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ABSTR4CT 

Motivated by purely geometrical considerations of the string 

model, we construct a dynamical theory of particles with internal 

degrees of freedom that is Poincare invariant in four dimensional 

space-time, with no tachyons and no ghosts. The resulting com- 

posite states lie on indefinitely rising trajectories. 
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The advent of the Nambu geometric formulation of the dynamics of the 

dual resonance model [ 11 has caused attention in this model to focus on the 

problem of relativistic invariance. The action on which the theory is based is 

globally Poincare invariant. Furthermore, the Virasoro ghost eliminating 

operators, [2] which after a long struggle were finally shown to decouple all 

unphysical states, [3] are seen to be simply the generators of local coordinate 

transformations, [ 41 under which the action is also invariant. 

Unfortunately, the quantum theory derived canonically from the classical 

geometric theory suffers from the defects that Lorentz invariance can be real- 

ized only in a space of 26 dimensions; and, more seriously, that the spectrum 

of the (mass)2 operator must include a tachyon. [ 51 

It is reasonable, therefore, to investigate whether a different quantum 

theory, identical with the string picture at the classical level, can avoid the 

difficulties of the naively quantized string. The purpose of this letter is to 

report on one such alternative possibility in the context of a simple model which 

has several remarkable features. These are that the model has no ghosts; no 

tachyons; Poincare invariance in four dimensions; fermionic constituent sub- 

structure; and indefinitely rising towers of particles. 

We motivate our model from the general observation that the string is most 

easily described [4] in a frame characterized by the gauge conditions [ 61 

(Y,:)’ = 0. Classically, any such null four-vector can be written in terms of 

t P two-component Lorentz spinors as Y, z = Z/ f CT $,, where c’ are 2 X 2 Pauli 

matrices. The dynamical equation (Y,: ) = 0 then leads to 

8, + igB, 1 ?/J T = 0, (1) 
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where B*( u+, u ) are arbitrary Hermitian functions. However, the gauge - 

invariance of second kind inherent in the definition of the spinors z/* in terms 

OfY lJ , * can be preserved in Eq. (1)) provided B, are chosen to transform as 

Abelian gauge fields. 

These considerations lead us to examine a theory based on the effective 

Lagrange density 

(2) 

where F =3B -8B cq3 - p o! a! p* Our illustrative model, interesting in its own 

right, consists of postulating that $(T, 0) is a canonical four component fermion 

field, with no reference to Y ‘“. The full connection of Eq. (2) with the string 

model will be dealt with elsewhere. [ 71 

The structure of the Lagrangian Eq. (2) is identical to that of two dimen- 

sional electrodynamics (TDED), which is known to be exactly solvable. [ 81 

Use of four component spinors does not destroy the algebraic properties of the 

system, so our model is solvable as well. However, the traditional solution, 

while appropriate for calculation of the Green’s functions of the theory, is not 

convenient for displaying the exact eigenstates and eigenvalues of the Hamiltonian. 

Consequently, we exhibit an alternate solution. [9] 
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It is convenient to choose a representation ] lo] in which I” = - iy”y5, and 

rl= - iy5. Introduce the 7 = 0 expansion 

q(e) 0) = (2*)-I/2 
1 \ 

b 
1 k>O L 

b2 

i i 

c+ 1 + e-i(k-1/2)e 1 
‘2+ k 

(3) 

where { hi(k), bf (k’) 1 = { ci(k), cj(k’)i= oij6&, ensure canonical anti- 

commutation relations for + and ii‘. Free vector and axial vector currents 

.cY are defined in the usual manner, J = E a8 
“0 = 

: v ya! 11, : . (Boundary condi- 

tions have been chosen for ?1, such that the gradient of the charge density vanishes 

at the edges of the domain. [ 111) 

These definitions of the current may be carried over to the interacting 

theory as well, provided we work in the axial gauge Bl = 0. We shall do so, 

because in this gauge the Maxwell equation aV FPV = g j’ can be integrated 

exactly to obtain 1121 

Be(o) = (-g/2) /” de’10 -O’ljO(el) 0 (4) 
0 

Now, it follows from Eq. (2) that B. has no conjugate momentum. Therefore, 

B. may be eliminated entirely using Eq. (4). This leads directly to 

H=Ho - (g2/4) J/ de d8~j”(e,o) ]e -0ll j’(el,o), (5) 

where H 0 is the massless free two dimensional Dirac Hamiltonian. Our aim is 

to diagonalize H. 
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The diagonalization is most elegantly achieved by performing a Bogoliubov 

transformation on H in momentum space. To this end we introduce the paired 

fermion operators at T= 0 (for p > 0), 

P(P) - (2P) 
-l/2 7r 

1 [ o de j”(8)c0spe - ij’(e)sinpe 1 , (6) 
which can be shown to satisfy [p (p), p+(q)] = 6p, q. We define also the con- 

served charge Q = / d 8 j”( 0, t) 0 The interaction term in H can be expressed in 

terms of Q and these “plasmon” operators by inverting Eq. (6) to obtain j”( 0). 

However, before displaying this result, we note an important general fea- 

ture of TDED in axial gauge which is true for our model as well. [ 12,131 It is 

that careful attention to the Schwinger term in the j”, j 1 commutator leads, by 

use of the Heisenberg equations of motion, to the Adler anomaly [ 141 

3,aa($,0) = -(g2/7r)a,/de j’(e) 10 -@I. (7) 

This equation may be combined with the equation of current conservation to 

demonstrate that the vector current is a massive free field, with p2 = (2g2/x). 

The most striking consequence of this result is that, for g # 0, and with our 

boundary conditions on Q(e), the charge Q must vanish. Since Q f 0 as an 

operator, it superselects a class of admissible states from the larger fermionic 

Fock space, 

&I@ phys > = 0 D 

All physical operators, then, must conserve charge. 

(8) 
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Taking account of Eq. (8), the momentum space expansion of the Hamiltonian 

may be written, 
00 2 

H = c x (n - i ) [bn’ (N b,(h) + cn’ (~c,ij 
n=l A=1 

+ W2/4) 2 P-l [/3-v+ PP+ 2PTP-jp l 

p=l 

It is then a matter of straightforward manipulation to demonstrate that 

2 E e He-iS iS 

= Ho-T+eO+ c E(P) fAP) P(P) 3 
p=l 

where 

(9) 

(10) 

s = (-i/2) fY 
p=l 

[t~h%2/~2 + 2p2)] [J(P) J(P) - o(p) p(p)] ; 

T = c P P+(P) P(P) ; 
P 

1 
EO = z CL E(P)-P- (L42/2P) l 

P 1 
In Eq. (lo), T has been set together with Ho because [Ho - T,p(p)] = 0. 

Making use of g, the eigenstates of H may be constructed as follows. We 

first note that the plasmon operators p annihilate neutral filled Fermi sea states 

of the form (j # k) 

F 
lFjk > = 11 bl! (ni) c$nd IO > . 

i=l 

Thus IF > are eigenstates of G with eigenvalue E F = F2 + co. 
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Plasmon excitations may be added onto any sea state to give the general 

eigenstate of I9, 
m 

1 @(PI’ l 0 - pm); F > = lI &pi) IF> . (12) 
i=l 

m 
These states have energies E = eF + c E (pi)0 

i=l 

It follows that the states 

i@‘(p,,o..,pm) ; F > = e- is lP(p, ,..., p,);F > (13) 

are the eigenstates of H, with energies E . Recall ~6 is the ground state energy, 

and is numerically finite and negative definite. The fact the ground state energy 

of the interacting system is lower than the energy of the free vacuum state in- 

dicates the presence of bound states. Henceforth, we measure energies from 

the true ground state energy, i.e., drop E 6 so E = E - ~6 is the energy. 

To exhibit the full four-dimensional Minkowski space content of our theory, 

it remains to associate the energy eigenstates I + > , Eq. ( 13)) with genuine free 

particle states. We do this in the formalism of null-plane quantum dynamics, [ 151 

labelling a state by its mass, spin, momentum and helicity; and writing ten 

generators which satisfy the Poincare algebra, and act on the manifold of the 

states we form. 

To construct the Poincare generators, we introduce three canonically con- 

jugate pairs, [xi, pj] = i 6ij, and [x-, P’] = -i, which commute with all 

operators b(n), c(n), etc. These are interpreted as center of mass positions 

and momenta, while the mass, spin, and helicity will depend on the state of 

internal excitation of the particle. [ 161 

The invariant (mass)2 operator Ai! 2 = 2 P+P- - Pt , should have an in- 

creasing spectrum of positive eigenvalues for composite hadrons, and it is 
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natural to identify Al2 = f(H). For definiteness, we shall set A2 = H, as in 

the conventional string model. This, of course, relates the null-plane “energy” 

operator P- to our dynamical spectrum. 

Candidates for little group operators of massive particles are introduced 

by observing that our model with four component spinors enjoys an SU(2) sym- 

metry not shared by TDED, which is generated by the canonically obtained 

operators 

Jk = (l/2) /d 8 : $- xk q : (14) 
. . 

where xk = o ‘j, (ijk cyclic). These operators commute with Q, and are 

conserved, [H, J] = 0. 

It follows from the work of a number of authors [ 171 that the Poincare 

algebra may be satisfied with the momenta P’ defined above, and the Lorentz 

generators 

K3 = + {P”, x-) ; 

J3 = (x1p2 - x2P1) + J3 ; 

P- \ + x-pi + (zP+)-l Eij [J3Pi + $@Jj]. (15) 

Note fl. A is well defined, because the spectrum of H is positive definite. (It 

may be represented in terms of a Gaussian integral.) The correctness of the 

algebra is easily verified. Unlike the case of the ordinary dual model, there 

are no ordering problems which necessitate extra spatial dimensions, or inclu- 

sion of a tachyon. 

We are mindful that our assignments of J and &V2 as spin and mass opera- 

tors, and of P’, P+, xl, x-, as center of mass variables, must be tested by 
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introducing an interaction. (E.g., a magnetic field should split the levels we 

label as J3 degenerage states.) Albeit with this reservation, we label the state 

vector of a particle in motion as 

ik x IJ 
Ik+, kl; &V2,J,A>=e p I+(P~,.-,P,); F > o (16) 

It is clear that P+, Pi, and d&i2 take eigenvalues k+, k’ and E in these states. 

Furthermore, J3 takes the eigenvalue h = F, and the square of the Pauli- 

Lubanski vector W = l/2 E 
P PVPfl 

MVPP” takes the value E F(F+l) in the state 

Eq. (16). To demonstrate these properties, note that 

[JP P(P)] =0 (17) 

From this it follows that we may restrict attention to the filled sea factor of the 

state function, since in this model all plasmons are Lorentz scalar excitations. 

We pass to the rest frame, in which k’ = 0, k+ = &, by finite boost generated 

by the “non-dynamical” operators [ 181 RI and K3. In this frame, (E 12= -E 21 = 1) 

J3 lFij > = eij FIFij > s (18) 

The rest of the complete spin F multiplet is obtained from the states I Fij > through 

use of the raising and lowering operators J” = J1* X2. The proof that WpW” 

has the stated eigenvalue is easily completed from these remarks. 

It follows from the above observations on the state vectors that our system 

describes an infinite number of indefinitely rising towers of particles. The 

filled sea states provide the leading “trajectory”, and plasmons displace the 

trajectory as indicated schematically in Fig. 1. 

In conclusion, we have advocated a new way of expressing the classical 

string variables in terms of fermion fields. This identification makes essential 
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use of the properties of four dimensional space-time, and is designed to obviate 

problems with the relativistic invariance of the quantized string. A simple 

model has been worked out in detail, to illustrate how such a dynamical fermionic 

theory can be used as a basis for an undiseased free theory of composite hadrons. 

Our ground state is filled with bare “quarks and antiquarks”, which, as eigen- 

states of Ho, are the partons of our model. Excited hadrons correspond to add- 

ing dressed pairs to the ground state without altering the charge, and to exciting 

plasma oscillations. This picture is physically appealling, [ 191 and we will 

amplify it to incorporate the full classical string model in a separate, lengthier 

article. The problems of hadron-hadron and hadron-current interaction must 

also be faced, and it is hoped our new physical picture will lead to new approaches 

to these problems. 
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summer, when this research was initiated. Finally, one of us (J. W. ) gratefully 

acknowledges helpful comments on the manuscript from S. Drell. 
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FIGURE CAPTION 

1. Mass-spin towers in the model with M2=H0 Arrow (a) represents a 

double excitation of the plasmon with mode number 1 on the q: sea, 

for p2 << 1. Arrow (b) represents a single excitation of the second 

plasmon mode. 
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