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ABSTRACT -- 

Interference between one- and two-photon processes for e+e- annihilation 

into hadrons in a two-jet parton model leads to a charge asymmetry of detected 

final state hadrons along the directions of the incident leptons. The asymmetry 

near the lepton axis grows as 2Qn 
2 e 2 - 41n f ti s 

AE2 
, so that in spite of the 

O(a) suppression relative to the Born cross section, the asymmetry can amount 

to a - 2% effect at e 2 2’ for 7r* or K” inclusive measurements in a typical ex- 

periment. The precise size of the asymmetry depends on the parton charges. 
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1. Introduction 

As the available energy of electron colliding beams increases, so too 

does the range of interesting experiments. In this paper we wish to study 

higher order electromagnetic effects in e+e- annihilation. In particular, 

application of the naive parton model1 will enable us to discuss enhanced 

asymmetries in hadronic inclusive processes such as ese- - 7r* +X, in 

which, due to electromagnetic interfence effects, the charge preferentially 

“maintains its direction of motion” so that pions of opposite charge tend to 

align in opposite directions measured along the colliding beam axis. The 

effects we study are distinct from the other well-known two-photon processes’; 

the latter effects are distinguishable from ours by the presence of the initial 

leptons in the final state and will in any case not contribute to asymmetries. 

While these asymmetries are suppressed by O(Q) compared to the ordi- 

nary O(cr2) lowest order Born contributions to annihilation, we find that for 

spin-+ partons, directions along or against the direction of the incoming 

lepton beams have asymmetries which are enhanced by squared logarithmic 

factors of the CM half-angle i. This limit is equivalent to the limit -u=: s >> -t >> p2 

(or, in the backward direction, -t z s >> -u >> p2), where the first inequality puts 

us near the lepton axis (here the log-squared terms dominate the single log terms); 

p is some representative mass scale which we take to be typically hadronic. Asym- 

metries on the order of 2-5% are expected for 0 = 2’ in a typical experiment pro- 

viding s is large enough that the above limits are satisfied. Such effects should be 

within reach of present experimental techniques, We shall discuss further num- 

erical estimates later. 



I j 
I 

-3- 

: i 

We might also note here that of course such logarithmic factors 

represent a breakdown of Bjorken scaling3 for fixed experimental resolution AE 

even if such scaling were seen in the lowest order terms. In general this is 

hardly surprising, since it is a consequence of the existence of a renormalizable 

ultraviolet divergent theory in nature which is not asymptotically free, namely 

Quantum Electrodynamics (QED). Since the non-scaling corrections grow with 

the kinematic variables, we might reasonably expect such corrections to con- 

fuse the analysis of future experiments on scaling. In particular, such correc- 

tions cannot be extracted from the data in a completely model independent way. 

What can observation (or non-observation) of hadronic asymmetries 

teach us? (i) The interference effects which we discuss are direct analogues 

to electromagnetic corrections which lead to differences $3 etween e+ and e- 

deep inelastic scattering. To our knowledge such correction terms have never 

been experimentally observed and would therefore constitute a check of QED. 

(ii) Observation of the asymmetries in the hadronic state requires, as we 

shall see, that such states be disjoint decay products (hadrons occur in lrjets’r) 

of a parton (or antiparton) which is created by the e+e- annihilation. In other 

words, observation of the asymmetry means that the hadron charge follows 

the parton charge, and that the parton charge will appear in the final state. 

One of the most important questions which the parton model raises revolves 

around just this point. Since an inclusive experiment is far simpler than an 

exclusive one, the test we propose can be most important for the parton model. 

Another possible class5 of parton models has the quark quantum numbers 

annihilating, with quark quantum numbers appearing only on the average in 

the parton fragmentation region. 657 It has been shown that this type of model 
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has consistency problems; moreover, the actual dynamics of such models 

is not well understood, so even though it is conceivable that a remnant 

asymmetry can survive in them, we are unable to make any unambiguous 

calculation for them at this time. Our results do not refer to these models, 

and we refer the interested reader to Ref. 6 for more details. (iii) The 

size of the asymmetry is a function of both the pax-ton mass and parton charges. 

Therefore when more careful estimates are appropriate, bounds can be put 

on a suitable combination of these quantities, which cannot be derived from 

the Born terms. (iv) Such asymmetries in e+e- annihilation are also pre- 

dicted in gauge theories8 , where they can arise simply from parity violation 

at an order which is a priori lower than the purely QED effect we are dis- 

cussing. Asymmetry data may therefore provide us with a handle on gauge 

theories as well as being useful in refining parton models or checking QED, 

but at the same time it is necessary that the purely QED contribution be care- 

fully sorted out. This is easily done if AE/E is fixed since the QED effect we 

discuss is then energy independent while the gauge theory effect continues to 

grow with energy. 

In computing4 

similar logarithmic 
9 

the differences between ef and e- deep inelastic scattering, 

enhancements occur in suitable kinematic regimes involving 

$3 the spacelike continuation of s. We would only like to comment here that 

in some respects the annihilation version is simpler experimentally because 

only one type of experimental beam is involved, whereas in the deep inelastic 

experiment two separate beams are involved with a consequent possibility of 

systematic error. 

The organization of this paper is as follows: In Section II we discuss the 

general features and kinematics of the annihilation process and describe the 

general features of the interference terms. In Section III we discuss the parton 
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model description of the Born term and the relevance of the parton model 

for the higher order terms. The relation between the parton model and p-pair 

production by e4e- annihilation is studied in Section IV, which also contains 

a discussion of the form of p-pair production to O((u3); this discussion 

employs the most recent work9 on this process. Finally in Section V we 

apply the par-ton model to the inclusive hadronic process in final form, make 

more detailed numerical estimates, and discuss the asymmetries for different 

detected hadrons when partons are quarks; the difficulty in sorting purely QED 

from gauge theory effects will be touched upon here also. 

II. General Features 

Figure 1 describes the kinematic quantities of interest for the anni- 

hilation. We are interested in the analogue to deep inelastic scattering, for 

which the single outgoing hadron h is detected, with variables as follows: 

s = q2 = (f- -I- a”)2 > 0 

V = -p.(l-+P+)/mh< 0, 

in the region 

s2. - v >> rest masses 

o< w= 
- 2mhv 

cl2 
< 1. 

(2.1) 

(2.2) 

The lowest order (one-photon) approximation to the amplitude for this 

process is shown in Fig. 2. In this approximation the cross section is related 

to a certain discontinuity of the Compton amplitude and can be given a 
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decomposition in terms of the usual structure functions. This decomposition 

as well as the relations of this process to deep inelastic scattering and 

three-body annihilation are well known. 10 

The (differential) cross section 11 to O(o’) can be written as interference 

terms of two types, type (a) and type (b), according to the unitarity cut. Type 

(a) interference terms arise from interference of an O(o) amplitude with an 

amplitude of O(cr2), while the type (b) terms represent the interference of two 

o(cY3’2 ) terms. This distinction, shown in Fig. 3, is of no intrinsic worth for 

the computation of the cross section, but is convenient for our exposition. 

Once this distinction has been made, a further breakdown of the two types 

is possible. For example, type (a) graphs can be uniquely written in the two 

terms shown in Fig. 4. Figure 4(a) shows the kind of term which will be of 

interest to us, since it contributes to asymmetries. Figure 4(b), which may 

for example represent internal form factor corrections, is ignored in the 

remainder of this paper, because even though these contributions are often 

enhanced by logarithmic factors 12 they cannot contribute to any asymmetry. 

Of the type (b) terms, a single real photon must be emitted either from 

an external or an internal line in the individual amplitudes. In particular, we 

class@ the photon according to whether it is emitted from a lepton line, from 

an external hadron line, or from an internal line, as in Fig. 5(a), (b) and (c). 

(The external hadron line can be either the detected hadron or part of the 

undetected group. ) This leaves us all in all with nine terms of type (b) to be 

considered. This classification will prove useful when we investigate the 

relevance of a parton approach in Section III; there we will find it convenient 

to subdivide even further these contributions. 
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We should remark here that when higher order electromagnetic effects 

are taken into account, as in this work, then the usual structure function 
10 analysis , which rests on the one-photon approximation, must break down. 

In other words, Rosenbluth-type formulas are no longer appropriate. It 

might still be interesting to ask whether the cross section scales; i. e. , 

whether up to necessary kinematic factors the cross section depends only 

upon the ratios of large kinematic variables themselves rather than upon 

ratios of these variables to the rest masses of the problem: and as we have 

stated in the introduction, the answer is that scaling is indeed violated. 

However we might comment that in the limit we are studying, if experimental 

circumstances are such that AE/E is constant, then scaling is recovered. 

III. The Parton Model 

In the naive parton model, the one-photon term is dominated at large s 

by the summation of pair production of partons’, since partons are at least 

approximately pointlike compared to observed hadronic systems. In the usual 

approach, partons have finite mass, an assumption we also follow. A produced 

parton of type i and charge Qi then decays with probability Dh (w) into an 

(observed) hadron h which carries fraction w of the (asymptotic) magnitude 

8 ITS of the parton three-momentum. Moreover, the transverse momentum of 

the hadrons with respect to the parton line is limited to the usual - 150 MeV/c. 

This is pictured in Fig. 6. While the physical picture is therefore basically 

a two-jet model, appropriate decay characteristics of the parton can ‘?fill in 

the rapidity gap” and give rising multiplicity as well as the more intuitive 

finite multiplicity. We refer the reader elsewhere’ for more details of this 

picture. 
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One common and crucial feature of (calculable) parton models such 

as that used in this paper is that the partons of the produced pair do not, 

4-6 interact after production. When interaction (particularly with charged 

particle exchange) is not allowed, then the parton charge must ineluctably 

appear in the final state. The appropriateness of this parton model to e4e- 

annihilation can be probed by making an exclusive examination of the final 

state or, as we shall hopefully convince the reader, by observing higher- 

order effects in the much simpler inclusive experiment. 

Let us turn now to the type (a) amplitude yielding the asymmetry, as in 

Fig. 4(a). Presumably one of the relevant questions concerns the size of 

qf and gz”, where (timelike) q = (ql + q2). In particular, it is possible to 

imagine q: and qt both to be finite and still have asymptotically large 

q2 M 2q2. q2. [This is to be contrasted4 with the case of large spacelike q2, 

where elementary kinematic considerations dictate that at least one of the qi2 

be large and spacelike. ] It is the dynamics alone which determines the rela- 

tive sizes of qf , qi, 2 and q1.q2 when q > 0. The importance of this question 

lies in the realization that if q: is finite, it need not dominantly interact with 

a pointlike (parton) line. 

As an example, consider a case we shall employ at more length later; 

namely, p-pair production. The relevant two-photon terms are shown in 

Fig. 7. We investigated these graphs and found that in fact the quantities qf 

and qt both remain finite as far as the contribution of the leading logarithmic 

behavior is concerned. Whether this would remain true in more complicated 

graphs depends in detail on the particular graphs in question. 
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We shall now argue that in spite of this result, the leading contribution 

to the two-photon exchange amplitude in the interference term for hadron 

production is the one in which the two photons interact with a single parton 

line; i. e. , the same as Fig. 7 with the muons replaced by partons. Rather 

than writing elaborate dynamical schemes for the necessary quantities, an 

approach which would suffer from too great a degree of particularity, we 

base our arguments on an assumed lack of long-range correlations, on 

quantum number considerations, on the assumed non-overlap of parton states 

and individual hadronic states, and on the necessity of overlap with the Born 

term, Fig. 6, for non-zero interference. The argument is then not that we 

are computing the entire two-photon contribution but only the most significant 

part of it. It does not seem to us that the assumptions used here are parti- 

cularly novel or unreasonable. 

In general, the two-photon interference terms are of two classes, as 

in Fig. 8(a) and (b). (While a variety of other more complicated diagrams 

involving form-factor-type corrections on the two-photon side can be drawn, 

we dismiss these from consideration since they are not expected to cancel the 

behaviors of Figs. 8(a) and (b), which will be seen to dominate for ~9 << 1.) 

The states s in Fig. 8(a) and (b) are at this point either parton states of finite 

mass or coherent hadronic systems of any mass0 As far as the single-state 

term of Fig. 8(a) goes, it suffices to say that since the state B must significantly 

overlap with the state p from the Born term, S must itself be a (fast) p state, 

and hence s is a parton state. We reach this conclusion independent of the 

size of q: and qi. To compute this contribution to the cross section it suffices 

to use results for b-pair production (as in Fig, 7) along with familiar properties 

of the parton model. While we shall do this in further detail in Section IV, we 

remark here than in certain directions the asymmetry from this graph is en- 

hanced by squared logarithmic factors. 
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Since the diagram in Fig. 8(b) is quite hard to calculate, it would be 

comforting to know that it could not contribute such factors to the asymmetry 

so that in fact the only !‘type (a)‘! graph we would need to consider is Fig. 8(a). 

We shall now argue that Fig. 8(b) can indeed be ignored. Consider first the 

kinematic limit qf c qi x g q2. (We imagine this region is not suppressed 

by the dynamical details. ) Then the lines pl,. . . , p4 represent partons. Let 

us go to the center-of-mass system so that if a four vector is labeled 

v = (vo3j, 

q = (A, 0); 

pa = tb &, 3 &>, pb = (9 Jc -4 Js>; 
(3.1) 

Pl 
M (&J-s, $Js) = p,. p2 * (ids, -6Js) = P4’ 

The momenta going across the graph must now match; e. g. we must have 

Pa = PI + P3 and pb = p2 f p4. This is satisfied by the configuration of Eq. (3.1) 

and so we conclude that this region can indeed contribute to the interference 

term from a kinematic point of view. However, the quantum numbers must also 

match, and this is in general far more difficult. For example, the lines 

represented by p2 and p4 must have the quantum numbers of a 5, while p1 and 

p3 must have the quantum numbers of a p. At the same time p3 + p4 (and 

p2 + p,) must be able to annihilate. In standard quark-parton pictures the 

simultaneous satisfaction of these requisites is not possible. Now let us con- 

sider the other extreme kinematic limit qt M qi M 0, wherein the states repre- 

sented by pl,. . . , p4 can be general hadronic states. In this limit it is impos- 

sible to simultaneously satisfy the requirements of momentum conservation 
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(P, = p1 + p3, pb = p2 + p4, q1 = p1 + p2, q2 = p3 + p4, and q = pa + pb) and 

short-range order (in particular;; = T2 andz3 = F4) and still keep the parton 

masses p,” and p2 finite. b For example, with q, pa, and pb still given by 

Eq. (3.1), we could write 

q1 NN tb Js, i Js), q2 = (8 &, -8Js); 
(3.2) 

p1 M ($A $di) = P2’ p3 = ($A, -&Js> = p4 

if the states pl, . . . , p4 are of finite mass. ( Fl M . . . --<4 M 0 does not 

satisfy q1 = p1 + p2 and q2 = p3 + p4. ) In this case, although the requirements 

of short-range order are met, momentum conservation is not satisfied 

tg f T2 -G4’ Ta # T1 +33). Another possibility instead of Eq. (3.2) is to 

have pl= pa= <Ns, i&9, P4M pb” ($ Js, - 8 &.), and p2 x p3 M 0; here 

momentum is conserved, but the requirement of short-range order is not met 

(Fl $ F2, z3 $ T4). (Of course the quantum number considerations discussed 

above also continue to apply. ) Finally, no matter which kinematic region we 

choose to look at, there is no reason to expect Fig. S(b) terms to have the 

squared logarithmic enhancements of Fig. 8(a) terms without rather special 

behavior of the “2s - hadronsI1 vertices in Fig. 8(b). Thus Fig. 8(b) is 

eliminated, and Fig. 8(a) furnishes all the “type (a)” interference terms we 

need consider. 

Next we turn to the generic l’type @)I7 interference diagram of Fig. 3 (b), 

whose separate amplitudes have previously been classified in Fig. 5. Evaluation 

of “type (b)” diagrams is necessary to insure that the part of the “type (a)” 

contribution which is infrared (IR) divergent can be properly cancelled by soft 

photon emission processes. In the context of the parton model, the relevant 
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classification of amplitudes analogous to that in Fig. 5 is shown in Fig. 9, 

with a corresponding set of 16 interference terms contributing to the type (b) 

cross section. We should like to show now that the particular type (b) dia- 

grams which need to be considered to accomplish the IR divergence cancellation 

are precisely those which we can easily evaluate by appealing to the O((u3) 

calculation of e+e- - p+,u- in Ref. 9; namely, those amplitudes of Figs. 9(a) 

and (b), lepton or parton (muon) bremsstrahlung. (The translation of 

e+e- +- 
“P P considerations into parton language for our process is done in 

Section IV. ) To show this we shall argue that cross terms between the 9(a), 

(b) graphs and the 9(c), (d) graphs are small. We shall see in Section IV that 

interferences between the graphs of Fig. 9(a) and (b) give squared logarithmic 

enhancements like the type (a) graph behavior we have discussed earlier; 

since these enhancements would not in general be nullified by the contributions 

of the 9(c) and (d) graphs, a knowledge of 9(a) and (b) behavior is sufficient to 

enable us to extract that (useful) part of the asymmetry cross section (from 

type (a) diagrams) which is not infrared divergent. 

Our argument now depends on the dominance of soft photon emission over 

hard emission, a well-known (and numerically sound’) characteristic of 

bremsstrahlung phenomena. Since none of the emitted hadrons in Fig. 9(d) 

and none of the internal lines in the photon-emitting blob in Fig. 9(c) carry the 

full momentum of the parton line (or equivalently the lepton line), the cross 

terms will then vanish. This follows for 9(d) because l3 W-4~ 0 and for 

9(c) because the region where an internal line carries the parton (or lepton) 

momenta is a vanishingly small region of phase space. 
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VI. Parton Pair-Production Amplitudes 

The type (a) terms corresponding to the one-photon-two-photon inter- 

ference as in Fig. 8(a) and the type (b) terms corresponding to the brems- 

strahlung amplitudes of Figs. 9(a) and (b) can be completely calculated in 

terms of the corresponding results for p-pair production by e-e+ annihilation. 

In this section we use the results of recent work’ on this problem to write 

down such a cross section. The asymmetry which eventually appears in the 

semi-inclusive final state first appears as an asymmetry in (unit charge) 

parton pair product ion. Since the h-pair paper of Ref. 9 gives rather complete 

detail, we shall be content here with quoting results. 

We study the differential cross section da/da for pair production of 

partons of unit charge up to order d, where fl measures the center-of-mass 

angle of the p- with respqct to the incoming e-. The (asymptotic) kinematic 

variables are defined in the usual fashion in Fig. 7, with u x -t - s. We sum 

and average over spins as well. For?+ and-l? along the collision axis 

do/da contains log-squared terms from both the type (a) and (b) terms, and we 

shall analytically extract + these log-squared terms in the variables s, t , 

and u which contribute to the asymmetry. It is most important to note that in 

doing so we lose the ability to determine the scale of the logarithmic terms, 

i.e., according to this approximation 

2 
“2 log -+ = log A2 + log2 = logL2 . 

“1 m2 m1 “2 
(4.1) 
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Therefore we employ a generic mass term p2 for a scale; we shall discuss its 

size below. 

We find that the contribution of the type (a) terms (for 0 = 0 or. 7r) is in 

order a! 3 

da -m Q! 3, type (a) =doOY 1 dQ 2n (u2M2) u2+4ut+7t2 I jn2 s -t 
f?+ 
P h 1 

- (t -u) . 

In this expression duo/da is the Born term result, 

da” o2 2 2 
3j- =;3(U +t), 

and we have kept a term involving the photon mass h as a check that the 

bremsstrahlung terms will cancel these infrared divergences. 

The contribution of the bremsstrahlung terms, with corresponding 

amplitudes shown in Fig. 10, contains double logarithmic terms in a soft- 

photon approximation. (For the numerical effect of rrhardrr photon emission 

we refer the reader to Ref. 9. ) These are the type (b) contributions (see 

Fig. 9(a) and (b)) which we include in our calculation; in particular we are 

interested as above only in that part of the type (b) contribution which leads 

to an asymmetry. We find 

da 
m 

a3,type 04 
+ z (s, t, u) 

1 

(4.2) 

(4.3) 

(4.4) 

- tt --u) , 
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where AE is the energy resolution of the experiment and Z(s, t, u) is a function 

containing no double logarithmic terms. We therefore have the appropriate 

infrared cancellation in the combination of Eqs. (4.2) and (4.4). 

Let us now consider these terms at various angles. If the scattering 

angle is large, so that O(s) = 0(-t) = 0(-u) then the arguments of al1 the 

logarithms become the same, say + s/p2. It is then straightforward that no 

double logarithms at all remain, and the asymmetry (reassuringly) vanishes 

in this logarithmic order. Suppose however that we study the region of forward 

scattering, where -u = s > > -t. Then the sum of Eqs. (4.2) and (4.4) give 

dc duo CY 
m o3 ,e=e<<1 =-m- ?r 

Similarly, in the backward direction 

do da 
da o3 

= -- 
,e=~-E dS2 

a39 e=6 

Thus there is a tendency for a p+ to line up along the direction of the initial e+, 

enhanced over the intuitive O(o/n) effect. In particular a convenient experi- 

mental quantity (assuming the direct parton-pair experiment were possible) 

would be 

A(B) = 

From Eqs. (4.5) and (4.6) we find that 

(4.5) 

(4.6) 

(4.7) 

(4.6) 
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As discussed earlier, there are two kinematical assumptions made in ob- 

taining this result. The first is the scaling assumption, s, Itl, lul >> p2, where 

p is some characteristic mass (say the mass of the produced parton and anti- 

parton) ; satisfying this limit insures that our results will be energy-independent 

(if AE/E is). The second assumption is that the observed particle comes out 

close to the beam axis (s > > -t or s > > -u) so that squared logarithmic terms, <z. ,: 

easily separated from linear logarithmic terms in Ref. (9)) are sure to dominate 

the asymmetry: for example, Eq, (4.8) gives A(5’) = 22% for AE/E = 10%; the 

exact result from Ref. (9) is 16.5%. (At 5’ for AE/E = 10% the second term in 

EqO (4.8) contributes more to A( 0) than the first; this situation is reversed if 

the resolution is poor or if we look at smaller angles. For example, if the 

resolution is so poor that the second term in Eq. (4.8) is negligible, then 

A(1’) = 110/o.) It is clear from the results of Ref. (9) that a considerable asym- 

metry from QED effects alone may continue to exist at angles comfortably away 

from the beam axis, so in trying to untangle these from strictly gauge theory 

asymmetries8 of lower order, one must be rather careful; the expected energy 

dependence of the gauge theory effects at present energies should be useful here. 

V. Asymmetries in the Hadronic System 

It remains for us to append the parton decay functions and derive 

expressions for the inclusive experiment. The additional variable w now gives 

us a double differential cross section dah/dwdfi. 1(2 now refers to the CM angle 

of the detected hadron h; by assumption we take the par-ton decomposition to 

produce hadrons aligned with the parton. A spread of this decay then smears 

our results by an amount A 0 - pT/pL- 150/(&/2), s in (MeV)2, so small angle 

searches require high energy for well-collimated jets. A more convenient ex- 

perimental cross section may be d$/dE,dn. JS Since Eh= w 2, 
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doh 2 doh -x-- 
dEhdn J- dwd!J ’ 

To quantify the asymmetry, one might measure 

In general, if parton i has charge Qi measured in units of the electron 

charge, then if we denote the sum of O(a”) type (a) and (b) interference con- 

tributions for par-tons of unit charge as 

then13 

Ah@,, a) = arfint(s) 

In particular, if 8 = 0, then from Eq. (4.8) 

AhtEh, 6’ = 0) = A(B) 

We pause to note that Eq. (5.4) allows one to make numerical estimates 

of A h at arbitrary angle with knowledge of the parton mass (all partons are 

assumed to have the same mass in (5.4), although this is easily generalized) 

and the full results of Ref. (9). Note also that in the portion of the asymmetry 

h we have studied only Di (w), derivable from the lowest order results for a 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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definite parton model, is required. The precise size of the asymmetry 

depends upon details, but we might remark on an approximate linearity in 

Qi and on possible cancellations in the numerator. 

As an illustration, we shall work out some details for the quark parton 

model13, in which partons are the usual u, d, and s states. From isospin 

and C-invariance we have 

D;+ 
-I- 

= D; zz e = Di 

+ + 
zz D; = D$. = D; 

+ + - 
= j-j; zz J$ = J-J? , 

and 

DK+ 
U 

= j-$’ zz D; zz D-f0 

-j-, K+ - D&” 
s - s = D,” zz D;’ 

KS 
Dd 

= D;’ = J$ ito = Du 

KS 
Da 

= Dr;“’ = DF = Dz” 

DK+ ii 
= J$’ = D,” = DF” 

DK+ 
S 

zz D,“” EZ Df P =Ds . 

(5.6) 

(5.7) 

From W(3) invariance we have 
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DK+ 
U 

= J$ 
+ + 

= D,” 

KS + + 

Dd 
z.z D; = Ds” 

D; 
+ 

= D; 
+ + 

=D; . 

A-convenient (and measured13) quantity is 

+ + 
q - D,“,‘Dd” = 3. 

We then find, using only Eq. (5.6) 

3 + 
+ An - (E, 

13 
0) A(8) Dd” (77 1) - = 

+ 1) + (+j2 + - I 2D; 

and 
A’I (E, 6 = 0) = - Ar+(E, 8 = 0) . 

13 + + 
In particular if D,” (w) z Di , then 

+ 
A= (E, 6 z 0) = 5 46) 

which for 8 = 2” is a z 20/o effect. 

For kaons the results become most interesting when we apply Eq. (5.8). 

Then we find 

+ + 
AK (E, cos0) = An (E, cos8) = -AK (E, coso) 

and 

AKo(E, cos8) = 0 . I (5.13) 

(5.3) 

(5-9) 

(5.10) 

(5.11) 

(5.12) 



I -2o- 

The predicted equality of I? and 7r* asymmetries and disappearance of 

K”-zo asymmetries are consequences of assumed SU(3) invariance in Eq. (5.8). 

This assumption can easily be modified within the context of the quark parton 

model we have used. If also for some reason the intermediate vector boson di -y> 
in a hypothesized gauge theory does not couple to the same kinds of partons as .i 

does the photon, then deviations from the above may be observed in data from 

which gauge theory effects have not been separated out. 

Complete absence of asymmetry will further compound well-known para- 

doxes of the parton model, in that it indicates the quark charge never leaves 

the interaction region. 
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Figure Captions 

Figure 1: Kinematics of inclusive hadron production from e’e- annihilation. 

Figure 2: Lowest order (one-photon) approximation to the amplitude of Fig. 1. 

Figure 3: The two types of interference terms contributing in O((r3) to the 

Figure 4: 

Figure 5: 

Figure 6: 

hadron production cross section in e+e- annihilation. “Type (a)‘1 

terms, arise from interference of an O(o) amplitude with an O(a2) 

amplitude; “type (b)lr terms arise from interference of two 

o(o!3/2 ) amplitudes and contain a real photon in the final state. 

A further breakdown of “type (a)‘( interference terms of Fig. 3(a). 

Only the kind in Fig. 4(a) gives asymmetries. 

A classification of amplitudes leading to “type @)‘I interference 

terms of Fig. 3(b) is made here according to whether the final real 

photon is emitted from (a) a lepton line, (b) an external hadron line, 

or (c) an internal line. There are nine permutations of these 

amplitudes with their complex conjugates representing the “type (b)” 

izlterference terms. 

The two-jet parton picture considered in the text; the heavy lines 

represent the parton (p) and antiparton (G). In this model there are 

no interactions between the pair after they are produced. 
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Figure 7: The two two-photon amplitudes in e+e- - P+,u-. Interference 

between these and the one-photon amplitude (not shown) leads to 

an asymmetry in which the @+(,x-) preferentially maintains the 

direction of motion of the e+ (e-). 

Figure 8: The two classes of “type (a)** processes contributing to asym- 

metries in a two-jet parton picture (summation of crossed photon 

lines is understood). These are just the two-jet categorizations 

of Fig. 4(a). There is no trading of hadrons between jets. 

Figure 9: This is the same as Fig. 5, but in the context of a two-jet parton 

picture. There are 16 permutations of these amplitudes with their 

complex conjugates to form the l1 type (b)ll interference terms of 

Fig. 3(b). 

Figure 10: The remaining “type (b)” amp litudes left to consider after we have 

ruled out various contributions of amplitudes in Fig. 10. The soft 

photon limit of these bremsstrahlung diagrams cancels the infrared 

divergence of the “type (a)?’ interference terms. 
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