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ABSTRACT 

The three photon process first treated by Brodsky, Gunion, and Jaffe in 

the parton model is analyzed in terms of light cone singularities. It is found 

that certain physically reasonable assumptions suggested by the parton model 

lead to the dominance of the strongest singularities. 

I. INTRODUCTION 

Brodsky, Gunion, and Jaffel have provided a parton model analysis of the 

three-photon process shown in Fig. 1. They find that the model predicts (1) a 

scaling law and (2) a sum rule “which provides a definitive test of whether the 

constituents of the proton have fractional versus integral charge.” 

For the simpler process of electroproduction, there is a close relationship 

between the parton and light-cone treatments. 2 In this paper, we explore the 

possibility of a similar relationship between the two approaches for the three- 

photon process. 

The three-photon process is controlled by the tensor’ 

iq+y .ik+x 
<PIJV(~)T*[Jh(0)J~(x)] I- 

It is customary to begin discussions of electroproduction with an heuristic 

-phase variation argument which supposedly proves light-cone dominance. 
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By itself, the phase variation argument is not sufficient to give light-cone 

dominance. However, in conjunction with spectrum and causality restrictions, 

the correct result can be obtained. A more rigorous approach employs inte- 

gral representations which incorporate spectrum and causality conditions 

automatically. 3 The success of either approach is based to a large extent 

upon the simplicity of the electroproduction process. (There are only two 

invariant variables. ) 

In the three photon process, four invariant variables are involved; and 

both of the approaches which have been used in electroproduction become 

vastly more complicated. The phase variation argument is inconclusive 

because of the difficulties associated with the larger number of invariant 

variables and integrations. The crucial role played by spectrum and causality 

in electroproduction suggests that these requirements will be important in 

three photon process also. It would be desirable to use representations which 

include the broadest class of functions consistent with these conditions. 

Perturbation theoretical integral representations are available4 for the five- 

point function which appears in V 
pvh l 

Unfortunately, these representations 

are themselves rather complicated and difficult to work with. 

The functions which appear in the following analysis are not the most 

general possible functions consistent with the general requirements of field 

theory. However, they are broad enough to include a wide range of singularity 

strengths (including rather smooth light-cone behavior) and to thereby suggest 

that the results obtained will be extendible to a more general class of functions. 

We propose to analyze Vpyh in the following way: 
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1. We ask what the probable singularity structure of the three-current 

product is. 

2. We ask whether the strongest of these singularities dominates the 

scaling region. 

3. We ask whether a canonical singularity structure reproduces the 

parton model result. 

The results of this analysis will be that 

1. If the ideas of light-cone operator product expansions 5 are used to 

generate the structure of the singularities and of the bilocal operators 

in the three-current product, then 

2. Under the additional assumption that the forward matrix element of 

the bilocal satisfies certain physically reasonable conditions suggested 

by the parton model, the strongest singularities do dominate, and 

3. If the singularities are canonical, the parton model scaling law is 

reproduced. 

The objection could be raised that the use of a light-cone expansion is not 

justified until it has been demonstrated that the process is light-cone dominated. 

We would argue that the light-cone expansion correctly reproduces the singularities 

of the three -current operator product. These singularities are always there. 

For some matrix elements in some kinematical regions, it will be found that 

the strongest singularities dominate the weaker ones and by implication also 

those non-singular terms which have not been represented. For other processes, 

it will be found that the contributions from the non-leading singularities are as 

important as those from the leading singularities. In such a case, the irrele- 

vance of the light-cone expansion is demonstrated a posteriori. 

With this reasoning, we have a procedure for testing light-cone ideas on a 

process with a real photon. This approach may be useful in analyzing other 

processes such as those related to the non-forward two-current matrix element 
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At this point, we should emphasize the importance of Regge behavior in 

these considerations. For electroproduction, it has been pointed out6 that 

large q2 is required in order to get to the light cone because the -q2/2q.P = 0 

singularities due to leading Regge behavior must be avoided. This is con- 

nected with the question (which is a major concern of this paper) of whether 

the real photon in the three photon process can spoil light-cone dominance. 

The analysis will deal with these problems and control Regge behavior will 

emerge again as an important consideration. 

II. THE STRUCTURE OF THE THREE-CURRENT PRODUCT 

We begin by ignoring possible singular terms in the T* product which destroy 

the covariance of the T product.7 The T* is then replaced by a T and V 
P”vh 

be- 

comes 

V 
4r2E p 

pub= M iq’yeik’xB(xo)<Pl (l) 

In arriving at Eq. (l), we have used the spectrum conditions with k. > 0 and 

q. > 0 to replace the T product by a retarded commutator and the resulting 

product with another commutator. 

The Fritzsch-Gell-Mann light-cone algebra8 makes a specific prediction 

for the singularity structure of the connected part of the double commutator: 

-4- 



+a ,, c E (Y’ -x0)6 ([Y -xl”)] BE;; (Y 3 0) - 

A and B in Eq. (2) are various linear combinations of the bilocal generalizations 

of the octet currents. 

Several features of Eq. (2) deserve comment: 

1. Since the bilocals are assumed to be smooth at light-like coordinate 

separations, Eq. (2) contains no term which has a product of three 

functions singular in x2, y2, and (x - Y)~, respectively. At least 

for the most singular part of the double commutator, such terms are 

present only in the disconnected part and do not contribute to our 

process. 

2. Equation (2) was derived by a straightforward application of the for- 

mulas in Ref. 8 which, for this case, produced all the terms of in- 

terest. Unfortunately, this naive procedure is misleading. Consider 

a three-current product J(x) J(y) J(z). According to the usual inter- 

pretation of the light-cone algebra, when all coordinate separations 

are nearly light-like, this can be written (schematically) 

J(x)J(y)J(z) = J(x)C(y -z)F(y,z) 

=C(y-z)[C(x-y)F(x,z) +C(x-z)F(x,y)] . 

The C’s represent singular functions and the F’s bilocal operators. 

However, by associating J(x) and J(y) first, we could also get 

J(x) J(Y) J(z) = C(x -y)[C(x - z) F(Y) z)+ C(Y - z) F(x, z)] . 

Equations (3) and (4) do not appear to agree. The difficulty is that J(x) 

(2) 

(3) 

(4) 
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can combine with nonsingular terms in the expansion of J(y) J(z) to pro- 

duce combinations such as 

C(X-Y)C(X-Z)F(Y,Z) 

which are not included in Eq. (3). An explicit calculation with currents 

constructed from free fields will demonstrate this point. A careful ex- 

pansion of J(x) J(y) J(z) will then contain all the terms we expect, in- 

cluding those of both Eq. (3) and (4).’ 

The expression for the double commutator which we will use below 

will not contain all these terms. We anticipate that the terms which are 

neglected will contribute only to other physical processes. For example, 

the terms in Eq. (3) would correspond to graphs such as Fig. 2a and 2b 

which contribute to the three-photon process. The terms in Eq. (4) and 

represented in Fig. 2c and 2d do not contribute. 

3. Finally we note that Eq. (2) contains free-field singularities. The ulti- 

mate origin of this aspect of the Fritzsch-Gell-Mann algebra is the ob- 

served scaling behavior of the SLAC electroproduction data. These ex- 

periments support the assumption of free-field singularities in the current 

correlation function. 

We will generalize feature (3) of Eq. (2) by allowing other singularities 

besides those suggested by free-field theory. Since the tensor structure of 

the double commutator plays no essential role in the discussion of the domin- 

ance of the strongest singularities, we will simplify the notation by using scalar 

currents for a while. In fact, our first major assumption will be that the 

singularity structure of the double commutator 

(5) 

%“)[J(~), [J(x), JW]] 
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is given by a sum of terms of the form suggested by Eq. (2): 

C(x)[C’ty) WY,@ + C”(Y -W”(Y,~)] . (6) 

In Eq. (6), the F’s are bilocal operators and the C’s are singular functions 

which generalize the free-field singularities of Eq. (2). 

At this point, we emphasize again that we are not assuming that Eq. (6) is 

a correct expression for the double commutator only for x2 Z 0, y2 2 0, and 

(x - Y)~ Z 0. Rather, we are assuming that, regardless of the coordinate sep- 

arations, the double commutator contains a series of terms like Eq. (6) and that 

these terms are the strongest singularities of the double commutator. In the 

next section, we ask whether or not the term of the form of Eq. (6) with the most 

singular C’s dominates those with smoother C’s. If the a.nsv,er is yes, then this 

term will presumably also dominate the nonsingular parts of the double commu- 

tator which have been completely ignored. 

III. DOMINANCE OF THE STRONGEST SINGULARITIES 

Substituting Eq. (6) into Eq. (l), we find that the contribution that 

the form of Eq. (6) makes to V is 

1 
vz iq*yeik’xC(x)[C’(y)G,(y-x,Q+C1t(y-x)G2(y,p)j . 

a term of 

In Eq. (‘7), we have introduced 

47r2E 47r2E 
G+Y -x, P) = --? (P/F&x)(P) = M + <PiF(y -x,0) lP> 

47r2 Ep 
G2(y> p) = M <PIF’ty, 0) b’> . 
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By using the Fourier transforms 

Cz(r) =L x 

w4 I 

d4x .ir. 
C(x) 

??,(P., P) =h 

/ 

d4x eeieex 
(274 

G1 tx, P) 

and similar expressions for c”‘, ?!‘I, and g2, we can do the x and y integrals in 

Eq. (7) to get 

. 

withG = k+q. 

To proceed from here, we will make assumptions about the form of the C’s 

and the general features of the 5’s. In order to treat a broad range of singu- 

larity strengths, we will take the C’s to be of the form 

C’(Y) = 
1 

d’ - c. c. 

t-Y2 - i E y”) 

C”(Y) = 
1 

o d” - C.C. 

C-Y 
2 

--i-v ) 

C(x) = e (x0) 
1 

d - C.C. 

t-x 
2 - iex’) 1 

(8) 
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with Fourier transforms 10 

~‘(q+a) = i *’ 42-d’ r(’ -d’) 1 

r(d’) 
- c. c. 

[ 

2-d’ 
-(q+Q) 2 - i E (q”+Qo) 

I i 

?!“(q+Q) = E’(q+Q) with d’ - d” (10) 

E(k-Q) = i7r 2 4 2-d r(2 -d) 1 
r(d) 

-Q)2 - i E (k” -a’) 1 2-d 

E (c+Q) = ?! (k-Q) with k - Q--q+Q . 

Little can be said about v until some general restrictions are applied to the 

G’s. We will consult the parton model for guidance. The diagrams of interest 

correspond to the two terms in Eq. (8) and are shown in Fig. 3. The parton 

model assumes that the unamputated par-ton-proton scattering amplitude falls 

rapidly for Q2 much greater than a typical hadron scale such as the proton mass 

M. Together with the spectrum conditions 

(Q+q)2 > 0, Q”+qo > 0, 

(11) 

(P -Q)2 > 0, P” -PO > 0, 

this limits the Q integration so that, in the proton rest frame, none of the com- 

ponents of Q gets bigger than the order of M/x. (x is the scaling variable 

-q2/(2q.P), and -q2, q. P - co with x fixed is implied. ) Although the condi- 

tions and the results are simple, the author has verified that a complicated 

calculation may result from an unfortunate choice of variables. We can rec- 

ommend the parameterization introduced in Ref. 11 and 12 for use in the covariant 

parton model. 
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With all components of Q limited to m M/x in the proton rest frame, pos- 

sible Regge behavior of the parton-proton scattering amplitude is tested only as 

x - 0 (that is, in the photon-proton Regge region). In fact, since the Pomeron 

does not contribute to the odd charge conjugation parton-proton scattering, 

we can anticipate that the Regge behavior will be less troublesome than in 

electroproduction. 

We now abstract what we have learned from the parton model and make the 

following natural assumptions about the E’s: 

A. The g’s fall rapidly for Q2 2 M2. 

B. Spectrum conditions, causality, and assumption A conspire in Eq. (8) 

to limit the Q integrations so that no components of Q exceed - M/x in 

the proton rest frame. In what follows, these assumptions will be seen 

to be crucial and, in fact, will lead to the dominance of the terms with 

the largest d’s (that is, the strongest light-cone singularities). 

For our calculations, we work in the proton rest frame and orient the axes 

so that 

SC” = (qO, 2, O,O) , qb 0 

li” = (k’, kl, -k2,0), -k2> 0 . 

Then 

(q+Q)2 g 2q * P 

(k-Q)2Z2q. P 
i 

k2 k. P Q” -$ 2q -- M 

(g+Q)2 S 2q . P & 

(12) 
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The corrections are down by at least (q. P) -l/2 relative to what is shown. 

Equations (12) are valid in scaling region -q2, q*P, k.P-oo,xandk.P/q.P 

fixed and of order one. So far, we have not specialized to k2 = 0 and have used 

only the condition k2/q. P ~5 1. 

Equations (8)) (lo), and (12) corn bine to give 

Y 

r(2 -du-(2 -d’) i 

1 
(9. P)2-d (q. P)2-d’r(d)r(d’) (x-q-ie)2-d’ - es ‘* 

X 

1 -?r4 22-d7,2-@‘~(2 -d)r(2 m,“) 

X k.P k2 
Hl !rl) + 

(q* P)2-d (q. P)2-d”r(d)T(d”) 
q.P rl - 2q.p -ie 

X 
1 1 

(x -q _ ic )2-d” 
- c. c. (13) 

q2 -- 
2q.P - ic 

In Eq. (13)) 

Q” -Q1 
q= M , 

Hi(q) = 
/ 

d (Q” + Q1)d2Q, gi (Mq, Q” + Q1 , q 9 Ml, 

and Y is a number of order x -1 . The lower bound of the n integration follows 

from the fact that 

1 

(x -77 - ic)a 
- C.C. = 0 for 7~ < x. 

Several comments are in order. 
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(1) From Eq. (13), we can see that for x # 0 k2 plays no special role, and we 

can take k2 = 0. 

(2) Problems could arise in the second term if c2 + 277 q. P is near zero in the 

range of integration. Kinematical considerations reveal that this can hap- 

pen only if k is at the part of its kinematical boundary where k cc q + xP. 

We will assume that this region is avoided. 

(3) Regge behavior (as discussed in connection with the parton model) may de- 

mand 7 = 0 singularities in the Hi(q) and lead to a divergence in the r integral 

for x = 0. 

Thus, if we avoid the point x = 0 and the boundary region k M q f XP while 

satisfying 

-q2 - 00 

q.P -00 

k.P -03 

x - 1 and fixed 

k-P 
q*p 

- 1 and fixed , 

(14) 

the n integral in Eq. (13) will be finite. We can then conclude from the factors 

tq - vd (q * wd’ and (q. P)d (q . P)d” which multiply scaling expressions in Eq. (13) 

that the terms with the largest d’s (strongest light-cone singularities) will dom- 

inate. This is our main result. The reader should recall at this point that re- 

strictions on the Fourier transforms of the bilocals (A and B above) were crucial. 

It should be noted that large negative d’s correspond to rather smooth 

light-cone behavior. Contributions from such terms are highly suppressed. 

This tends to support the conjecture that the non-singular contributions to 

the double commutator which have not been considered will also be suppressed. 

In the parton model treatment’ of the three-photon process, the authors re- 

quired q . k to be large and negative. 13 We have not found this restriction to be 

necessary. Diagrams of the type shown in Fig. 4 which were thought to be im- 

portant for q. k > 0 can be shown to vanish relative to those of Fig. 3 by employing 

-12 - 



the spectrum conditions and the assumption that amplitudes fall rapidly for virtua 

parton masses much larger than M. The argument parallels that leading to Eq. 

(12) above. 

Finally, we comment on the contribution to the three-photon process which 

comes from the coupling of a ,vector meson, such as the P , to the real photon. 

An elementary p , with gauge invariant coupling 14 to the photon, will not con- 

tribute because this coupling vanishes at k” = 0. The contribution from a 

composite p can be thought of as arising from complicated vertex corrections 

to the photo n-parton vertex. However, we have seen that the parton model, 

with its version of assumption (A), gives the result that the parton connecting 

the real and virtual photons is far off-shell in the scaling region considered. 

With one of the parton legs far off-shell, we can use the assumption that the 

parton-proton amplitude falls rapidly in the parton ,virtual mass to conclude that 

such vertex corrections must give non-leading contributions. We conclude then 

that assumption (A) of the light-cone treatment has indirectly eliminated the 

p contribution by associating it with weaker singularities which give non-leading 

contributions in the scaling region. 

In the next section, we discuss the results which follow from assuming a 

canonical singularity structure for the three-current product. 

IV. CANONICAL SINGULARITIES 

In the last section, we found a set of assumptions which are sufficient to 

guarantee that the strongest singularities in the three-current product will give 

the dominant contribution to the matrix element. The electroproduction exper- 

iments suggest that the leading singularity of the two-current product is the 

same as that suggested by free-field theory. 8 
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For the scalar case, which we discussed in Section III, free fields would 

suggest d = d’ = d” = 1. Equation (13) then becomes 

+87r4M 1 1 
v= q.p -2xk.P H1(X)+ ,2 

q +2x&P 
H2 W 1 (15) 

which is similar in structure to the parton model result. 1 

For a brief discussion of the realistic case with vector currents, we can 

proceed by reasoning as follows: 

(1) Section III has shown that the strongest singularities of Jll (y) T Jh( 0) Jp (x) 
C 1 

will dominate V /-llJ A’ 

(2) The strongest singularities of current products are believed to be those 

given by free-field theory. 8 

(3) Fritzsch and Gell-Mann8 have shown that this free-field singularity structure 

is effectively generated by using currents constructed from free-parton (or in 

their case quark) fields. We can then follow Fritzsch and Gell-Mann (with- 

out assuming the specific quark charge assignments) and use free fields to 

generate the singularity and tensor structure of Jv (y) T Jh(0) Jp (x) . 
C I 

(4) This procedure will reproduce the parton model result, since the parton 

model effectively uses parton fields and lowest order perturbation theory 

I 
. 

CONCLUSION 

We have analyzed the three-photon process in the scaling region given 

in Eq. (14). We conclude that the ideas of light-cone algebra when supple- 

mented by assumptions (A) and (B) assure the dominance of the strongest light- 

cone singularities. The additional assumptions of a free-field singularity 

structure will reproduce the parton model result. 
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Figure Captions 

Fig. 1. An electron interacts via photons of momentum 5, k, and q with a 

proton of momentum P. This is the diagram which controls the proc- 

ess (e-+p - e-+y+X) - (e++p - e++y+X) studied in Ref. 1. 

Fig. 2. Graphical representation of various terms in J(x) J(y) J(z). 

Fig. 3. Parton model graphs. 

Fig. 4. Non-leading parton model graph. 
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