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Introduction. 

Despite the passage of over a quarter century, the' basic rules 

of calculation in quantum field theory have changed little since the 

development of the Feynman-Dyson-Schwinger analysis, although there has 

been extraordinary progress in techniques [i] . The dispersion method [2] 

represents an important alternative for the calculation of the case of 

the 3 point vertex graph, but these calculations are often even more 

arduous than the standard Feynman method and can involve subtle and non- 

uniform infrared problems. In the case of bound state problems, we must __ 

rely on the vigorous Bethe-Salpeter formalism, or alternatively, on the 

somewhat more tractable quasi-potential method [3] : The latter method, 

however, has difficulties with non-uniqueness and anomalous analytic 

properties and it is not clear how to estimate its errOrS systematically. 

It should be emphasized that the precision of the experimental measurements 

of both the positronium and muonium hyperfine splittings are well beyond 

the present accuracy of our computational methods [4] . 

Before the advent of the covariant perturbation theory rules, 

calculations in quantum electrodynamics relied on straightforward, though 

extremely arduous, time-ordered perturbation theory. Each Feynman diagram 

with n vertices requires the computation of n! individually non-covariant 

TOPTh matrix elements, and the covariant renormalization program was completely 

obscured. Interest in this method.was revived in 1966 when Weinberg [51 

(see also ref.[6-8-J) realized that by choosing the Lorentz frame of the 

observer appropriately, only a few of the n! time-ordered contributions 

survive ; moreover each of the surviving termhas a simple (often covariant) 

structure paralleling n-body SchrBdinger theory. Specifically, in a Lorentz 
-> 

frame chosen such that the total momentum of the initial state P = xFi 

is arbitrarily large, then only the relatively few time-ordered graphs in 

which the momenta -? 
j 

of all the (one--iflass-shell) particles : 



in every intermediate state have positive components along 
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F ,[i.e. 

0 CXj& 1 ,,Fpj = 11 have a surviving contribution in the limit 

P-,L. To see this, note:!that for each intermediate state, the energy 

denominator of time-ordered perturbation theory becomes 
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where siZ x. is the "covariant kinetic energy". 

Thus in each ca:e we obtain a non-zero limit only if each intermediate state 

has all 0 oi < 1 . It should be stressed that no invariant quantity is 

getting large as -P + pc3. 

The time-ordered perturbation theory which emerges retains the 

main advantages of the dispersion method since calculations involve physica 

on--mass-shell intermediate states of fixed particle number, but because of 

the P-1 00 limit, the complicated square root structure of the phase-space 

integration is automatically linearized, and the analysis of infrared 
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divergences is no more difficult than in the corresponding Feynman calcu- 

lations. 

Recently Ralph Roskies, Roberto Suaya and I [9] have found that 

TOPTh, for quantum electrodynamics represents a viable, instructive, and 

frequently advantageous calculational alternative to the usual Feynman 

diagram approach. We have shown how to implement the renormalization 

procedure, simplify spin considerations, and have calculated the e 

magnetic moment through fourth order in agreement with the Sommerf 

Peterman [lo] results as well as representative contributions to 

the sixth order moment. Section II reviews the main features of th i s work. 

ectron 

eld- 

Over the past few years, it has been found that the infinite momen- 

tum method has important advantages for calculations in particle physics, 

especially in the areas of current algebra bl] , parton models [12,4] , 

and eikonal scattering. Because of this similarity to non-relativistic 

many-body theory one can apply the approximations and concepts such as 

the impulse and incoherence approximations familiar in atomic and nuclear 

physics to relativistic field theory and bound state problems. Certain of 

these applications are reviewed in Section III, especially fixed pole 

behavior [13] , and rearrangement collisions b4]. Conversely, these 

techniques indicate a new systematic procedure for handling the relativistic 

and recoil corrections to atomic and nuclear physics problems 15 . Cl 
An important question is what is the correct formulation of the 

bound state problem in the infinite momentum frame. In Section IV, we discuss 

in some detail the connection between the Bethe-Salpeter and infinite monen- 

*turn frame wave functions [16] . Some comments on the applicability of new 

approximation procedures to QED within the TOPTho, formalism &regiven 

in the conclusion. 
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11 - Quantum Electrodynamics in the Infinite Momentum Frame 

In this section we will briefly discuss the implementation of 

. the calculational rules for the TOPTh of QED. It is convenient to 

start with the familiar example of the electron vertex in second order. 

In a general frame, there are 3! time-ordered contributions which must 

be summed to yield the Feynman amplitude (see Figure 1). The amplitude 

for (a) yields by the standard rules for the time-ordered expansion of 

the S-matrix, (we use the Feynman-Gupta-Bleuler gauge) [17] 

lx 

u(P+q/2)1&us l(P1)~sl(Pl)q us2(P2);,2(P2)ys;;,-q/2J 

2E12E2dEk s~,s~(E~-~,~- Ek-E2+it) (Ep-q,2tqo-Ek-E1t iC ) 

Let US choose the Lorentz frame where 

M2+ 3/4 
.P*q=(Pt 2p ,r$,P) 

q = (0, $ , 0) , q2 = -3: < 0 

+2 
and we parameterize k = (xP t 2xp , ‘i;'i , xP) k& , d3k = d2kl dx P. 

Here P2 is assumed to be large compared to 
M2 42 , qL , and $:,2/x2 . 

(Later we must check that we can'perform a uniform limit). 

Since the photon brings in zero longitudinal momentum in this 

frame, the only time-ordered diagram with all positive moving particles in 

each intermediate state is (a) , if 0< x-Cl . We then obtain for Pa d 
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where pI 2nd p2 are on the mass shell and are fixed by three-momentum 

conservation. This result for mp is in fact the entire covariant 

result ifnr = 0 or 3 . Projection operators for Fl(s2) and F2(s2) 

can be used to obtain the electron form factors ; the results including 

F2(0) = Q‘/~T: agree with the standard Feynman result f18] . tlowever, 

as emphasized by Drell, Levy and Yan [6] , for the 

OfNIl and'q2 , the time-ordered contributions 

contribute ; the spinor algebra produces an extra 

transverse components 

(b) and (c) also 

factor of P2 which _- 

compensates for the single denominator with backward moving particles. 

In fact this just produces the "seagull" diagrams for the transverse 

3 currents characteristic of the ,A terms in boson current theories. 

Fortunately,these are always easy to include by the substitution rule [19] 

PI 4 ?I 9 with $0 = PI+ Einc - Eint ,gL$ - 

which formally enforces energy conservation between the external and given 

intermediate state. This "automatic Z-graph" rule is to be used for each 

fermion line which extends over a single time-interval. With this substi- 

tution rule, only positive-moving graphs such as (a) need to be expli- 

citly considered. This replacement of p,, by r is very reminiscent of 

the Feynman approach. One takes 'the fermion off the mass shell (yl # m2) , 

but reduces the number of diagrams. However, since not all fermion lines 

extend over a single time-interval we do not have complete four momentum 

conservation, and energy conservation is computed between the external and 

intermediate states, not at each vertex as in the Feynman case. The 

complete OFPTb rules are given in the table. 

It is straightforward to check that the TOPTh rules and Feynman 

rules coincide for all Born (tree) calculations. We,can also, by using : 
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the summation properties of TOPTh amplitudes, readily demonstrate vertex 

factorization characteristic of the Feynman theory. For example the sum 

of all time-orderings for the diagrams of figure (2) yields 

__ 

e = 
' h2,iE 

F(g) 
qF- 

where F(qf) is computed from the sum of all time-orderingsof the vertex 

a photon of mass q: ‘= (P,-P$ * Thus the concept of the 

1 particle plays a natural role in the TOPTh calculatCons. 

function with 

off-mass-she1 

As a check on 

We start from 

our techniques, we can also.adopt the following procedure. 

the Feynmanexpression for the vertex : 

LA? I 
v 

and parameterize the four momenta as follows (7$ = - q2) 

q = (0, TA , 0) 

m2+ 1 “s2 
p=(pt 4 L 

m2+ +$ 

4P ,LP- 4p > 

k.= (xP +4p , i, XP -4p ) 
2 2 S/i 

4 
t 

with sk = ( k2+cF)/X . 

Notice that in this case the mass-shell conditions are satisfied independent 

of the value of P ; in fact y = log 2P/m is the rapidity of the incident 

electron. Of course, in the frame in which P+ 0~7 , the quantity 

x=(l: - 
0 

k3)/2P is the fractional longitudinal momentum carried by the 

photon. 
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The four degrees of freedom of k2 are replaced, then, by 
-? 

x, ki , and skL ; d4k = d2k dx ds.% . Assuming uniform conver- 

gence, the integration over SR may be performed by contour integration 

L 2q. The result is non-zero only for 0(x(1 and agrees with the TOPTh, 

expression, including the Z-graph substitution rule. Although this one- 

to-one correspondence does not work for general graphs, one can see here 

the close relation to the light-cone quantization method in which the va- 

riables (t+z)2P and (t-z)/2P conjugate to sk and x are utilized. 

In fact the standard rules of calculation are identical in the two theories. 

For example, the Z-graph contributions of TOPTh, correspond to explicit 

seagull terms in the interaction using the light-cone quantization method. 

However, as we shall emphasize below, the direct development of the cal- 

culational rules from standard theory with the P+d limit allows one 

to develop renormalization theory and avoids errors due to non-uniform 

convergence in the P-j& limit. Further, the P-+oo method allows the 

use of the Feynman gauge and a straightforward implementation of the renor- 

malization procedure. 

Surprisingly, the renormalization procedure is simple and straight- 

forward to apply in TOPTIS,, and can be applied in parallel to the expli- 

citly covariant Feynman-Dyson approach. Reducible amplitudes with self- 

energy and vertex insertions are renormalized using subtraction terms 

corresponding to bm , Z2, and ZI counterterms, which can be usually 

constructed to cancel point-wise the ultraviolet d*kl phase-space 

integrations. Since we are subtracting infinite quantities all integrals 

are assumed to be (covariantly) regulated by using the Pauli-Villars scheme. 

As an example,consider the self-energy insertion to Compton 

scattering in a scalar theory shown in figure 3 . In the usual Feynman 

approach the renormalized amplitude is constructed by subtracting formally- 

divergent 6 m and Z 2 subtraction terms in second order. Here we will construct 



an integral representation for these constants so that the total integrand 

of the renormalized amplitude is finite and point-wise convergent'& Taking 

;;3 =;, with P.+ 00 (only one time-ordering survives) the unrenormalized 
a 

amplitude is (assuming regularization in the mass h ) 
d 

.Qj+g 
1 1 

U sg-sl+iC so-52+ic SO-s3+iC 

with so =(plfql) 
2 

, sl= s3 = m2 , and 

-ii:+ x2 z+ m2 
s2= - + - X l-x . ' 

.- 

The renormalized amplitude is then 

dx ___ 
x(1-k) 

L 1 1 1 - ' 

(so-s1)(so-s2)(so-S3) (so-s1)(s1-s2)(so-s3) + ( sp1) @p2) 
2 1 

The middle term is seen to be exactly what is required to compute the 

counterterm if the integration with the denominator ( sl-s2 )-I is 

performed. Similarly the last term becomes the standard Z2 counterterm 

upon integration over 
2 . 

d k, and dx . Thus the counterterms differ from 

the unrenormalized term by choice of the denominators ; specifically, the 

external energy sext used for the denomrnator of the subtraction term 

for a reducible insertion is not the initial energy so but rather the 

energy s1 external to that reducible subgraph. We call this the method of 
A 

"alternate denominators" . The analogue to off-mass-shell behavior in the 

Feynm;;n approach is precisely this difference between the use of so and 

s1 in the energy denominators. Upon combining the terms in tit<, the total 
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: I 

inite in the ultraviolet (k, i2_ia) , the integrand is f single particle 

pole disappears, so that the location and residue of the pole is still _- 

given by the Born term. 

-P- 

For a reducible insertion on a line with momentum .$a , not 

necessarily in the z-direction, the use of "scaled" variables &= xTa f -CL Ij 
-a 

for the parameterization of the loop integration permits point-wise 
'a;, 
'" 

convergence. In the case of graphs with reducible vertex parts which 

contribute to more than one surviving time-ordering, some algebraic 

rearrangement is required to cancel the separate ultraviolet parts of each 

time-ordered contribution. In the case of spin, the subtraction term nume- 

rator of the vertex subgraph must be constructed, as in the Feynman case, 

to agree with the correct numerator coefficient of x7 . 

With these rules, the renormalization procedure can be carried 

out in parallel with the Feynman-Dyson procedure. Because all of the 

renormalized amplitudes are finite , we always have uniform convergence with 

respect to the P-14 limit orrethe subtractions are accounted for. In the 

case of the subtraction terms themselves, there is a subtlety in taking 

the P->Q limit: the calculation of sy in second order in QED is an 

excellent example. There are two contributions (see figure 4,) [21] . 

Because of the singular nature of the integration at x.43 , the contri- 

bution of the integration region where the photon has small fractional 

longitudinal momentum, and produces an anomalous 6 (x) contribution associated 

with the Z-graph. 

In intermediate stages of the calculation, one has to regulate _ 

the individual time-ordered terms to handle up to quadratic ultraviolet 

d2kL integrations, although in the final calculation only logarithmic 

terms appear. The anomalous term also arises in the light-cone quantization 

method from a ~?eeagulIf~ interaction. In the case of the dsk integration 

method discussed before, the anomalous term appears because it is invalid 



- 10 - 

to perform the dnk integral first at x Q 0 for part of the s mcalcu- 

lation. Fortunately none of these subtleties are involved in the computation 

of the physical, renormalized quantities. 

It is an interesting question whether the renormalization 

procedure of quantum electrodynamics could have been discovered in the 1 

1930's had the infinite momentum technique been known. It is, for example, :, 

easy to show that by nai've power counting that the degree of divergence 

in any TOPTh, amplitude only depends on the numberof external lines [9] : 

d1/2 
= 4 - Fe - Be 

Interestingly, the same result is obtained for spin 0 electro- 

dynamics in which 6, needs quadratic regulation. The result for dI/2 

is thus an overestimate since, as the Feynman result shows, the portion 

Fe/* in d1,2 cancels when the various time-orderings are combined. 

In addition to carrying out the above analysis, Roskies and I 

have calculated the fourth order anomalous moment and have attempted 

.part of the sixth order calculation. Choosing the frame as above, 

and employing the automatic Z-graph rule, there are no more than 3 time- 

ordered graphs for each 

between 1 and 15 (out 

3 order P( . We wrote a 

Feynman graph for the order d2 corrections, and 

of a possible 7!) for the Feynman amplitudes at 

simple Fortran program'which enumerated all of 

the contributing TOPTh, amplitudes for each Feynman vertex graph. We 

then used Hearn's algebraic program REDUCE [24 to . . 

(1) Calculate the numerator Dirac algebra for the projection of 

the F2(q2) invariant amplitude. Due to the Z-graph rule, the form of 

the trace is independent of the time-ordering ; later specific substitu- 

tions for the invariants are required. 

(2) Construct all of the four vectors and their parameterization 

according to each time-ordering. 
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(3) Construct the si -energy denominators and phase-space factors 

specific to each time-ordered amplitude. 

(4) By matching substitutions, perform the denominator expan- 

sions to the required order in $ and integrate over angles. .& 

The result is an integrand in the nd2kidx space, with Z$ T “. 
the trivial d~i integration accounted for. After identification and 

subtraction of the infrared terms (which occur at xj/Lo) 9 the results 

were integrated numerically using the RIWIAD program [23] which employs 

an adaptive Simpson rule with random sampling. The order d 2 Peterman - 

Sommerfield [IO] results were easily obtained ; the numerical integrations 

over the d2k idx i variables appear to be more convergent than the 

corresponding Feynman results, although we left the integrand in a consi- 

derably more complicated form than that which appears in the standard 

Feynman results. In the case of the sixth order ladder graph, a six- 

dimensional integrand was integrated in 4 minutes on the SLAC IBM 360-91 

to give 

g-2- CL3 -- = (1.7772.013) 2 

'to be compared with the analytic value of Levine and Roskies [1] (see also 

Levine and Wright [24], K inoshita and Cvitanovid [I]) 

iq, 
d3 =+-- (1.7902778...) 

The sixth order ladder graph is twice reducible and requires the standard _ 

subtraction of vertex subgraphs in second and fourth order. The infrared 

divergent behavior-of the renortnalized amplitude is cancelled point-wise 

in the integrand by employing symmetrization of the integration in the 

three loop variables. Only one TOPTh, amplitude is required. 
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We also attempted to calculate a representative irreducible 

contribution to the sixth order moment, with 8 time-orderings. In this 

case the algebraic complexity of the integrand makes accurate numerical 

integration prohibitive ; the results (within large numerical errors) were 

consistent with the Levine-Wright results for this graph ((12) of-ref. [24]). -* 
cd 

Our conclusion, then, is that the infinite momentum frame 
-5 

. . 

technique is a valid and viable calculational alternative to the usual 

Feynman parameter method, and can be advantageous in the cases where 

only a very few time-ordered amplitudes contribute. It is not competitive 

algebraically when many time-orderings are required. On the other hand, 

since the techniques are valid in quantum field theoretic perturbation 

calculations, it opens the way to the application of new approximations 

in QED. The infinite momentum frame techniques provide a relativistic 

but Schrzdinger-like Fock space (particle number) representation of the 

electron wave-function and variational, Hartree-Fock, or consistent field 

approximations may have applicability [25] . One's intuition in dealing 

with field theory in the infinite momentum frame is further strengthened 

by the remarkable fact that the (good) components of the current (in the : 

transverse -$ frames) conserve particle number , i.e. have no pair-creation 

or pair-annihilation matrix elements. 

This fact, plus the manifest unitarity, i.e., the intermediate 

states have a defxnite number of on-mass-shell particles, makes the 

infinite momentum frame especially useful for bound state problems. 

This is discussed in the next section. 
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III - Bound State Problems in the P-+= Frame 

Suppose we choose a Lorentz frame such that a bound system has 

momentum 7 in the direction z . For P-i& chosen large enough, we can 

assume that all of the constituents will be moving in the positive z-direc- b 

tion ; more specifically, we assume the existence of a 

wave-function amplitude in the infinite momentum frame 

limY'bN)($) =V(N)(l‘$i, xi) , i = l.iN 
P+Q 

Fock-space N-particle ?.. 
'- 

where 

N 
iz 

N 
t = x. = 1 
i=l ” 

0 , E j=l ’ 

with Xi>0 . 

The matrix element of the current is (assuming all scalar particles) 

<p+q1 $0)/r, ) =(p+qi j(OY P) = F(q2)(2p+q)W 
P 

where (choosing /u=,O) (see figure 5) . 

F(q) = 
($42) + 

(kl +.(l-x)?$, x) y(*)(& x) 

-- This is for the special case of the two particle state where the consti- 

tuent labeled with fractional longitudinal momentum x is charged ; 

the general formula is given in ref.[6]. Here ?A+(l-x)Gy is the component 

of the vector 
k-) 
ki t ';;;: transverse to the p?q direction of the final 

state. In the case of the renormalized physical electron in QED, the complete 
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Fock space representation can be identified.to each order in perturbation 

theory and particle number N from the calculation of the vertex function. 

Wave-function normalization, i.e. the Ward identity, gives F(q' = 0) = 1 . 

In the case of bound states (such as atoms, nuclei, or the quark parton 

model) we can write integral equations or employ the Bethe-Salpeter 

equation to determine the Y 0') . %a 'Ir:; 
.e 

Weinberg [5] has proposed an infinite system of integral equa- '- 

tions to determine the (n)-particle P-J DO wave-functions. Truncating 

at n=Z,in g$ 3 
theory, (see fig. 6) this yields an eigenvalue 

equation for the square of the bound state mass 22: 

where 
8 (x-z> 

L 

X2tm2 "2+m2 

"w = x-z 
m2- I 2 -eL 1 (-i&&2+ x2, 

-1 

--- 
l'x z x-z, I 

8 (z-x) 

l 

2 zftrng +22 

t 
kL+ml (-zL-~~)'t x2 1 

-1 

-- 
m - l-z 

-- 
z-x X z-x I 

Note that VW depends on the eigenvalue m2 ."This result is of course 

a drastic approximation since a connection to the three particle state is 

required in even lowest order perturbation theory..Feldman, Fulton and 

Townsend [2d have shown that this equation's eigenvalues agree with the 

Bethe-Salpeter equation in ladder approximation uptoterms of order ma2 

and rnd3 log d , where d= g2/6r . -1 Note, however, that terms of order 

d310g CL-l are anomalous ; they do not appear in the full Bethe-Salpeter 

equation (with the crossed-graph kernels) which has an eigenvalue expansion 

proceeding as ,2 ,d4 [27]. 

More recently Namyslowski [24 and also Atanasov [29] have used 



- 15 - 

the light-cone or infinite momentum variables and the simple two-body 

propagator of the Weinberg equation to construct two-body quasi-potential 

equations for the bound state. In fact, by replacing the x variable by 

a third component momentum variable k3 in order to recover explicit 

rotational invariance in the cm system, their results become essentialiy .A 

equivalent to the quasi-potential equations of Todorov [3],[30]. 
+s 1 

The Todorov and the related Grotch-Yennie [3j equations may ~ 

in fact provide the best attack on the two-body problem. However, it 

could be more desirable to have a systematic covariant procedure and, 

in principle, exact approach to the bound state problem. 

In a new approach that I have been working on recently,-one 

starts with the exact Be-the-Salpeter equation [31] and systematically 

deduces an infinite momentum frame two particle equation. The Bethe-Salpeter 

equation for two spin + particles is 

(ii-m,)($-X-m2)Yp( ) = i ,k )Y,@)z'? (k) 

where k is the sum of all two-particle irreducible kernels. The wave- 

function VP is the amplitude for the coupling of the bound state to two 

off-shell particles. Let us use the general Lorentz frame parameterization 

P=(Pt$;$,P-ml 
m2 

-8 

Sf ' -3 % 
k = (xP t $, k, , XP - 4p ) 

&= (ZP t$ ,z, ZP - 2 ) 

where -again 
k2J2 

P is arbitrary (P = M/2 is the cm system) and 

s.& = .L 
X . 



Let us write 

K = &&Z&,X) +SK 

so that K is independent of sr;. and sc * We can treat 6k later 

by perturbation theory. 5 
j T-? 

There are many ways of choosing the approximate kernel R . '; C 

For example we can ignore the dependence of the kernel on the off-mass- '. 

shell mass of particle one and take 

292 . si;+(ml+Q/x , s4 +(m: -J& 
- 

This is clearly an excellent approximation for m$>> m: , or weakly 

bound atomic systems. In any case, using K , G F&,x) 

we can define a new wa;-function [32] 

VP(R) x(1-x) 

(~-~+m2)(~~tml)~~,x) x(1-x) 

C( ) p-A 2- mgtiC][g2-mF t i';3 

(O<x<l) 

= 
($ -~+m2)(jC+ml)~@~jx) 

,'t rn: zf+ mg m2+k -2 

m2 - 
1 

x - l-x 
tic 'A= x - 

We thus have the simple 3-dimensional equatiqn 

r -f2trn2 

1 
m2/-A 1 , v &z) 

X m2 

D 
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with k2 
2 =m 1 , p2= m2 and d2) =vM2 (c ,x)/(1-~) . 

Ill 

In either case one has a simple eigenvalue equation for m2 . Since the 
a 
a& 

potential does not depend on m2 , 
17 

perturbation theory is Schrcdinger-like, .' 

and unlike the Be-the-Salpeter equation, the wave-function normalization 

condition is trivial. The infinite momentum frame form factor expression 

given above is correct for the wave-function q (2 ,x) . 
m2 ' 

The Dirac 

form of the equation shows that we have a covariant equation for particle 

(2) in the field of the one-shell particle (1) where all of the rela- 

tivistic kinematics of particle (1) are retained. The equations can be 

rewritten in terms of standard cm 3-dimensional coordinates by utilizing 

the definition 

2 -22 
ml+% 

kz = XP - 4xp , with P = m/2 . 

The Dirac-Coulomb equation is recovered for rn13a . 

Using various approximation for E we can also obtain quasi-potential 

equations for ui . 
m2 

However, 'since we start from the exact Bethe-Salpeter 

formalism we have a systematic procedure which can be carried out to any 

order in the intsraction. 

We pla: to investigate the usefulness of this approach to posi- 

tronium in the near future. It is also clear that the n-particle genera- -- 

lization of this equation will be useful for general atomic physics 

'problems where relativistic and recoil corrections are important. 

Among the examples of such applications are 

(1) The high energy limit ( Y >> B,E)' of forward Compton 
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scattering on the bound electrons of an atom One finds that the 

spin -averaged amplitude is asyptotically constant and real [33]: 

f(3)=>-Z 2 

1 

fe(X) 
- Ze2 

MT- X 
dx ..= 

"i$fJ{ 
0 

where f,(x) is the normalized probability of finding the electron with ~ 

fractional longitudinal momentum ; it can be computed from a wave-function '" 

integration, or in. fact be directly measured in deep ,inelastic electron-atom- 

scattering. 

Note that x I VT plays the role of the effective electron mass ; 

~FQY contains corrections from atomic binding and finite nuclear mass 

corrections. The result is derived simply from the Z-graph contributions 

to the Compton amplitude. 

(2) Rearrangement collisions in atomic, nuclear or quark model' 

bound state scattering theory. The rearrangement amplitude for the elastic 

collision of two-particle bound state systems (e.g. : electron exchange in 

H - H atom collisions) is simplyIi(see figure 6) [34] 

4 (W = 

WB("l)yD(q t(l-x)~)wA(i$t(l-xj$ - G;) Y($ - x7;, 

where A = zsi - pj 
‘InC *IIt 

and i2 = -t = 2p 2 q .L cm Cl -cos 0 cm ) 

“i2 
r, = -u = 2pcm2(ltcos8cm) 

4 + 
q, * 5 = 0 (assuming mA2f mB2 = mC2 t mi2).. 
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This result ignores the Coulomb interactions between the electrons 

and between the atoms , but includes the binding forces correctly (includir,g 

all recoil and relativistic terms). 

Spin corrections are discussed in ref.[l4]. This result assumes 

the wave-functions obey approximate equations q" (2 ,x) with 
m2 ' 

F fT( SA). -a 
-a 

It is then obtained immediately from the Feynman loop integration using 
2 35 

the frame p, = P -f;ti and explicit integration over s& * 

In conclusion, we have seen that the P-+a method is a-valid 

and useful calculational alternative to standard perturbation theory 

methods. The most exciting future applications may be in bound state 

problems in quantum electrodynamics. The single-time equation derived 

above for v (p,x) provides a rigorous, systematic basis for calcu- 
rl2 .L 

lations of th; positronium and muonium spectra. However, because the infi- 

nite momentum equations so closely resemble non-relativistic many-body 

theory, there is also the exciting potential-of applying new types of 

perturbation methods, including variational and self-consistent approxi- 

mati on to problems in relativistic field theory. 
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Figure and Table Captions 

1. Illustration of Time-Ordered Perturbation Theory (TOPTh) graphs for 

the electron vertex function. The covariant Feynman amplitude requires 

1 in general the sum of 3. time-ordered contributions. In the P- cg 

Lorentz Frame, only (a) needs to be explicitly computed. 
4 

2. Factorization of the Vertex Function. Upon summation over all time-orders,:: 

the Feynman vertex function F(q*) factorizes, with q = PI-p2 . 

3. Unrenormalized Compton Amplitude with a self-energy insertion. 

41 Time-ordered contributions to the electron-self-energy. The contribu- 

tions of the vacuum disconnected graph (c) with p' = p replaces that 

of (b) if the Pauli principle is taken into account. 

5. Time-ordered Perturbation Theory contribution to the Bound-State Form 

factor. In the P-+3 Frame, with qz = 0 , the other graphs, invol- 
‘ 

ving pair creation and annhilation do not contribute to the k 
u and , 3 

k 

1 matrix elements. 

6. The Weinberg equation truncated to the two particle state. 

7. Rearrangement collision of two bound states. In the case of H atom- 

' H-atom collisions, the electrons are interchanged. 

Table Caption 

Rules for calculation using time-ordered perturbation theory in the 

infinite momentum frame (TOPTh,). See ref.[9] for derivations. The 

atomic Z-graph rule indicated in step 4 states that energy conservation 

between the initial and intermediate state rather than the mass-shell 

condition is to be used for the spin projection sum if the fermion spans 

one and only one time interval. 

.- 
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- TABLE I - 

moving graphs 

2. Assign ?1 ,x for each internal line 

3. At each vertex but the last, assign a factor 

Calculation Rules for Q.E.D. in TOPThG, , 

S = 1-(Z77)4i&(4)(p final - Pinit) .(ZTi)-3'2(2Ei)-1'2 

To compute * Jd , the invariant amplitude 

1. For each Feynman graph of order n , write all time-ordered forward 

(e2 = 4li-q 

with just the spinor factor at the last vertex. 

4. Sum over polarizations 

2. $A= '!&I 
PO1 

II{' '1 = (*$+m) 
spin v’j 

or (k&m) 
A 
I 

for fermions spanning one time i 
interval 

5. For each internal state assign the factor 

2 

Ix 
inc 'i- 

1 int si+iG 

*6. Integrate d2ki dXi 8(Xi) (2Ti)-3 (2Xi)-l for each internal line. 



Feynman (a) (b)‘ 

(d) 

Fig. 1 

(e) 

PI 4 p2 

x 
p3 p4 

2412A2 

Fig. 2 



2412A3 

Fig. 3 

( > a (b) 

Fig. 4 

2412A5 

Fig. 5 



Fig. 6 

A, 
/ 

p+q+r 

B , 
/ 

P 
2412A7 

Fig. 7 


