameter index €x leaves the kernel of the equation un-
changed.
A comparison of (5.9) and (5. 6) now shows that
b b
K k(;l =R k;ll , all k (5. 10)
R O
by-1 PNt
provided the operators at the bottom of the two hierarchies, K and K o
PNN AN
coincide. However, this is the case since both are identical to t 8 by definition.

We therefore conclude that the N-body equations generated by the AGS
formalism are equivalent to the N-body FY equations, in the sense that both
have the same kernel.

V. THE WAVEFUNCTION FORMALISM

The K-operators of sections IV and V are very closely related to the

Faddeev-type components of the N-body wavefunction. At the three-body level

we have

Z/)B(Ol) = [6ﬁa - GO (EOZ + 10) KﬁOl(EOZ + o) ] (p(()l) ’ (6.1)
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where the initial state ¢(a) corresponds to a bound state in the & channel and

a third particle free. As indicated in (6.1) all operators of this section are to
be taken at an energy corresponding to that of the initial state. From (6.1) we
also see that the operator & sa ~ GOK B directly yields the Faddeev components

of the scattered wavefunction out of the initial state wavefunction.

(v

the relation (6.1) and the Faddeev equations for the wavefunction components take

. X _ 1 _
If we now introduce column matrices ¥ y = {ZI)B(Q)! and (.]S(oz) = {6[3‘1 ¢(oz)}’

the form

‘ﬁ(a) = (1- N 24,

n//(a) = @ - G,V tﬂ(a) . (6.2)

As in previous sections, these results can be generalized to the N-body case.

For the four-body Faddeev-type components we get

w7 = (1- N ¢!
AR A AR (6.3)

The initial state in (6.3), labelled by (1), is considered to be either a three-body

bound state and a free particle, or a pair of two-body bound states. With

) - ;W’”’E } MBG(T)Q
)
)y _ foom gl 2 L el
¢ ° S N (6-4
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we can write (6.3) in explicit form,

o(T)

_ o7 (1) oT (1)
Vg o 9p" ~ Gy 2 Kgy Py
yoT

o(1) _ 50T (T) o § Sop p(T)

=0 - G K 6 R 6.5

Vg +5 02 K, 2 s (6.5)
YCo P2y

where ¢(BT) is a Faddeev component of the initial state wavefunction. It isnot

difficult to verify that the second equation in (6.5) is identical to the corresponding

Faddeev-Yakubovskii equation, e.g., as given by Kharchenko and Kuzmichev. 6

The analogous relations for the N-body case are

Polag) _ boay  (3g) szaz %2
b,a b, a (a,) b _b_d d (a,)
Y22 _ 522 g2 Z'E 522 22 g4
d2
boa b_a
Here we again see that the operator 7 - N = 16 272 _ N 2 2l

s yields the
Faddeev-type components of the N-body scattered wavefunction out of the Faddeev-
type components of the initial state wavefunctions, and that the K-operators,

b b ]
N?= {gx? form the kernel of the N-body equations.
0" Bgs

VII. CONCLUSIONS
The different formalisms of Alt, Grassberger and Sandhas, and Faddeev-
Yakubovskii have been shown to be equivalent generalizations of the Faddeev
treatment of the three-body system to the N-body case. In particular, the
partition notation of FY and the matrix index notation of AGS describe the
channel structure of the N-particle system in equivalent ways. Consequently,
the advantages of the intiutively appealing AGS notation can now be fully ex-

ploited when handling N-body operator relations.
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The structure of the Faddeev-type N-body theories is best described in
terms of the hierarchy of K-operators obtained by generalizing to the N-body
level the three-body K-operators discussed in Ref. (4). In fact, this
hierarchy is precisely the hierarchy of Faddeev-type kernels, and the K-operators
will therefore play a central role in any Faddeev-type treatment of the N-body
problem.

By exploiting the close connection between wavefunctions and this minimal
hierarchy of K-operators, the Faddeev-type components of the N-body full
wavefunction and their equations have been obtained in a most straightforward
manner. In a subsequent paper, it will be shown that the transition amplitudes
for elastic, rearrangement and breakup scattering — obtained in terms of Faddeev-
type N-body operators and wavefunction components — are algebraically equivalent
to the well-known expressions for these amplitudes in terms of potentials and
full wavefunctions.
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