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ABSTRACT 

A calculation of the process KLd - K”d is made using the phenomeno- s 

logical fits of Loos and Matthews to the meson-nucleon amplitudes in the 

Glauber multiple scattering formalism. The results of a numerical calculation 

for the scattering cross section are presented for representative values of 

incident kaon energy for 0 5 t 5 1.4 GeV2. 
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I. Introduction 

The process KLd - <d is unique among inelastic meson-nucleon pro- 

cesses in that it allows the direct experimental separation of the properties 

of the w” trajectory from its closely-related relative the p . In anticipation 

of an upcoming experiment to measure this process at SLAC1, a calculation 

has been done using the available information about the K-nucleon amplitudes. 

A detailed fit to inelastic meson-nucleon cross section and polarization data 

has been performed by Loos and Matthews2 using the parametrization of the 

dual absorption model (DAM) of Harari’. Within the confines of the model 

this fit provides a complete description of the amplitudes involving non-vacuum 

t-channel quantum numbers; the vacuum or Pomeron (IP) amplitude can be 

crudely modeled from high energy elastic processes. The Glauber multiple 

scattering formula (GMSF)4 provides a reasonably accurate description of 

meson-dueteron scattering if double scattering corrections are included. 5 

In Section II the kaon nucleon amplitudes will be defined. In Section III 

the calculation for the deuteron will be shown and numerical results presented. 

II. The K-Nucleon Amplitudes 

The most general amplitude for K-nucleon scattering may be written as: 

+ b”(s,t)6 ( a’, (YSP’.P + b’(O) &,Q. 9 Y> (cl + 4’) - Y 
I 

(2.1) 
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’ where ~$4 is normalized to: 

g = w2 2 ,L/lt,2 - (EC) IA2 
64~ s pi* 16n h2 

h = (s-m2 N-mk)2 - 
2 2; 

4mNmK > 

and u(p, s) to: 

%p, s)u(p,s') = 2mN6s,s . 

(2 -2) 

(2.3) 

(2.4) 

An analogous amplitude may be written for the z-nucleon system: 

+ a1(s,t)T.7 + - - ( FO(s,t) +T;l(s,t) 2-x 
> 

,(q+q’)-r 1 
x XNX (z)u(p,s) . (2.5) 

From these amplitudes, linear combinations can be formed which have definite 

t-channel isospin and crossing properties. These will then be labeled with the 

leading trajectories which have those quantum numbers: 

AIp = t;a’+a 
( 

-O + @O +EiO, @)u 

wo 
A = ~aO-~o+@O 
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-LO) @)u 

AP = ;(a1 +a1 -I- (b”+6l) @)u 

i;l, !Q)u 

(2.6) 

IQ = (4 +wy l (2.7) 
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Evaluating the s-channel center of mass (CM) helicity amplitudes from 

an explicit representation for the spinors gives for a particular amplitude: 

&+ = 2 co&*/2 mNal + (s -mi-mi)b’ 
( 

. 

) 
(2.8) 

,tv y- = 2 sine*/2 E&ai I-2EKmNbi 

(* denotes CM) which invert to give the invariant amplitudes: 

1 2mN(h2/4s + rni)& Ai+ 
. 

al(s,t) = A$ 
@ - mi - slid+- 

1 
- 

(A2/s +tp 
1 

(-t)" 1 
L J 

bi(s,t) = i 

In the GMSF it will be necessary to know laboratory frame (LF) scat- 

tering amplitudes normalized to do/da = (h~)~ I f I 2 with the spin quantized 

along a fixed i axis which will be taken to be the direction of the incident K. 

The kinematics are depicted in Fig. 1. These amplitudes are given by: 

f& s(LF) = 2 mN(Ei + mN))+ 

, 

(2.9) 

(2.10) 

where 

t E 
2 

I 1 -t dEpfT(EK),‘dE; I 
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The DAM3 gives as the general form of the s-channel helicity amplitudes: 

Et-n -AlAh a “Jnh (rd--t)ll . 

The Ah = 1 amplitudes are well described by simple Regge pole exchange, 

na(t) and take the conventional phases tan 2 ( ) + i for vector exchange, and 

cot y.!l 
( ) 

- i for tensor exchange. The Ah = 0 amplitudes neet cut contributions 
I 

to describe them and hence the DAM makes no statement about the real part of 

the Ah = 0 amplitude. The IP amplitude empirically is dominated by Ah = 0 and 

is essentially pure imaginary for small t. Loos and Matthews’ find in their 

fit that the energy dependence of the amplitude is well described by the con- 

ventional Regge form (s/so) W) , and the phases of the forward A\A = 0 ampli- 

tude by the conventional Regge phase. The remainder of the Ah = 0 amplitude 

is fit by them to an arbitrary function in t. The results of their fit are given 

by: 

CM y+ ’ = g< [<r@) tVt(Pv(t)tan(y) + i Jo (r&t,) 

Pv(t) = e “Vt 1 + avt + bvt2 + . . . 

w 
0 a(t) A t 

div +- = g e ’ If JT(r$-tt)” (tan(p) + i) 

(2.11) 

,/[P =&ywo w” +- +- (g+- - gp,J 

(2.12) 

(P,(t)cot(p)-i Jo(rJ-t )) 
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W) A t 
e T ff JT(rJ- t)” (cot(y)- i) 

llJT(r&t)lf = J,(r&t) 

i 

’20s (yy co, pp) 

cos (Jy)cos (yy 

(2.13) 

f1 JF(s$-t)” z J,(r&t) 

2+r2t 
P 6) = 

x1 

tx 
2 

2 - X12) 

where : 

Jl(xl) = Jl$) = 0 

(2 * 14) 

(2.15) 

are the first and second zeros of J 1’ The form of It J It is intended to remove 1 

an unphysical pole coming from the Regge phase at a(t) = 0. It does not 

remove additional poles at -t large enough so that a(t) = -n so the amplitudes 

cannot be expected to make sense for large negative t. The IP amplitude will 

be given by the form: 

IP cR1, = igpse AlPt 

The model parameters for the amplitudes are given in Table 1. In par- 

ticular, the vector parameters are from a fit to Kkp - Kip, g w and g ’ are 

from a comparison of K”;p - Kip and 7~ nucleon charge exchange assuming 

good W(3), the A2 parameters are from the fit to K’n - K’p. The IP 

(2.16) 
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amplitude parameters are from an analysis of K+p and K-p elastic scat- 

tering. This completes the definition of the K-nucleon amplitudes which will 

now be used in the GMSF to determine the deuteron regeneration amplitude. 

III. The Regeneration Amplitude 

Following Ref. 5 a LF deuteron scattering amplitude may be expressed 

as : 

F(P lab,J) = & 
I 

d3x, d3x2 C*ftx,, 5) Q’tx,, 3) 

-C I= 0,M’ I ip $~d2bei’-?[1- j$l(l-2*:dabld%bci6’01q )f(j)(plab,a))], I=O,M> 

X 1 

tBn) 
33 

’ (‘f- ‘i) 
(3.1) 

where : 

+,‘tx,Px,, = Y,,(~)@(r) 1 I=O; M > 

$df (xl9 3) = Yoo(~)$(r) eigsx 1 I=O, M’ > 

defining: 

geQ(lql) = & d3x I q(r) I e N - 2 iq*x 

(3.2) 

(3.3) 

some of the integrals may be performed by: 
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F(P lab,A) = geQ(lA i/2) < I=O; M’ I f(,)(plab,A) + f(2)(p1ab,A) 

d2x ges(lxl) f(l)(plab, $+x) f(2)(p1ab,$-x) I I=O,M > . 

(3.4) 

The regeneration amplitude can be expressed as the difference of the two 

elastic amplitudes: 

Ftqd - Kid) = F(K”d - K’d) - F(K’d - god) . 

Performing the isospin sum in the above amplitude gives for the regeneration 

amplitude: 

Freg lab 
(P ,A) w” lab = geQ(l A l/2) < M’ 1 f($(P1ab>A) + f(2)(P ,A)l M > 

+ i w” lab A 
d2xgee(l xl) i < M’ l f(I)(P 

lP 1abA 
lab 

2TP 
F-2. + x)f(2)(p ‘2 -x) 

+ ftl) 
’ 1abA W(plab,$+ X)f(i) (p ,z -x) - 3fp,+plab,$+ x) 

A2 lab A 
x f(2I (P 

A2 lab A 
~2 -X) - 3fQ)(P 

P 1abA 
,z +x)f(2)(p ,z -x) I M > . 

The spin sum is straightforward for the single scattering term. For the 

double scattering term in the small angle region where the amplitudes are 

large, one may safely neglect the rotation required to put the intermediate 

kaon along the z axis. This said, the prescription for calculating Freg is 

complete; however, the full expression for F although easily obtained is some- 

what lengthy and unenlightening. Using the amplitudes from Section II, and 

the “Hulthen wave function” for the deuteron:5 

(3 -5) 

(3.6) 
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( -a r -a r 
#(r) = C e ’ - e 2 1 /r 

al = 0.232F-1 
a2 

= 1.202 F-l 

the integrations for the double scattering term have been performed numeri- 

tally for values of p lab between 2 and 12 GeV and the cross sections calculated 

from: 

= @f c , Freg(plab, A) , 2 . 
3 MtM 

The results of this calculation are presented inFig. 2 for incident kaon 

momenta of 5 and 10 GeV. There are two distinct features appearing in the 

cross section. The first is a shoulder beginning at - 0.2 GeV2 which is due to 

the vanishing of the imaginary part of the non-flip tie amplitude. The second 

is a broad dip at - 0.9 GeV2 due to the interference of the single and double 

scattering terms. It is interesting to note that the double scattering term is 

suppressed for the inelastic process relative to an elastic process due to the 

more rapidly varying phase of the inelastic amplitudes. This pushes the dip 

out to 0.9 GeV 2 from its usual location at 0.4 GeV2 for elastic processes. As 

K” regeneration provides the only available inelastic process which does not 

destroy the deuteron itself, this is an interesting prediction. 
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Figure Captions 

Figure 1 

Figure 2 

Lab frame kinematics for K-Nucleon system. 

Differential cross section for KLd - Kid at 5 and 10 GeV lab 

momentum. 
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a(t) = $ + 0.9t 

0 

g: = -29.4 

p = g-+-l- - 10.4 

AZ 
g, = - 8.88 

TABLE I 

MODEL PABAMETERS 

II? 
Ii&+ = 94.0 

AV= - 0.88 (GeV)-2 

Ap = 3.5(Gev)-2 

BV = 2.0 (GeV)-2 

aV = 2.97 (GeV) 2 

R = 5.13 (GeV)-’ 
0 

g;- = - 4.8 

P 
g+-. = -21.8 

A2 
g +- = -16.3 

AT = - 0.70 (Gev)-2 

BT = 2.0 (Gev)-2 

“T = 7.28 (GeV)-2 

bV = 8.79 (Gev)-4 bT = 4.88 (GeV)-2 
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