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I. INTRODUCTION 

For almost a decade quarks have been used as the basis of a suc- 

cessful description of hadron spectroscopy. As originally introduced by 

Gell-Mann (1) and Zweig (2), meson and baryon states are to be con- 

structed from “constituent quark” building blocks as quark-antiquark and 

three quark states, respectively. 

With internal angular momentum between the quarks, a simple non- 

relativistic prescription for building the hadron states gives both the 

SU(3) and spin-parity quantum numbers to be expected. Particularly for 

baryons, where the physical states which exist are best determined, such 

a scheme is very successful (3). While there are a number of meson 

states which are expected in such a quark model but have yet to be found, 

the relevant experiments are sufficiently difficult that these states could 

well exist and not have been observed as yet (4). 

At the same time, quarks have been used in another distinct way as 

the basis of constructing algebras from current components. Here one 

writes the relevant currents in terms of quark fields and the appropriate 

SU(3) and Dirac matrices, commutes them using the naive free field rules, 

and then throws away the quarks as a set of basis states - abstracting 

just the algebraic properties of the current commutators themselves. 

In this way one obtains, for example, the chiral SU(3) x SU(3) algebra 

of the vector and axial-vector currents at equal times proposed by 

Gell-Mann (5). This “algebra of currents I1 has also been very successful, 

being the basis of the Adler-Weisberger sum rule (6) and many other 

calculations (7). 
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When extended from equal time commutators to those of current 

densities whose coordinates are on the light cone with respect to one 

another, one generates the quark light cone algebra (8,9). A powerful 

description of the scaling behavior of the structure functions measured 

in deep inelastic scattering follows, with local relations as well as 

global relations or sum rules between different structure functions. 

However, these two uses of quarks are not identical. In fact, 

identifying the three quarks which “constitute” a nucleon with the “current 

quark” fields which generate the vector and axial-vector currents at 

q2=0 yields results like gA=5/3 and pA(N)=O, in clear contradiction with 

experiment. Similarly, as q2 e w in deep inelastic scattering a descrip- 

tion of the current-nucleon interaction in terms of just three quarks with a sym- 

metrical wave function, as in a naive parton model, is known to fail. 

The relation between these two uses (10) of quarks will be the main 

subject of the first several lectures. We will formulate the relation in 

terms of a transformation between basis states of the algebra of currents, 

going from a set of irreducible representations to those complicated 

mixtures of representations characteristic of the physical hadron under 

the action of the algebra of vector and axial-vector charges. The 

theoretical framework we will discuss will enable us to treat as a first 

step, vector and axial-vector transitions between hadron states at q2=0. 

With the use of PCAC, all real photon and pion transitions fall within this 

domain. 

Up to the present, the main evidence for the constituent quark model 

has been in the observed hadron spectrum and its mass pattern - the 
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existence of identifiable SU(6) supermultiplets (3). More convincing 

evidence of the constituent quark makeup of the observed hadron spectrum 

would follow if we could demonstrate that the algebraic relations among 

the state vectors in the quark model also held true in the real world. 

Unfortunately the state vectors themselves are inaccessible to us - one 

only measures matrix elements or amplitudes. Therefore we must know 

the algebraic properties of the transition operators acting between the 

states, as well as the algebraic relations among the states, if one is to 

extract any information of this type, In other words, we have to solve 

two problems at once: what is the spectrum of hadron states and their 

relationship to one another; and what is the character of the operators 

which induce transitions between them. 

The new development that we discuss in the first several lectures is 

that we now have a hypothesis, abstracted from the free quark model, for 

the algebraic properties of the photon and pion transition operators (11). 

Following work of Gilman, Kugler , and Meshkov (12,13), we shall con- 

duct a fairly detailed analysis, exploring the basic algebraic structure 

and seeing how it is translated into matrix elements and widths for photon 

and pion transitions at q2=0. We shall systematically go through meson 

and baryon decays, reviewing the present situation with respect to the 

comparison of theory and experiment. In general we find a very encour- 

aging situation, and shall see that there now is good evidence for both the 

algebraic properties of the transition operators which we abstract and 

for the algebraic relations between hadron state vectors predicted by the 

constituent quark model. 
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In the last few lectures we turn from q2=0 to the opposite regime of 

q2 - 03 and deep inelastic scattering, extending the current algebra to 

that of the vector and axial-vector current densities on the light cone (8, g), 

The resulting quark light cone algebra, and its concrete realization in the 

quark parton model, yields a concise description of the scaling behavior 

of the structure functions in inelastic electron-, neutiino-, and anti- 

neutrino-nucleon scattering. We shall review the experimental situation 

in this regard, with emphasis on recent data from SLAC, NAL, and CEA 

and its implications for the quark light cone algebra or quark parton 

model. 

Finally, with the coming advent of experiments with polarized lepton 

beams and targets, we devote the last lecture to this subject. Again with 

emphasis on the application of quark light cone algebra or of parton 

model ideas, the scaling behavior of two additional (spin dependent) 

structure functions and the sum rules they satisfy are discussed in some 

detail. 
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II. CONSTITUENT QUARKS AND HADRON STATES 

In order that we have the same hadron states in mind when we go 

to apply the theory of current matrix elements to actual transitions be- 

tween hadrons, let us briefly review the constituent quark model and its 

comparison with the observed spectroscopy. In such a model, mesons 

are simply constructed as quark-antiquark (q$ states and baryons as 

three quark (qqq) states. 

Since the quark is by assumption in the 2 representation of SU(3), in 

the constituent quark model all mesons will be in representations con- 

tainedin3xz=&-t&. Similarly baryons must lie in representations 

contained in 3 x 3 x 3 = (2 + 6) x 3 = 1 + 8 + 8 f 10 when constructed as --- __ _-a-w 

qqq. By definition, states of either mesons or baryons which can not be 

obtained in this way are called exotic. Up to now, probably the strongest 

spectroscopic evidence for the constituent quark model lies not so much 

in the filling of every slot by an established particle, but in the continued 

absence of confirmed exotic states. While there are a couple of candi- 

dates for exotic Z* baryons, there are literally hundreds of established 

or candidate states which are non-exotic (14). 

The rules for constructing the constituent quark model states involve 

taking qs for mesons and qqq for baryons and proceeding in an essentially 

non-relativistic manner by adding a total quark angular momentum, L, 

to the net quark spin, S, to form the total J corresponding to a given state. 

At this stage we assume exact SU(3) and “forces” between the quarks 

which do not depend on c. 3 or 3. g or couple quark spin and SU(3), 
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e.g., purely harmonic forces between quark and quark or quark and anti- 

quark. As a result we may classify the resulting states in terms of the 

combined SU(3) and SU(2) (spin) representations of the quarks and the net 

O(3) (internal angular momentum, L) representation. The states are 

therefore discussed in terms of representations of SU(6) x 0 (3). As usual, 

one treats the quarks as far as statistics is concerned as if they were 

parafermions of order three (15). Alternately, if one deals with colored 

quarks (16) they are fermions, but with all low lying states as singlets 

of the color SU(3). 

In Table I the baryon states expected (15,17) in the constituent quark 

model are given in terms of SU(6) supermultiplets of increasing values of 

L (and increasing mass). Each SU(6) supermultiplet is broken down into 

its SU(3) and quark spin, S, components. Combination of S with L gives 

the various Jp states expected. A candidate for the non-strange baryon 

member of each SU(3) and Jp multiplet is listed in each case using the 

standard notation: (TN partial wave)21 2 J (Mass in MeV). In several 
, 

cases possible mixing between different states with the same Jp and 

isospin (I) in a given supermultiplet is indicated. In these cases the 

candidate member of a multiplet is chosen as the physical state which 

likely has a dominant component coming from a given quark model state. 

Also expected at the same mass as the 56 L=2 level in a model with purely - 

harmonic forces are 70 L=2, 56 L=O, 70 L=O, and 20 L=l positive parity - - - - 

states (15,17). 
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As is immediately seen, good candidates exist for all the non-strange 

baryon states in the 56 L=O, 70 L=l, and 56 L=2, with the possible excep- - 

tion of a P33 state to complete the 56 L=2. - Furthermore, all non-strange 

baryon states known below 2.0 GeV in mass are thereby classified, except 

for PI1 states at 1470 and 1780 MeV. At least one of these could well be 

assigned to an expected 56 L=O, although it requires finding still another - 

P33 state as its non-strange partner! The other PI1 might possibly be 

assigned to a 70 L=O or 70 L=2. Evidence for the existence of the latter - 

multiplet has been recently summarized by Faiman, Rosner and Weyers 

The meson states, which lie in either the 35 or L representations of - 

SU(6), are summarized in Table II. Again the SU(3), quark spin S, and 

Jp for states which make up a given SU(6) x 0 (3) multiplet are listed, as 

well as non-strange mesons which are candidates among the physically 

observed mesons for identification with the quark model states (14). In 

the case of mesons there is no trouble with extra states - many l’slots’l 

remain to be filled. The lack of isoscalar companions to the now estab- 

lished B meson, a decent A1 candidate, and the isoscalar members of the 

L=2 supermultiplet stand out as particularly needed discoveries (4). 

However, particularly for baryons where detailed phase shift analysis 

has permitted the establishment of states with dominantly inelastic decay 

modes, the fact remains that the expected quark model states exist and 

even fall in very well identifiable supermultiplets. Even for mesons, the 

I=1 mesons with L=O, 1, and 2 are almost (except for the AI and A3 ? ?) 
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all observed and are found in easily identified supermultiplets. Although 

we clearly are not dealing with a true symmetry and the supermultiplets 

are not even nearly degenerate, very few meson or baryon resonances do 

not fit into the clear pattern of SU(6) x O(3) supermultiplets. 
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III. THE TRANSFORMATION FROM CURRENT TO CONSTITUENT 

QUARKS 

Examination of the algebraic properties of hadron states and of the 

operators for current induced transitions between them naturally involves 

classifying transformation properties in a group-theoretical manner, i. e. , in 

terms of irreducible representations of an appropriate Lie algebra or 

Lie group. For this purpose, consider the algebra formed by the 16 

vector and axial-vector charges, &o(t) and Q;(t), which are simply 

integrals over all space of the time components of the corresponding cur- 

rents measurable in weak and electromagnetic interactions: 

&%I = s d3x V; @,t) , 

Q;(t) = Id3x A;(S;,t) . 

(la) 

(lb) 

Here 01 is an SU(3) index which runs from 1 to 8. At equal times these 

charges commute to form the algebra proposed by Gell-Mann (5), 

c Q”(t),QP(t), = i foB Q’(t) 

[Qo(t), Q$td = i faypr Q;(t) 

Pa) 

Pb) 

This is the algebra of chiral SU(3) x SU(3), for it can be easily shown that 

Eqs. (2) are equivalent to the statement that the right-handed charges, 

Qa + Q;, and the left-handed charges, Qo - Qz, each form an SU(3), and 

that they commute with each other - hence, chiral SU(3) x SU(3). For 

o=l, 2,3 the Qots are the generators of isospin rotations: for a=l, . . . ,8, 
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they are the generators of SU(3). The last of Eqs. (2)) sandwiched be- 

tween nucleon states moving at infinite momentum in the z direction, 

yields the Adler-Weisberger sum rule (6). 

Taken between states at infinite momentum (19), the Qofs and QTfs 

are “good” operators, i.e. , they have finite (generally non-vanishing) 

values as p, - 03 . These values are the same as those of space integrals 

over the z components of the respective currents. If we adjoin to the 

integrals of the time component of the vector currents and the z-component 

of the axial-vector currents, integrals over certain “good” tensor current 

densities, the SU(3) x SU(3) algebra between states at infinite momentum 

can be enlarged still further. Letting the index 01 correspond to an SU(3) 

singlet when Q=O, we have the operator ho/2 (proportional to the identity) 

plus an SU(6)w algebra of 35 generators whose elements commute like 

the products of SU(3) and Dirac matrices: h”/2, (hcL/2)pax, (ho/2#3rr 
Y’ 

and @o/2) oz. We refer to this algebra, introduced by Dashen and 

Gell-Mann (20) in 1965 as the SU(6)w of currents. We denote these gen- 
. 

erators collectively by F1, and use them to label the transformation 

properties of our states and operators. Note that pOx, Boy and uz, which 

commute with z boosts and are rrgood” operators, are not the same as the 

spin components ox, oy and o z. The appropriate algebra to use is that 

of SU(6)w and not SU(6). For quarks, p=+l and quark spin and “W-spinl’ 

are the same, but for antiquarks, @= -1, and we have -ox, ay and cz 

instead of the antiquark spin components gx, o 
Y’ 

and (T 
Z’ 
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In what follows we will label states or operators by their transfor- 

mation properties under this SU(6)w algebra of currents. For this 

purpose we shall often use just the SU(3) x SU(3) subalgebra of the whole 

SU(6)w algebra of currents, as this subalgebra has elements which are 

directly measurable in weak and electromagnetic interactions. The 

overall SU(6)w representation will either be obvious or be made explicit. 

We will write 

where A is the SU(3) representation under Qo + Qt , B the representation 

under Qac - Qz, and Sz is the eigenvalue of Q$ the singlet axial-vector 

charge (21). The quantity Lz is then defined in terms of the z component 

of the total angular momentum J, as Lz = Jz - Sz. The *‘ordinary11 SU(3) 

content (under Qo) of such a representation is just that of the direct 

product A x B. 

With such a labelling it is clear that, for example, the generator 

Q”! + Q; Qol - Q; 
Q;= 2 - 2 

transforms as { (8, l). , 0 } - {W)o,O}, while Qa, transforms as 

r(s,l)o,0}+{(1,8)o,0). Beinggenerators, theyareinagofthefull 

SWw of currents. 

Representations of SU(3) x SU(3) can be built up from (3, 1)1,2, 

(1,3)- 1,27 (1, 3)1,2, and (3, 1)-1,2 which we define to be the current 

quark and current antiquark states with spin projection f l/2 in the z 

direction. The quarks form a 2 and the antiquarks a 8 in SU(6)w. As 
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an example, consider the states of qq which can be formed with Lz=O 0 

The three states with quark spin S=l and S, = J, = 1, 0, and -1 are 

respectively labelled 

S=l, sz=l : {(3&O} Pa) 

S=l, sz=o : {@,l)o,O]+ [W)o,O} and {tLl)o,O}+ [t~,l)o,O} (3b) 

S=l, sz=-1 : 
1 
(3,3)-1’0 1 , (34 

while the S=O, Sz = Jz = 0 state is written: 

s=o, sz=o : {@, V,,O} - {W3)o,0} and [P, l),,O} - [(L l),,O] . (4) 

AII these states lie in a 35 plus a 1. representation of the full SU(6)w of - 

currents. 

As another example, consider combining three current quarks to 

form a baryon. If we again take Lz=O and a symmetrical quark wave 

function, then we find the states with S=1/2 and S=3/2 transform as 

S=3/2, Sz=3/2 : 
1 (lo, l-)3/2, O I 

S=3/2, Sz=1/2 : 
i (6, 3)1,2t0 I 

S=1/2, sz=1/2 : 
1 (6, 3)1,2,0 I (5) 

H/2, sz=-l/2 : 
i (3, 6)-1,2s 0 1 

S=3/2, Sz=-l/2 : 
I (3,6)-1~2s 0 I 

S=3/2, Sz=-3/2 : 
I (ls l”)-3/2’ O I 9 

and they all lie in a 56 of the full SU(6)w of currents. In particular, if 

a nucleon at infinite momentum with Jz=1/2 acted under the algebra of 
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currents as if it were simply composed of two current quarks with 

Sz=1/2 and one quark with S,= -l/2 in a symmetrical wave function, we 

would have 

IN> = 156, (6,3)1,2,0 > . 

However, the SU(3) content of (6,3) 1,2 is just that of an octet (in- 

cluding the nucleon) and a decuplet (including the 41236)). Since QF is 

a generator of SU(3) X SU(3), it can only connect this representation to 

itself, i. e., for a=l, 2,3 it can only connect the nucleon to the nucleon or 

to the A(1236). Furthermore, such a classification of the nucleon gives 

gA=5/3. Both these results are in glaring contradiction with experiment. 

The nucleon cannot be in such a simple representation. This is already 

apparent from the Adler-Weisberger sum rule (6) itself, for it shows 

that the nucleon is connected by a generator of the algebra, the axial- 

vector charge Q: (in the frame of the pion field through the use of PCAC), 

to many higher mass N* * s . Thus the nucleon and these N*‘s must be in 

the same representation of SU(3) x SU(3). Conversely, the nucleon state 

must span many different representations of the SU(3) X SU(3) of currents. 

An attempt to describe approximately the nucleon state in terms of 

a sum of irreducible representations of SU(3) x SU(3) yields (22) 

IN> = cos 01 (6,3)1,2, O}> + sinB{sin~I{(B,3)1,2,0]~ 

, (7) 

where 0, $ and $ are parameters to be fitted phenomenologically. It is 

clear that parametrizing states in a manner resembling the complicated 
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nucleon wave function in Eq. (7) is not the way to proceed in order to 

understand systematically the classification of higher resonances. The 

number of phenomenological parameters would increase so as to render 

the approach essentially useless. 

Instead, one may assume (10, 11,23,24) that there exists a unitary 

operator, V, which transforms an irreducible representation (I.R.) of 

the algebra of currents into the physical state: 

IHadron> =V I I.R., currents > . (8) 

The state lI.R., currents > is chosen as that irreducible representation 

of the algebra of currents which corresponds to baryons being built from 

just three current quarks and mesons from quark-antiquark. Thus, for 

example, the complicated nucleon state in Eq. (7) is rewritten as 

IN> = V 156, (6,3)1,2, 0 > . 

All the complicated mixing of the real hadron states has been subsumed in 

the operator V. 

In the following we will be interested in evaluating the hadronic 

matrix elements of a charge or current, say Qz. Using Eq. (8) we have 

<Hadron’lQFIHad.ron>= <I.R.‘, currentslv-IQFVlI.R., currents > . 

w-3 

The complications of hadronic states under the algebra of currents have 

now been transferred to the effective operator V-lQFV which may be 

studied as an independent object. Moreover, if the operator V-iQ:V has 

simple transformation properties under the algebra of currents, the way 
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is now open to systematically evaluate the matrix elements of QF between 

any two hadronic states. 

The operator V serves another useful purpose. It is easy to see that 

if we define a new set of generators 

Wi = vFiv--i , (11) 

then the w’ also form an SU(6)w algebra and furthermore, from the defi- 

nition of V in Eq. (8), hadron states transform as irreducible representa- 

tions under the W1 corresponding to the naive constituent quark model of 

hadrons. We therefore call the basis states of this new SU(6)w 

“constituent quarks” and identify the algebra with that of the SU(6)w of 

strong interactions (25). Equation (8) can therefore be rewritten as 

IHadron> = II.R., constituents > = V II. R. , currents > , (12) 

while Eq. (10) becomes 

< Hadron’ I Qt I Hadron > 

= <I.R.’ , constituents IQ: II. R. , constituents > 

(13) 
= <I.R.’ , currents lV-lQFVII.R., currents > . 

From this standpoint the operator V just takes one from one set of basis 

states to another, or alternately, from one set of generators to another. 

In the free quark model, the SU(6)w of strong interactions would be 

identical with the SU(6)w of currents if the quarks were restricted to 

have momentum purely in the z direction (pL = 0). It is the transverse 

momentum of quarks which is the reason for breaking the identity of the 

two algebras. This is intuitive if we keep in mind that the SU(6)W of 
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strong interactions (25) was conceived of as a collinear llsymmetryll. 

As we will see shortly, it is not a symmetry respected in strong inter- 

action transitions - its conservation is badly violated in pion and photon 

decays. 

As we are interested at the moment in limiting our attention 

to transitions between hadrons at q2= 0, we will be primarily 

concerned with the algebraic properties of the transformed axial-vector 

charge, V-‘QZV, where QF is defined in Eq. (lb), and the transformed 

first moment of the vector current, V -1 o! D* V, where DT is defined as 

Dz = Jd3x r7-j V,(z,t) . (14) 

Taken between states at infinite momentum, commutators of QF lead to 

Adler-Weisberger sum rules (6), while commutators of Dz lead to 

Cabibbo-Radicati sum rules (26). Matrix elements of these operators 

are proportional to pion and photon transition amplitudes respectively. 

Their properties under the algebra of currents are that 

L 
Qi transforms as [(s, Ilo - (19 Nor 0) (154 

DT transforms as 
I 

(8, 1)o+(1,8)o,*1) . (15b) 

For guidance on what might be the algebraic properties of V-lQf V 

and V-l Dz V we turn to the free quark model. There Melosh has been 

able to construct an explicit form of the operator V as 

d3x q+(x) arctan if”:) q@l] , (16) 
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where m is the quark mass. The transformation V bears a strong simi- 

larity to the Foldy-Wouthuysen transformation, only restricted to trans- 

verse directions o As expected, if there was no transverse motion .of the 

quarks (FL aTjl = 0) , or if m - 03, V --, 1 and “current” and “constituent” 

quarks coincide. 

In a free quark model at p, =m, either V -‘QFV or V-lDTV must 

connect only single quark states to single quark states; they thus have 

the general form: 

V-‘QFV or V-‘DzV= 
s d3X q’(X) ~(‘,,Yi) $ q(X) , (17) 

where B is some function of the transverse derivatives (a,) and the 

gamma matrices (yi). An explicit form of @ was determined by Melosh 

(1) using the transformation in Eq. (16)) while Eichten et al. (27) argue 

that a large class of such functions exist. Without having a detailed 

dynamical formalism we are unable to make use of an explicit form, even 

if it were given to us. What is important here is that the operator is a 

‘*single quark” operator; i.e. , it depends only on the coordinates of a 

single quark and it does not create connected qq pairs. 

It is this property that we abstract from the free quark model and 

assume to hold in Nature. In general, we assume that: The operators 

V-l Qf V and V-l Dz V have the transformation properties of the most 

general linear combination of single quark operators consistent with 

SU(3) and Lorentz invariance. 

This is verified in the explicit free quark model calculations (11,27). 

As SU(3) is assumed conserved there, we have V -lQoV = Qa. The 
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operator V-l Qt V, with Jz=O, contains two terms which transform under 

SU(3) X SU(3) as {(8, l). - (1,8)o, 0} and {(3, s),, -l} -‘{@, 3)-1, l] and 

behave as components of 35’s of the full SU(6)w of currents. - 

The operator V -‘D,” V, with Jz=l, is slightly more complicated (28). 

In general, there are four possible terms (29): {(S, l). + (1,8)o, 1} , 

[(3,9),.,0}, {(3,3)-L,2}, and{(8,1),-(1,8),,1}. Itappearsthatallfour 

occur in the operator V -I Dt V in the free quark model (11,27) o However, 

the last term, which corresponds to qq in a net quark spin S=O, unnatural 

spin-parity state in the non-relativistic model (see Eq. (4)), has no 

analogue with any natural spin-parity (in particular, vector meson) state 

of the quark model. Moreover, under a generalized parity transforma- 
-iTJ 

tion, Pe y, which takes (22) 
1 
(A, B) szpLz I I 

-+ (B,A)-s , -Lz , the first 
Z 1 

three terms do not change sign while the last one does. For the longi- 

tudinal (Jz=O) component of the current this would eliminate the possibility 

of such a term. Therefore the {(S, l). - (1,8)o, l} term in D+” has no 

correspondence with any natural spin-parity meson state and can not 

occur in the longitudinal component of the vector current. We drop it in 

the following discussion and assume that V -1 o! D+ V only has terms which 

transform asW13) {(8, l)o+ (1,8)o, l}, {(3,3)1, 0)) and {(%3)-l, 2}, 

again in 35’s of the SU(6)w of currents. Thus, in spite of the enormous 

complication of V itself, we abstract these remarkably simple algebraic 

properties of V-l Qt V and V-l o D+ V from the free quark model and 

postulate them to hold in the real world. We now proceed to apply this 

hypothesis to transitions between hadrons. 
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IV. CALCULATION OF PHOTON AND PION DECAYS OF HADRONS 

We have now set up the basic apparatus necessary to carry out the 

application of the algebraic structure of the transformed currents to 

hadron transitions. First we have described how to classify states and 

operators in terms of the SU(6)w of currents and its subalgebra, chiral 

SU(3) x SU(3). Having seen that physical hadron states are not in irre- 

ducible representations of this algebra of currents, we defined an 

operator V, assumed unitary, which carries that irreducible represen- 

tation of the algebra of currents characteristic of the quark model for 

any given hadron into the physical hadron state. Applying this to matrix 

elements of the axial-vector charge, QT, or the first moment of the 

vector current, D+“, and moving the transformation V from the state to 

the operator, shows that one must study the properties of the operators 

V-lQ: V and V-l D+” V. Appealing to the free quark model and the work 

of Melosh (ll), we abstract the algebraic properties of these operators, 

namely, we assume that in Nature V-lQz V transforms as 

l]while V-‘D,“V transforms 

1 (3,3)-I, 2,) all components of 

35’s of the full SU(6)w of currents. - 

To carry through this application of the algebraic structure of trans- 

formed currents to decays of real hadrons, we need several additional 

physical assumptions. Unfortunately very few weak axial-vector transi- 

tions have been measured. Until such data exist, we must content our- 

selves with a comparison of the theory for q2=0 axial-vector matrix 

- 19 - 



elements with amplitudes for pion decays. To relate matrix elements 

of Q5 between states at infinite momentum to matrix elements of the pion 

field we need the PCAC hypothesis. Explicitly, for 01=1,2,3 we assume (30): 

where A;(x) is the axial-vector current and f* = 135 MeV is a constant 

related to the charged pion decay rate. The decay rate for 

Hadron’ + Hadron + 7r- can then be computed in narrow resonance 

approximation in terms of matrix elements of l/a (Qt - iQE) between 

states at infinite momentum as 

l? (Hadron’ + Hadron + 7r-) 

1 = p, (Mt2 _ M2)2 
m M,2 c I< Hadron’, X I 1 (Qi- iQg] IHadron, A >I 2, 

h $2 

(19) 

where p, is the pion momentum and the sum extends over all the possible 

common helicities, A of the hadrons, The total width, I? (Hadron’ --t 

Hadron + r), may be obtained from Eq. (19) by adding the T? and or’ widths, 

which are related by isospin Clebsch-Gordan coefficients. Equation (19) 

may also be obtained in a more clearly covariant way by considering the 

narrow resonance approximation to the Hadron’ intermediate state con- 

tribution to the Adler-Weisberger sum rule (6) obtained by taking Eq. (2~) 

between Hadron states at infinite momentum. In either case, we see that 

the width for Hadron’ - Hadron + r is directly fixed by matrix elements 

of Q,, up to the validity (31) of PCAC. As a result, there are no arbi- 

trary phase space factors in the calculation. 
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For photon decays we need no additional assumption to relate the 

width to the matrix element of the D+” operator of Eq. (14) taken between 

states at infinite momentum. We have directly that in narrow resonance 

approximation 

J?(Hadron’ - Hadron + r) 

3 
2ZY- 

r 2J’+l c I<Hadronf,hlDf + 1 DT1Hadron,h-l>[2 , 
z-3 

(20) 

A 

where e is the proton charge, py the photon momentum, and the sum 

extends over all possible helicities h . Note that althou.gh the definition 

of D+” in Eq. (14) involves only a first moment of the current, between 

states at infinite momentum all multipole amplitudes consistent with the 

spin and parity of the states enter matrix elements of D+“. Equation (20) 

may also be obtained from consideration of the narrow resonance 

approximation to the Hadron’ contribution to the Cabibbo-Radicati sum 

rule (26) on Hadron states, Again we have no arbitrary phase space 

factors. 

For the present we shall use the narrow resonance approximation 

expressions, Eqs. (20) and (29, for pion and photon decay widths in 

order to make a comparison of the theory with experiment. For broad 

resonances in the initial and/or final state, or for decays of resonances 

where the physically available phase space is small, such an approxi- 

mation introduces non-negligible errors (32). However, we view the 

present comparison as being sufficiently accurate as a first test of the 

theory, particularly in view of the experimental errors on values for 
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pion or photon decay widths. When the situation warrants it, the values 

of I< Hadron’ I Qf I Hadron> I 2 and I< Hadron’ I D+” I Hadron> I 2 should be 

determined irrespective of any approximation in terms of contributions 

to Adler-Weisberger and Cabbibo-Radicati sum rules, respectively. 

Recalling that, for example, <I. R. ‘, constituents IQ: II. R. , consti- 

tuents> =<I.R. ‘, currents lV-‘QF V II.R., currents>, we see that with 

the assumed algebraic properties of V -‘QF V (as abstracted from the 

free quark model), we know the transformation properties under the 

SU(6)w of currents of all quantities in a given matrix element. To make 

contact with experiment we make a physical assumption. Namely, we 

assume that we can identify the observed (non-exotic) hadrons with 

constituent quark states. In other words, we assume that there is a 

portion of the physical Hilbert space which is well approximated by the 

single particle states of the constituent quark model. As we saw in 

Section II, for baryons, composed of qqq, we do have candidates which fit 

very well into the SU(6) x O(3) representations 56 L=O, 70 L=l, and 56 L=2. - - - 

For mesons we have correspondingly the qq states 35 L=O, L L=O, - 

35 L=l, etc. Moreover, we shall assume that states with different values - 

of the quark spin as well as Lz and S, are related as in the constituent 

quark model, i.e. , by the SU(6)w of strong interactions. This will allow 

us to relate different helicity states of a given hadron to each other. 

We then know the algebraic properties (under the algebra of currents) 

of all terms of a transformed matrix element of the physically observed 

states. Therefore we may use the Wigner-Eckart theorem and tables of 
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Clebsch-Gordan coefficients to carry out the calculation from this point 

onward. Note that SU(6), invariance of the transition operator under 

either the algebra of currents or of strong interactions is not assumed - 

only the transformation properties of the various terms are needed in the 

calculation. 

More explicitly, for a given matrix element of Qt we write the 

initial and final hadron states with Jz = h in terms of states with definite 

quark Lz and Sz . This involves coupling internal L and S to form total 

J for each hadron. After transforming to an SU(6)w of currents basis, 

the matrix element of the (33) (8, l). - (1, 8). or (3,3), - (8, 3)-1 term in 

V-l Qz V can then be written, using the Wigner-E&art theorem applied 

to representations of the SU(6)w of currents, as a reduced matrix ele- 

ment times the produce of quark angular momentum, SU(6)w, SU(3), and 

W-spin Clebsch-Gordan coefficients (34,35,36). For example, suppose 

we were calculating the matrix element of the (8, l). - (1, S), piece of 

V-l Qt V between initial and final states with common helicity A, total 

angular momentum J and J’ , internal quark angular momentum L and L’, 

quark spins S and S’, SU(6)w representations R and R’, and SU(3) repre- 

sentations A and A’ respectively. Then we have that 

<R’,A’,L’,S’, J’,A,currentsl 
I 
(8, l). -(1,8)0,0}lR,A,L,S,J,h,currents> 

= c (L’L;S’S; I J’h) (LLzsSz I JA) (R’ I 35 I R) 
s-v ’ J e 
’ ’ quark angular momentum SU(6)T,, Clebsch- 

Clebsch-Gordan coefficient Gordal;’ coefficient 

A’@lA ), (1 0 WWaIW’W;) <R’,L’,L~ll(8,1)0-(1,8)OIIR,L,Lz>. 
c T J \ J 

SU(3) Clebsch- W-spin Clebsch- 
Gordan coefficient Gordan coefficient Reduced matrix element 

(21) 
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The W-spin Clebsch-Gordan coefficient follows since the (8, l). - (1, 8). 

operator has W=l and Wz=OO For any state, Wz = S,. For baryons, 

%=?%, while for mesons we have the conventional correspondence (25) 

IW=l, Ws’l,’ IS=l, sz=l> 

IW=l, ws=o > = - IS=O, ss=o > 
(22) 

IW=l, ws=-l>= - IS=l, sz=-1> 

IW=O, wz=o > = - I S=l, sz=o > . 

The signs which result from using Eq. (22) to convert from quark spin to 

W-spin are understood to be included in Eq. (21) in the SU(6)w Clebsch- 

Gordan coefficient. 

The reduction of the (3,3)1- (3,3)-l piece of V-lQFV proceeds just 

as above, except that from Eq. (22) it transforms under W-spin as 

IW=l, wz=l> f IW=l, wz=-1’. As a result, the sum in Eq. (21) is 

replaced by two sums involving the W-spin Clebsch-Gordan coefficients 

(11 wWz IWrW;) and (l- 1 WWs IW’W;) . For photon decays we need only 

recall that (8, l)o+ (1,8). is a W=O, Wz=O object, while (3,3)1 and (3,3)-l 

transform as IW=l, Wz=l> and - IW=l, Wz=-l>. Since the net J, initially 

and finally must be the same for either Hadron’ - Hadron + 1~ or 

Hadron’ - Hadron + y decays, and since the net value of W,=S, must also 

be the same by the W-spin Clebsch-Gordan coefficient in Eq. (21) and its 

analogues, it follows that Lz = Jz -S, must also be additively conserved 

between the initial and final state (including the pion or photon operator). 
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The general algebraic structure of the results is now apparent (12, 

13, 37). All the QF matrix elements taken between hadron states in two 

given SU(6) multiplets with given Lz and L; are related to at most one 

non-zero independent SU(6)w reduced matrix element, corresponding to 

the [(8, l)o+ (1,8)o, 0} , [(3,3),, -3, or -[(g, 3)-l, l] pieces of V-lQ:V. 

Similarly, there is at most one independent SU(6)w reduced matrix ele- 

ment for photon decays between states in two given SU(6) multiplets with 

given values of Lz and Lb. If L is zero, as is the case in essentially all 

cases of physical interest at the present, then of course Lz=O and the 

Lk dependence of the SU(6)w reduced matrix element becomes trivial (in 

particular, the (3,3) { - 1, -11 and -{t% 3Jm1, ] 1 pieces of V-IQ: V, with 

L; = -1 and +l respectively, have the same reduced matrix element). In 

such a case (L=O) there are at most two independent reduced matrix 

elements of Qil 

‘R’,L’II (8, l). -(1,8)011R,0> (23a) 

and 

<R’,L’ll(3,~)1-(3,3)-111R,0> , (23W 

and three independent reduced matrix elements of D+” taken between two 

given SU(6) multiplets, 

<R’,L’II (8, 1)0+(1,8)OIIR,0~ PW 

<R’,L’ll(3,~)111R,0> Wb) 

and 

-cR’,L’II (3,3)JlR,O> , (24~) 

given our assumption on the algebraic properties of V -‘QtV and V-l D+“V. 
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The algebraic structure of the theory presented here has much in 

common with relativistic quark model calculations, such as those of 

Ref. 38. In fact, the results ofRef. 38 may be cast into a form which 

permits the complete identification of certain parameters there with the 

reduced matrix elements discussed here. However, the assumption of 

a rrpotentialrr in the quark model calculations yields definite predictions 

of the reduced matrix elements themselves as they depend on masses and 

other parameters of the model. This is something we do not obtain using 

purely the algebraic structure discussed in Section RI. Also very similar 

in algebraic structure, at least for decays to L=O hadrons, are some 

broken SU(6)w schemes (39). The relation of such schemes, and in 

particular B-broken SU(6)w, to the present theory is discussed in detail 

in Ref. 37. The results of assuming SU(6)w conservation for pion transi- 

tions are reproduced in the present theory by retaining only the 

i 
(8, l). - (1, 8)o, 0 

I 
term in V-l QrV and using PCAC. The assumption of 

SU(6)w conservation plus vector dominance is equivalent to keeping only 

the (3,3),, O] term in V-‘D,“V. 
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V. EXPERIMENTAL TESTS OF THE TRANSFORMATION BETWEEN 

CURRENT AND CONSTITUENT QUARKS 

With the basic features and assumptions of the theory described in 

the previous sections, we are in a position to apply it. We begin with the 

pionic decays of mesons. Only non-strange meson decays will be dis- 

cussed in detail as all the corresponding strange meson decay rates are 

related to those we calculate by SU(3). At the present time they add little 

to the experimental tests of the theory. 

Consider the pionic transitions from 35 L’=l- 35 L=O. From the - - 

previous section, there are two independent reduced matrix elements, 

< L’=lIl (8, l). - (1, 8)oll L=O> and <L’=lll (3,3), - (3,3)-,I1 L=O> . Rather 

than try to make a best fit in terms of all the measured decays, we simply 

use two inputs (40): r(A, - np) = 77 MeV and FXzo(B - ru) = 0. This 

latter condition is in agreement with experiments (41) which see a 

dominantly transverse decay, and corresponds to setting 

<L’=lIl (8, l). - (1, 8)oll L=O> = 0. All amplitudes are then multiples of 

< L’=lll (3, q- (&3)-,I1 L=O>. The results are gathered in Table III. 

Predictions of particular interest are 

(1) F(B ---u) agrees within errors with 7rm being the dominant (and 

so far, only observed) mode out of a total B width (40) of 100 f 20 MeV. 

(2) r(f - ~7r) is in excellent agreement with experiment. Use of a 

d-wave phase space factor instead of the PCAC dictated factor changes 

the prediction by more than a factor of 2, destroying the agreement. 

(3) F(A, -q) is in excellent agreement with experiment. 
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(4) We predict a relatively narrow A1 - np with a dominantly 

longitudinal character. This is obviously not the non-resonance observed 

(42) in r*p - (37r)*p, and there is no established state with which to com- 

pare our prediction. 

(5) I?(6 - q ) agrees with the roughly known (40) total width. 

(6) We have somewhat arbitrarily assigned the (r a mass of 760 MeV. 

While it is gratifying that the resulting F(o -. n7r) is broad, the uncer- 

tainties in identiQing the non-strange quark state with a particular 

observed Jpc = OS+ hadron are very large. 

Overall we find that experiment and theory compare quite favorably 

for LI=l -L=O pionic decays of mesons. What is known about L’=O -tL=O 

and Lr=2 -L=O pionic matric elements between meson states also is quite 

consistent with the theory (12,12), although present data on these transi- 

tions does not provide a very restrictive test (43,44). 

Encouraged by this we turn to baryons. As in the meson case, we 

discuss mainly the non-strange baryon decays. Our choice of multiplets 

discussed is motivated by the fact that they are the only ones where a 

fairly complete experimental comparison can be made. 

For transitions of the type 56 L’=O --56- L=O only the - - (1, f3jo, O} 

term in V-l Q:V contributes. The two predictions made by the theory are 

(1) F/D= 2/3 for the baryon decays. This is tested directly by the 

axial-vector contribution to the weak leptonic decays of the baryon octet, 

without need for PCAC. This prediction agrees quite well with experi- 

ment (40). 
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(2) 

< A’, h=1/2 I L( ~2 Qi-iQE) Ip,h=1/2>=($2) 

x <n,h=1/2 I 1 
fi 

(Qi-iQz) Ip,h=1/2> . (25) 

This prediction also agrees with experiment (45). 

For 70 L’=lm 56 L=O and 56 L’=2 - - - - $6- L=O pionic decays there are 

two reduced matrix elements for each set of decays of the form N* -+ nN 

and N* --f TA where the N* is a resonance in the 70 L’=l or 56 L1=2 (see - - 

Table I). 

Table IV compares the experimental partial widths (40,46,47) of the 

70 L’=l and 56 Lr=2 baryons with theory (12,13). We have again chosen 

to fit the reduced matrix elements to certain decays rather than doing an 

overall least squares fit. We observe that the agreement of experiment 

with theory is only qualitative, and that large experimental errors in the 

matrix elements are involved. One of the strongest disagreements is in 

the decays of the D15(1670), which cannot be mixed within the 70 L=l 

multiplet. The disagreement is in fact sharper than is apparent in Table 

IV, since the errors quoted on the nN and rA widths are correlated by 

the reasonably well-known inelasticity. While the theory predicts that 

less than 20% of the width is due to the TN decay, experiment indicates 

a 40% branching ratio (40). 

We must emphasize at this point that a large experimental ambiguity 

exists in evaluating the partial widths of resonances even when phase 

shift analysis results are known. In the case of strongly inelastic 
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resonances, different ways of extracting resonance couplings may be 

used such as: extrapolations to the pole, K-matrix fits, Breit-Wigner 

fits, etc. These give widely varying estimates of partial widths. For 

example, the width of the D13(1520) decay to nA changes from 24 to 53 MeV 

depending on whether one uses coupling estimates from the Argand dia- 

gram or a T-matrix pole fit (47). There is also a theoretical error in 

our use of the narrow resonance approximation. This is particularly 

so for TA decays, where some of the larger discrepancies between theory 

and experiment occur. With this in mind, the overall situation for pionic 

widths of non-strange baryons is not unreasonable. 

For real photon transitions, all helicity amplitudes can be obtained 

by taking matrix elements of Dz + (l/&3) Dt between states at infinite 

momentum. Such matrix elements of D+” are equal to the sum of those 

of the three possible terms in V -1 o! D+ V discussed in Section III. At the 

present time only non-strange baryon transitions have been sufficiently 

investigated experimentally so as to provide a test of the theory. 

For 56 L’=O -+ - 56 L=O photon transitions, only the term in V -‘D,“V 

which transforms as (3 3) 
{’ 14 

0 can make a non-zero contribution, be- 

cause Lz=O in both the initial and final state. All matrix elements are 

therefore proportional to the single reduced matrix element 

<56 L’=O II (3, ?+,I156 L=O>. For transitions between two octet members - 

of the 56, this term is characterized by an F/D value of 2/3. 

Between J=1/2 baryon states the matrix elements of V -lDEV are + 

interpretable as proportional to the total magnetic moment of the baryon (11). 
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As a result the theory gives (11) 

pTtn)/pT(P) = - 2/3 , (26) 

the old SU(6) result (48) which is rather close to experiment (40). 

Furthermore, the ratio of $3 between the h=3/2 and l/2 amplitudes for 

A -) yN corresponds to a pure magnetic dipole transition with 

I*/,-+ = $‘b , (27) 

if we use the relation 

< A, A=1/2 ID+ IN, A=- l/2 > = ,u*/& . (28) 

A phenomenological analysis (49) of the data for pion photoproduction gives 

a value for p*/p,(p) which is 1.28 & 0.03 times the right-hand side of 

Eq. (27). However, this is the result of finding the residue at the A pole 

in yN - TN. In our approach one should evaluate CL* by taking the A 

contribution to the Cabibbo-Radicati sum rule (see Section IV). This 

results in a value (50) of p*/p,(p) which is 0.9 I 0.1 times the right-hand 

side of Eq. (27), i.e., in quite satisfactory agreement with the theory. 

Equations (26) and (27) are standard SU(6) results, as is to be expected 

since the (3,3) 1 term in V -1 o! D, V has the same transformation properties 

as the magnetic moment operator (48) used in SU(6). 

For 70 L’=l- 56 L=O and 56 Lr=2 - 56 L=O photon decays (13,29,51, - - - - 

52) the situation is more complicated because of the presence of more 

independent reduced matrix elements than in the 56 L’=O e-56 L=O case. 

However, if we disregard the (3 3) [ , -1, 2} term (as well as the 

{@, U. - W)o, l} term which we discarded before) in V -1 o! D, V, only 
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two terms are left and there is a one to one correspondence with the 

results of quark model calculations (53): the (8, l). + (1,8). term in 

V-‘DT V corresponds to the photon interacting with the quark convection 

current, while the (3,8), term corresponds to the interaction with the 

quark magnetic moments. Of course, explicit quark model calculations 

with, say, harmonic potentials give the reduced matrix elements as well, 

something we do not obtain at all with the theory under discussion. Since 

the more restrictive quark model predictions are roughly consistent (38) 

with the experimental data on photon decay amplitudes (54), so is the 

theory discussed here. 

A more crucial test of the theory comes in predicting the relative 

signs of amplitudes for inelastic scattering. For, even if some mixing 

occurs or the identification of a given hadron with a particular state of 

the constituent quark model is only approximate, resulting in say a 30 or 

40% error in the magnitude of a matrix element and a factor of two error 

in a width, the sign of an amplitude should still be preserved if the mixing 

is not too large. 

For the reaction TN - N* + 7cn we can compare our predictions to 

recent isobar model phase shift analyses (46,47,55). Table V lists the 

theoretically predicted phases (12,13,56,57) coming from the (8, l). - (1, 8). 

and (3, s), - (2, 3)-1 pieces of V-l Qz V and the experimental results (58). 

The theoretical predictions are of two kinds. First are those involving 

amplitudes with the same (1) partial wave in both the incoming and outgoing 

channel and which are therefore proportional to squares of matrix 
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elements. These have well-defined signs regardless of the relative 

magnitudes of the reduced matrix elements of the (8, l). - (1, S), and 

(3,3)1-(3,3)-1terms inV -‘QF V. The second kind of sign prediction 

depends on this relative magnitude, and may help us in deducing which 

term is dominant for pion decays from one SU(6) multiplet to another. 

We see that the signs in the original solution, A, of the experimental 

analysis disagrees with the theory even for predictions of the first kind 

as seen in Table V. We note, however, that the only disagreement is 

between the D13(1520) couplings and all other couplings. This sign 

cannot be changed by mixing the two D13 states. If the signs of this 

resonance can be reversed, one would have complete agreement between 

theory and experiment. We note that the analysis on which we base our 

comparison suffers from a lack of data between 1540 and 1650 MeV, 

i.e., between the D13(1520) and the other resonances in the 70 L=l and 

56 L=2. The relative phases of amplitudes above and below the gap are 

determined by continuity and K matrix fits. While a complete K matrix 

fit has yet to be done, it appears (55) that a second solution, B, of the 

phase shifts exists with the signs of the D13(1520) reversed with respect 

to solution A. This removes the most serious experimental failure 

among the many predictions of the theory as reviewed at Purdue (56). 

In solution B, the signs of the amplitudes are such as to indicate 

dominanceofthe(3,~)1-(~,3)_1terminV-1Q~Vfor~Lr=l-~L=O 

decays, but dominance of the (8, l). - (1, S), term in 56 L’=2 - 56 L=O 

decays. An analysis (5 9) of the signs of amplitudes for yN - N* - TN 
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shows that the measured signs are consistent with the theory at both 

the pion and photon vertex for 70 L=l and 56 L=2 intermediate N* reso- - - 

nances if the (3,8) 1 - (8, 3)-1 term dominates in 70 L’=l- 56 L=O pion 

transitions. Up to this time the experimental analysis of yN - TN is 

insufficient to give confirmatory evidence on the dominance of the 

(8, l). - (1,8). term in 56 Lr=2 - 56 L=O pion decays. An interesting 

sidelight to the situation with regard to signs is that both PII resonances 

appear in TN + 7rA solution B to behave like members of 56 super- 

multiplets, rather than one being a member of a 70. - 

Note that both our analysis of signs for 70 L’=l - 56 L=O pionic 

transitions of baryons and of widths for 35 L’=l - 35 L==O meson decays - - 

show that the (3,5), - (3, 3)-1 term in V -lQF V is dominant. This is 

completely contradictory to the assumption of SU(6)w conservation, which 

only allows the (8,1) o - (1,8). term to be present. Also for photon decays 

from 70 Lr=l - 56 L=O and 56 Lr=2 --* 56 L=O, the experimental ampli- - _ 

tudes (57) indicate the importance of both the (8, l)o+ (1, 8). and (3, z), 

terms in V-l DTV, while SU(6)w conservation plus vector dominance 

would allow only (3, z)l a 

Taking solution B for TN - 7rA, there are more than 20 signs in 

TN - TN and TN - nA which agree with experiment. Further, the 

domination of the (3, s), - (3, 3)-1 term in V -lQ5V for JO-L’=l-EL=0 

pion decays is obtained consistently in both reactions. With that many 

signs correct, one begins to have the feeling that there is something right 

about the theory we have been employing. 
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Such a theory can be regarded as one more step in a program of 

abstracting algebraic properties from the free quark model, without 

necessitating the reality of free quarks themselves. Abstraction from 

the free quark model assures us that the assumed algebraic properties 

could be exact, and are at least consistent with relativity, invariance 

principles, etc. They are presumably the least complicated that one 

might expect to hold in the real world. 

As an elegant and beautiful theory of the algebraic structure of weak 

and electromagnetic current induced transitions between hadrons at q2=0, 

the present theory greatly unifies the treatment of weak and electromag- 

netic transitions with the systematics of hadron spectroscopy. With the 

identification of the observed hadrons to good approximation with con- 

stituent quark states and the use of PCAC, a powerful approximate theory 

of all pion and photon decay results. 

As a theory of pion transitions, the present theory has much in 

common as far as general algebraic structure is concerned with both 

previous relativistic quark model calculations (38) and certain broken 

SU(6)w schemes (39). We regard this theory of current-induced transi- 

tions, when supplemented by PCAC and/or vector meson dominance, as 

in fact providing a method of constructing a phenomenology of purely 

hadronic vertices (60) and providing justification for some aspects of 

these other theoretical schemes. 

An important aspect of the present theory is that the comparison 

with experiment is in terms of amplitudes which are related in a straight- 

forward way by Clebsch-Gordan coefficients, and decay widths are in 
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turn related to these amplitudes in a non-arbitrary, known way. The 

agreement found, particularly in regard to signs, provides strong 

support for the theory as a valid description of both photon and pion 

transitions, as well as for the identification of the observed hadron 

states with those of the constituent quark model. 
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VI. DEEP INELASTIC SCATTERING AND ANNIHILATION 

A. INTRODUCTION 

We now turn from the study of current induced transitions between 
9 3 

hadrons at qy=O to the opposite regime of q” +a. While it would be 

very interesting to extend our treatment of the transformed vector and 

axial-vector currents to q2 # 0, little experimental information exists 

on matrix elements between specific hadrons. Instead we sum over all 

final hadrons obtainable in the interaction of a current with a given 

hadron and obtain quantities measured in the experimental investigation 

of inelastic electron-nucleon, neutrino-nucleon, and antineutrino- 

nucleon scattering for (61) space-like q2 (q2>O) and in electron-positron 

annihilation into hadrons for time-like q2 (q2< 0). 

B. INELASTIC ELECTRON-NUCLEON SCATTERING 

For the case of inelastic electron scattering, the diagram of interest 

(62) is indicated in Fig. 1, where k and k’ are the initial and final elec- 

tron four-momenta, q is the four-momentum transfer carried by the 

virtual photon, and p is the target nucleon’s four-momentum. The final 

hadronic state n then has four-momentum p,=p+q and invariant mass 

squared W2 = -(p+ q)2. In the laboratory frame (initial nucleon at rest) 

with E and E’ the energies of the initial and final electrons, the Lorentz 

scalar variable 

Y = -p-q/MN = E-E’ (29) 
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is the virtual photon’s energy, and the invariant momentum transfer 

squared is 

q2 = 4EE’ sin2 O/2 (30) 

where 6~ is the scattering angle and the electron mass has been neglected 

compared to its energy. Knowing v and q’ from measuring the incident 

and scattered electron, the invariant mass W of the final hadrons is 

fixed by 

W2=2MNv+M;-q2 . (31) 

The S-matrix element for the process in Fig. 1 may be written using 

the rules of quantum electrodynamics at the photon-electron vertex as 

Sfi = 6fi + (2~)~ i6(4)(pn+k’-p-k) ‘. ‘& (-e$k’) iycl u(k)) 

where 

q,I Jv(0)l~> 3 

JV 
=e V3+ 

( 
1 $4 

p J-3 v 

(32) 

(33) 

is the (hadronic) electromagnetic current operator. Averaging over 

initial and summing over final electron and nucleon spins, we are led 

to an expression for the double differential cross section in the labor- 

atory for detection of only the final electron of the form 

L w 
PV PV ’ (34) 
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where the factor L 
PV 

arises from the trace of the gamma matrices due 

to the electron (neglecting the electron mass), 

2 
+ k;lkv + + 0 ’ 6 

PV ’ (35) 

and the structure of the nucleon is summarized in 

W pv = z IL nu%on ? i$) 
<p lJp(0)In> <nlJv(0)Ip> 

spin 

3 (4) 
x (274 6 @,-P-S) 

1 
c 

1 =- 
2 nucleon (2m2) s 

d4x e -iq’x <p I -J;(x), Jv(0) 
1 1 lp> 

spin 

= 5 nugon g, J d4x ciqex <PIpp(wyyIP> , (36) 

spin 

where the second term in the commutator is zero by energy conservation 

for v>O. 

By Lore&z and gauge invariance the tensor W 
W 

may be written as 

W 
W = wp, s2) 

( 
$v - s,s,/sz 

1 

+ W2(v,q2) 
i 
P,-P’yp12 

ii 
P,-P’4 q/q2 

1 
m; * (37) 

The quantity W 
IJV 

is just (1/47r2a) times the imaginary part of the Feynman 

amplitude for forward Compton scattering of virtual photons of mass2 = -q2. 

In terms of WI and W2 the experimentally measured double differential 
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cross section resulting from combining Eqs. (34) , (35) and ( 37) is 

d20 4a2Ef2 
dSPdE’ = o4 ,q2) sin2 Q/2 + W2(v, q2) cos2 6/2 1 , 

(36) 

so that the structure functions WI and W2, as they depend on v and q2, 

summarize the results of inelastic electron-nucleon scattering. 

Now suppose that v and q2 are large, with v /q2 fixed. In the expres- 

sion, Eq. (36), for W in terms of the Fourier transform of a commutator 
CLV 

of two currents the exponential is 

e -9-x = e -itqzz - q0t) = e -i(J q2+v2 z - v t) 

N ,-iv (z-t) e-i(q2/2v)z 

in this domain of v and q2 with z in the z direction. In order that the 

argument of the exponential not become large and produce cancelling 

oscillations of the integrand, the region of integration in configuration 

space must satisfy 

z-t <, 0(1/v) 

z <, O(2v/q2) . 

(40) 

Furthermore, since we want the commutator to be causal, it should vanish . 
unless 

x2 = xi + z2 - t2 < 0 , (41) - 

which together with Eqs. (40) yields 

x; ( (t-z) (t+z) 2 O(1/q2) . (42) 
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Therefore, the important region of integration over the current commutator 

2 isx = x x P? 0, i.e., 
PP 

along the lightrcone (63). 

To gain theoretical insight into the commutator of two currents on 

the light-cone we again turn to the quark model and abstract certain prop- 

erties, particularly algebraic ones, of such commutators from the free 

field case. In the free quark model one finds (8,9) 

[ 
V;(x),Vt(Odx; {if”“E(x, 0) + VztO,x)) dClh 

-0 

where V:(x) and A:(x) are the vector and axial vector currents and 

(43) 

and 

V:(x, 0) = : ij (x) (Aa/2) iyP z#O) : 

(44) 

Ap(x,O) = : $<x> tf!/2) iypy5 q(O): 
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I 

are bilocal operators defined so that 

yf(x,x) = P(x) 
and (45) 

A;(x,x) = A;(x) . 

All the SU(3) properties are again summarized by the SU(3) structure 

constants fop’ and dQpr. In fact, if we specialize to the time components 

of the currents and go to the tip of the light cone (x0=0) then we recover 

the old equal time algebra of Gell-Mann (5). 

An important property of Eq. (43) is that it factorizes into a product 

of a c-number singularity which contains no masses or other dimensional 

parameters and a bilocal operator which carries the SU(3) indices. When 

Eq. (43), as the leading light-cone singularity in the limit, v , q2--+m, is 

inserted back in Eq. (36) for W 
PV ’ 

it is seen that Fourier transforms of 

matrix elements of the bilocal turn out to be the structure functions and 

that WI and vW2 scale, i.e., are functions of w = 2MN v /q2 = -2~. q/q2. 

Because of the structure of the tensor indices in Eq. (43), one also 

obtains the relation: 

2MN 
--&- W,(w) = vw,kd , (46) 

which corresponds to the vanishing of the longitudinal relative to trans- 

verse photon-nucleon total cross sections (oL/cT = 0) in the indicated 

limit. 

Another, more mundane, way to see that it is vW2 and WI which 

should scale if there is no dimensionless parameter or scale in the virtual 

photon-nucleon interaction is to rewrite the double differential cross 
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section in Eq. (38) in terms of the dimensionless variables 

1 x= -= 
w - q2/2p*q = q2/2MNv 

and 

(47) 

y = v/E =p.q/p.k . (48) 

Then in the high energy regime where v and q2 are both large, we can 

write 

&=[$$)(2MNE/[(l-y)vW2++y2 2MNxWl, ’ , (49) 

where terms of order MN/v and MN/E have been neglected. The factor 

(4na2/q4) is just the elastic electron scattering cross section for a point 

particle. We see immediately that if the quantity in brackets, which 

involves the photon-nucleon interaction, is not to depend on some internal 

scale then vW2 and 2MN xW1 should only depend on a dimensionless 

variable involving the photon-nucleon vertex, i. e. , they should depend on 

x = -q2/2p. q = l/w. 

The absence of any scale in the interaction of a virtual photon with a 

nucleon is realized explicitly in the parton model (64,65), which might 

also be regarded as a concrete representation of the light cone algebra. 

In the parton model one regards the nucleon as composed of point constitu- 

ents. In an infinite momentum frame, each type (i) of parton, with charge 

Qi (in units of e), is taken to have a distribution fi(x) in the fractional 

longitudinal momentum x = p, @arton)/p$nrcleon). A straightforward 

calculation then shows that for spin l/2 partons (64,65) 

VW,@) = c Q; 
i 

xfi(x) = 2MN xW+x) , 
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where x is both the fractional longitudinal momentum of the struck 

parton and the value of the scaling variable q2/2MNv . Taking the 

partons to be quarks (and more generally, also antiquarks) one has a 

concrete representation of the quark light cone algebra. As with any 

particular representation of a given algebra, certain results may hold 

which do not follow necessarily in the general case. 

The scaling behavior exhibited by the data (66,67) outside the region 

of prominent resonances for vW2 and 2MNW1 is shown in Fig. 2. There 

the values of the structure functions are plotted versus w’= 1+W2/q2 = 

w ++‘q2, which is the same as w is the limit V, q2 4~. Clearly values 

of vW2 and 2MNW1 at the same w * but different q2 coincide, i, e. , vW2 

and 2MNWl for the proton are functions of J to within the accuracy of 

data for q2 > 1 GeV2 and 1 < w’ < 10. 

The validity of the relation vW2 = 2MN x WI as v, q2 - 00 is more 

the 

clearly examined in terms of the quantity R = oL/cT , which should then 

vanish as v, q2 - M at fixed w. A previous global average of R for the 

proton gave the value (67) Rp= 0.18 f 0.10. Newer data, but over essen- 

tially the same kinematic range, has recently been analyzed and yields (68) 

a global average in agreement with this. More interestingly, there is 

some indication (68) that Rp is vanishing as l/v for fixed values of w 5 5. 

The analysis of the deuteron data taken in the same experiment shows (68) 

that Rp =Rd= Rn to within the statistical errors of the measurement (* 0.04). 

The ratio of neutron to proton inelastic cross sections, as extracted 

from deuterium data, shows consistency with the neutron structure func- 

tions scaling also (69,70). The ratio of n/p decreases from values near 
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unity at small x (and large C,J = l/x) to values (70) definitely below l/2 

for x > 0.65. 

For values of x near one, where it appears that the n/p ratio is the 

smallest, one could hope to challenge the bounds from the quark light- 

cone algebra (7 1): 

i(n/pL4 . (51) 

Although present data extends to x = 0.8 and doesn’t indicate any violation 

of the lower bound, experiments are under way to investigate the region 

near x=1 in considerable detail. 

Also of interest is the region of small x or large w where the n/p 

ratio is expected to eventually approach unity on the basis of the dominance 

of the Pomeranchuk singularity in the photon-nucleon amplitude at large 

values of W. Some recent data (72) on this ratio is shown in Fig. 3 where 

it is seen that even for values of w between 10 and 20 the value of n/p is 

still only -0.85 and only slowly approaching unity. This bears directly 

on the convergence of the sum rule (73) 
to 

s [ &!i vWzp(w) - VW2JW) 1 1 
1 w 

= 3 l F-3 

This can be derived in parton models where the nucleon is composed of 

three ?alencel’ quarks plus an isoscalar **sea” of qq pairs (plus neutrals), 

or it can be derived using exchange degeneracy arguments (74), but it 

does not follow generally from the quark light cone algebra. Earlier 

evaluations of the sum rule using then existing data and Regge extrapola- 

tions for vWzp(w) - vWZn(w) as w --, m gave the estimate 0.19 f 0.06 for 
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the left hand side. The data shown in Fig. 3, however, gives (72) 

20 

- vWZn(w) 1 = 0.18 f 0.04 , (53) 
and a rough estimate of the contribution from w = 20 to 03 is 0.09. There 

is no longer an experimental basis for worrying about the sum rule’s 

validity. 

C. INELASTIC NEUTRINO- AND ANTINEUTRINO-NUCLEON 

SCATTERING 

The extension of our discussion to inelastic neutrino and antineutrino 

scattering is easily made. Again neglecting lepton masses and averaging 

over nucleon spins, the double differential cross section is (75) 

&Q2 ,(v/;)(, q2j d2+/V) _ G2Et2 e 2 
dQ’dE’ -2,2 L 1 , 

+ cos28/2 wg’;) (v , q2) 7 F sin2e/2 wt’“)(v, q”)J , 
N 

(54) 

with G-l. 0 x 10m5/MN the weak coupling constant. In the high energy limit, 

using the same variables x and y in Eqs. (47) and (48) as before, this 

becomes 

; @MN@ w1 r y(l-$y) X VW3 1 . 

(55) 

The structure functions WI and W2 now involve Fourier transforms of 

both vector-vector and axial vector-axial vector current commutators, 

while the new structure function W3 involves only vector-axial vector 
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commutators . Neglecting strangeness changing currents, the restriction 

of the weak, strangeness non-changing current to have isospin one implies 

that 

wvP = w;n 
i i 

(56) 
WVn i =wy . 

The quark light cone algebra in Eq. (43) is also simply extended (8,9) 

to include commutators of two axial-vector currents or a vector and 

axial-vector current. As an immediate consequence it follows that 

2MN xw1’ vW2, and vW3 should scale, as can also be seen directly 

from Eq. (55) using the argument that if the weak current-nucleon inter- 

action doesn’t depend on parameters with dimensions, then the quantity 

in brackets on the right-hand side should only be dependent on the dimen- 

sionless quantity x Scaling of WI = Fl(x), vW2 = F2(x), and vW3 = F3(x) 

implies on integrating Eq. (55) first over y and then over x that 

(v/3 - 
G2MNE 1 

VTOT- n. odx2+ s [ 

F2@) 21~x FIW xF30 

6 ‘6 1 ’ (57) 

i.e., that the total neutrino or antineutrino cross section rises linearly 

with the incident beam energy, E. 

From the quark light cone algebra we have furthermore that (8,9,75) 

235~ F #4 = F2(X) , (58) 

and the local relation between inelastic electron and neutrino scattering: 

- F”~“(x) 1 c = x FiP(x) - Fin(x) I . (59) 
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Various sum rules follow as well, including 

-ro’$ [Fin(x) - F;‘(x)] = 2 , (60) 

the Adler sum rule (76), which actually is supposed to hold for all q2, 

and the sum rule (77) 

+ Fgn(x) = -6 . 1 (6 1) 

In a parton model with only fermion constituents which interact with the 

current (no antifermions) one has as well that 

F2(x) = ~MN” F1(x) = -xF3(x) , (62) 

i.e., maximal V-A interference. 

The simplest quantity with which to compare theory and experiment 

is the total cross section summed over neutrino and antineutrino beams. 

From Eq. (57) we find that the F3 term cancels in the sum and using 

F2(x) = 2MN x F1(x) yields 

a&(E) + & tE) = . (63) 

We write vN (GN) to denote an average over neutrino (antineutrino) cross 

sections on protons and neutrons. Of course, 

= FiN(x) . (64) 

The data from the Gargamelle experiment (78) are quite consistent with 

a linear rise with E of oTOT (E) for both neutrinos and antineutrinos. The 
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coefficients of G2MNE/a yield (78) 

FgN(x) + FiN(x) = 0.47&0.07 . (65) 

To relate this to electron scattering we must make some additional 

assumption beyond just the light cone algebra. We assume that in the 

s 

1 
x region which gives the most important contribution to 

0 
dx F2(x), one 

has only quark partons (no antiquarks). As we will see in a moment there 

is independent support for this from the ratio o iJN 
TOT /crVN TOT’ with no 

antiquarks, one has the relation (79) 

; FiN(x) + F?(x) ) (66) 

which together with the result from SLAC data (with a minor extrapolation) 

(66,67), 

1 l 
s ( B 0 

dx =0.15*0.01 , (67) 

predicts that 

1 
s ( 

iJN 
z dx FiN(x)+F2 = 0.54kO.04 o (68) 

The agreement with the direct measurement, Eq. (65), is obviously very 

good (80). 

Now let us return to aTOT (E) for neutrinos and antineutrinos separately. 

Rewriting Eq. (57) we have 

(69) 
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and therefore 

PN uToT/~;;T = (2-B)/@+B) 

where 

B=- $& xF30/sldx F2(x) . 
0 0 

(70) 

(71) 

Purely from kinematic inequalities lxF3 I 5 F2(x) or IB I 5 1. The 

extreme values of B correspond to maximal V-A interference and are 

met for purely fermion partons (B = +l) or purely antifermion partons 

(B = -1). The experimental value of (78) 

iN /c-7 N oTOT TOT = 0.38 dz 0.02 (72) 

gives (81) 

B=0.90~0.04 , (73) 

and indicates almost purely fermion constituents in the region accessible 

to the Gargamelle experiment. Everything is quite consistent with the 

quark light cone algebra or the even more restrictive quark parton model 

with only a small component of antiquarks. 

In the past few months the first data on inelastic neutrino scattering 

at NAL have been reported. The Caltech experiment (82) uses a “narrow 

band” beam with neutrinos of average energies of 50 and 145 GeV arising 

-from decays of 160 GeV pions and kaons, respectively. While there are 

only 112 neutrino events from a steel target reported, they already allow 

some tentative conclusions (82). If one assumes 2MNxFI(x) = F2(x) = -xF3(x), 
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then Eq. (55) becomes 

d2aVN G2MNE 
-= 
tidy 7T F;Nw (74) 

which is independent of y. Within large errors, the data are consistent 

with y independence. Although the flux is not known accurately, one can 

integrate over y and compare the shape of do VN/dx with what is seen at 

ed Gargamelle, or the better determined Flp+ Fy N F2 . This is shown 

in Fig. 4, with consistency seen between the x distribution measured with 

high energy neutrinos and that measured with electrons at SLAC. 

A more stringent test of scaling is provided by the quantity 

<q2> = <xy2MNE> = 2MNE <xy> , 

where 

<f(x, y) > = 

r 1 S 1 2 

Jo 0 
ck dy f(x,y) &$ 

1 

ss 

1 
dxdy 

d20 
0 0 dxdy 

. 

(75) 

(76) 

< q2 > should therefore rise linearly with E if there is scaling. The 

comparison with the results from the Caltech experiment for <q2> are 

shown in Fig. 5, where the curves are computed using the acceptance of 

the apparatus and assuming 

d2g G2MNE Fi+x) - 
&dY -lr (1 + q2/A2)2 

(77) 

Again the data are consistent with A = co, i. e. , scaling. Note the large 

values of < q2 > seen at NAL energies - in itself an indication of a 

--&$ 

5s 
-3: 

“point-like” interaction. 
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A second experiment with a “broad band” beam of mean energy 

- 50 GeV has been carried out by a Harvard-Pennsylvania-Wisconsin 

collaboration (83,84). With about 300 neutrino and antineutrino events 

JN they are able to state that (84) c$tT + aTOT is very roughly ten times 

larger at a mean energy of 50 GeV than it is at 5 GeV in the Gargamelle 

experiment, just as expected from scaling (Eq. (57)). The ratio 

5i;N UN 
/5 lies between l/3 and l/2 and is therefore consistent with the 

Gargamelle result of 0.38 & 0.02. Noting that if 

v = xy = 2Et sin2 e/z/MN , (78) 

1 dN -- then (85) N dv is independent of flux and is a function of v alone if the 

structure functions scale. Analysis of their data shows that (84) both 

their neutrino and antineutrino data are consistent with scaling, and more 

particularly, with the + g curves calculated on the basis of the SLAC 

electron scattering data and the quark parton model. 

Thus both high energy neutrino experiments seem to show that while 

we have increased the beam energies by an order of magnitude or better, 

nothing striking has changed from what was learned with Gargamelle. 

Everything seems remarkably consistent with the rather simple picture 

of scaling embodied in the quark light cone algebra and the quark parton 

model. 

D. ELECTRON-POSITRON ANNIHILATION INTO HADRONS 

There is one major indication of trouble with this simple picture: 

electron-positron annihilation into hadrons via one photon. The cross 
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section for e+ e- - hadrons is directly proportional to 

s d4x eWiq’ x < 0 I [JCL(x), Jv (0)] IO > . As a result, in the e+e- center-of - 

mass where CO and so=&3 , the limitqo+~ or lq2i -03 implies 

thatxozO andTM0, i.e., the tip of the light cone, is the important region 

of integration in that limit. As a result, assuming the quark model also 

gives the disconnected part of the commutator on the light cone, one 

finds 

5(e+e- Qf , (79) 

where the sum is over the charged quark pairs treatable by the electro- 

magnetic current. The quantity (47ra2/3 lq2 I) is just the cross section 

for e+e- -, r.~+p- . Three quark constituents with charges 2/3, -l/3, and 

-l/3 yield c Qf = 2/3, while colored quarks (16) give _ y Q;=2, and 

the Han-Nambu integrally charged quark scheme (86) ha: c Qf = 4. The 
i 

present experimental situation is seen (87) in Fig. 6, including the most 

recent CEA results (88) for o(e+e- - hadrons)/a(ese- - p+/J-) of 

4.8&1.1 and 6.3fl.5 at Iq21=16 and25 GeV2, respectively. 

The seeming disagreement with our expectations leads one to ask 

whether there is a breakdown in the scaling behavior (89)) i. e. , whether 

5(e+e- - hadrons) does not behave as l/q2 as Iq2 I - 00 . A careful 

reexamination of the electron and neutrino data is also called for, 

6 

1 
particularly to look for the behavior (90) of the moments dx xn F2(x) 

as powers of (l/in q2), as suggested in asymptotically free gauge 
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theories (9 1). Most important experimentally, one awaits the results 

from SPEAR and DORIS on the magnitude of a(e+e- --) hadrons) at the 

same as well as still higher values of lq2 I. 
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VII. INELASTIC LEPTON SCATTERING WITH POLARIZED BEAMS 

AND TARGETS 

A. INTRODUCTION 

In the previous lectures we discussed theoretical ideas and 

phenomenology which were mostly related to experiments already com- 

pleted or in the process of being carried out. In this lecture we turn to 

a subject where no experiments have yet been accomplished, but where 

much of the previously discussed theoretical superstructure has immediate 

application. 

In the near future the possibility of performing experiments with 

both polarized lepton beams and polarized targets will become a reality. 

The muon beams at BNL, CERN, or NAL automatically possess a longi- 

tudinal polarization because of their origin in the weak decays of pions. 

At SLAC a polarized electron source is being installed. The planned 

experiment (92) on deep inelastic scattering will be a technological tour 

de force involving production of a polarized lithium atomic beam, an 

ultraviolet flash lamp operating at 180 pps to knock off the electrons, 

injection into the accelerator and acceleration without loss of polarization, 

magnetic bending of the beam into the end station at which point g-2 of 

the electron demands the energy be a multiple of 3.22 GeV so that the 

spin is rotated by a multiple of 180°, and finally the beam striking a 

longitudinally polarized proton target operating at 1°K in the field of a 

super conducting magnet. 
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With this exciting background of approaching experiments, in this 

lecture I would like to discuss some of the theory and phenomenology 

related to inelastic lepton scattering with polarized beams and targets. 

As we shall see, a number of interesting questions having to do with 

amplitude analysis, scaling, parton models or light cone algebra, sum 

rules, quark models for resonance excitation, and even exotic J-plane 

singularity structure are subject to direct experimental answer with 

polarized beams and targets. 

B. POLARIZED BEAMS 

The scattering of a longitudinally polarized lepton beam on an 

unpolarized target should be independent of the lepton polarization if no 

hadrons are detected in the final state. This follows from parity con- 

servation, and while this is well checked at small q2 in the electro- 

magnetic interactions of hadrons, an experiment (93) is planned at SLAC 

to verify this at large q2 in deep inelastic scattering. Of course, if such 

a violation is found it is of enormous interest (due to weak interactions 

at an unexpected level?) and the theoretical questions discussed in the 

remainder of this talk become of secondary interest. 

From this point on let us assume one photon exchange, together with 

the C, P and T invariance of electromagnetism. We use the kinematics 

and notation (61,62) already given (see Fig. 1). 

Suppose a final hadron (four-momentum pb) is detected. Then ?;: 

and G define a plane (the lepton plane), as do c and 3 (the hadron plane), 

with an angle $ between their normals. 
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Now recall for a moment the case of an unpolarized beam. There, 

to calculate a cross section we must evaluate a lepton trace, L 
PV ’ 

which 

is essentially the virtual photon density matrix. If we take the direction 

q as a z-axis, with x-axis in the lepton plane (so that the positive x 

direction is toward the leptons) then L TV = tlb’)&&, +k;lkv+ (q2/2) $, ) 

can be written as 

2 
L =2!L 

P ( ,(I 1-E 4 

i 

0 

%I-- 
$l- 

-i- 

0 

0 
630) 

where 

with 6= the lepton scattering angle in the laboratory. We have subtracted 

multiples (94) of qP from the virtual photon polarization vector so as to 

make L 
PV 

=0 when p or v=4. As is seen from Eq. (80), the virtual 

photon is the incoherent sum of a piece with linear polarization in the 

x-z plane and a piece with linear polarization in the y-direction. 

If e(y) f 
P P 

is the amplitude for 

“Wi)” + N@) -hadron’ (p’)+ . . . , (82) 

with the property 

gclfcL = 0 , (83) 
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then from Eq. (80) we have that 

-g a l&z) fx-Jq2e/v2fz12+ l&G fy/2 

cc $ 
i 
lfx12+ 

+ E 
( 
q21fz 2/v2) - JG) 2Re if,Jg?;;” f;) . (84) 

The four terms in Eq. (84) are in the form of the standard equation for, 

11 e.g., Y 11 + p - ?r+ + n, where they are often labelled (95) dou/dt, dop/dt, 

tiL/dt, and dgI/dt respectively, after their $ dependence is explicitly 

exhibited. This Cp dependence is easily read off if f 
x’ Y 

f and f, are 

rewritten in terms of helicity amplitudes (of the virtual photon). The 

four terms behave respectively as constant, cos 2$~, constant, and cos $. 

With this background, consider a longitudinally polarized beam 

where the leptons have helicity &l/2. The lepton trace now reads 

Let) - 1 
IJV 

- z kPk; + k;lkv + (q2/2) aPv rt (85) 

which can be rewritten with 2 as a z-axis, using the same manipulations 

as above, in the form (94) 

,(*I = & 2 
( 10 pv - 4 
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The virtual photon now can be represented in terms of a single elliptical 

polarization state. For incident leptons with helicity &l/2, the analogue 

of Eq. (84) for detection of a final hadron is (summed over the helicities 

of all hadrons): 

--j$ CC ljF)fx*i &Gf,- Wf212 

cc; 
( 
lfx12+ Ify12 

1 

+$ 
i 
lfx12- ify12 + E 

1 ( 
q21fz 12/v2 

i 

- ,/G) 2Re(fx,/m5) 

(87) 

where we have gained the last term when compared with Eq. (84). An 

apparent term of the form 7 (l/4) (l-e ) 21m (fxfs) vanishes because of 

parity conservation, which becomes obvious when the amplitudes are 

rewritten in terms of (photon) helicity amplitudes (96). In this form the 

r#~ dependence of the last term in Eq. (87) is also easily seen to be that 

Since the (complex) amplitudes f , f 
x Y’ 

and f, are characterized by 

six real quantities, with one overall phase, there are five real numbers 

which give all possible physical information on the amplitude f . As 
P 

there are five independent quantities in Eq. (87), we see that all the 

physics contained in fP is obtainable with a polarized beam. 
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Particular cases of interest in the literature are (97) 

*‘y” + N -L 7r + anything , 

and (98, 99) 

“y” + N - p ‘+N , 

038) 

(89) 

where one also has information on the p” density matrix coming from 

its two pion decay mode. It has recently been shown (98) explicitly that 

all possible joint density matrix elements of the virtual photon and rho 

meson are determinable through use of a polarized lepton beam and 

examination of the rho decay angular distribution. In short, the use of 

a polarized lepton beam alone allows one to perform complete amplitude 

analyses of the photon segment of virtual photon induced processes. 

C. POLARIZED BEAM AND TARGET KINEMATICS 

As in the unpolarized case, there are two equivalent ways to 

proceed, each particularly useful for certain purposes. One method 

is to define virtual photon-nucleon total cross sections; the other is to 

define structure functions. We begin with the definition of total cross 

sections. 

First we recall the unpolarized case (62), where there are two 

independent photon-nucleon total cross sections, mT and oL. By the 

optical theorem they are proportional to the imaginary part of the 

forward photon-nucleon scattering amplitude, TX, h, h h (v, q2, t.=O): 
YN’ YN 

“f-#’ q2) cc (100a) 
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and 

In fact, the usual tensor, W 
I-@’ 

is also proportional to lin T 
NJ’ 

and the 

p, v= 1,2,3 (z axis along q) components are (100) 

(101) 

where K = v - q2/2 MN is the real photon (laboratory) energy necessary 

to produce the same center-of-mass energy. The double differential 

cross section for detecting a final lepton of energy E* if the incident 

beam has energy E is given by Eq. (34) as 

so that using the lepton trace in Eq. (80) we have 

d20 
dG’dE = -$ 5 (g)(A) t5T+ ?J) 

=r(5T+mL) , 

which is the standard result. 

In the polarized beam and target case, one is able to measure 

separately the total cross sections o 
112 and O3/2 (net photon plus 

nucleon value of Jz equal to l/2 and 3/2 respectively) and gTL defined 

(102) 
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by (101) 

~l,ztv, s2) a Im T & 15 ’ 
2’ 2 

a,/,(v,q2) a Im T l-i, 1-i ’ (103) 

with the same proportionality constant as in Eq. (loo), so that 

oT = !? l (5 l/2 + O3/2) ’ (104) 

Therefore, there are two new measurable quantities, which we take to 

be (l/2) (Q~,~ - a3,2) or the asymmetry, 

4v,q2) = 
a1/2 - O3/2 = %/2 -@3/2) 

5/2 -I- O3/2 oT 
, 

and oTL. For these quantities we have the bounds (102) 

I ~(LT~/z-u~,~)) 5 cT or I Al 2 1 , 

and 

W5) 

(106) 

(107) 

It is not difficult to see from our definitions that if the nucleon 

target was polarized along &c, only gl,2 -Q~,~ would contribute to the 

difference, while with polarization perpendicular to z (but still in the 

lepton plane), only o;rL contributes to a difference between target spin 

orientations. However, in real life it is far easier to orient the target 
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relative to the lepton beam, and not c. For a nucleon target polarized 

antiparallel or parallel to the beam we find (103), 

dQla’ - &-J;2’&E’ = 2r Au +&gTL] (108) T E , 

to be compared with the unpolarized result, 

(109) 

If we neglect uL and cTL as being small (104), then we have that 

d2a t+ d2c tt 
dWdE’ - dO’dE’ = 

d2c t+ d2a tt 
dfi’dE’ + dSl’dE’ 

?/2 - (?3/2 

9/2 + a3/2 
. (110) 

This simple result shows that the virtual photon-nucleon asymmetry is 

“degraded” by the factor (E-E’e)/E in order to obtain the lepton beam- 

target asymmetry which is actually measured. 

It is also possible to polarize the target perpendicular to the beam, 

but in the lepton plane. In this case we find (105) 

(111) 
Under presently contemplated experimental conditions, the AgT term 

has an order of magnitude greater weight than the gTL term in Eq. (108), 

while the situation is reversed in Eq. (111). Thus, while it is possible 

in principle to separate AgT and @TL by only running with the target 

polarized parallel or antiparallel to the beam at different values of E, 

E*, and 0 (but the same v and q2), in practice this is very difficult . 
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The use of perpendicular polarization (Eq. (111)) makes the task of 

separation much easier (106,107). 

Isolation of aTL may be of some importance in obtaining informa- 

tion on R = oL /oT. As R is known to be small in deep inelastic scat- 

tering, it is difficult to measure accurately. Equation (107), however, 

shows that measurement of oT and CT TL will give a lower bound on R. 

For the particular case of elastic scattering, where oTL a GMGE, 

measurement of o;rL may provide the only way to study GE at large q2. 

Just as there were two new cross sections to define in the spin 

dependent case, there are two additional structure functions besides 

the familiar WI and W2. We write (108)) 

W pv = W1(wt2) 
( 
Qv - gl,qv /s2 

i 

+ W2w12) 
( PI -PO4 q//q2 I( P, - P-q q/q2 /M; i 

- W > q2) EpVhu SASu /Jr MN 

+ w4q2) s*q E pvhu qhpu’4TMN ’ (112) 

where So is a covariant spin four-vector associated with the nucleon 

target and possessing the properties 

s-p = 0, s-s=+1 . (113) 

In terms of the structure functions defined in Eq. (112), the meas- 

ured difference between double differential cross sections with lepton 
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and nucleon spins antiparallel and parallel is (103) 

d20 11 d20 t 4or2E’ 
d&?dE’ - &t&t = - 

q2E 
(E+E’ cos 0) d(v, q2) + (E-E’ cos e)(E+E’) MNg(v, q2) /(47rMN) 

i 
. 

(114) 

The catalogue is completed by giving the relationship of the structure 

functions to the previously defined total cross sections: 

& [vW,q2) + MNtV2+q2)gtv,q2)j =--& 
a1/2- O3/2 

N 
2 

K =-AoT , 
47r2cY 

(115a) 

and 

J-- 2 
&d(“,q2) 

N 
(115b) 

These allow one, for example, to go directly from Eq. (108) to (114). 

The particular choice of structure functions given in Eq. (112) is 

of course not a unique one. In fact, each paper on this subject seems 

to define a new set, which can only be linear combinations of the ones 

given here. As will be seen in the next section, d(v, q2) and g(v, q2) 

are slightly more convenient when one wishes to use the inequalities 

for total cross sections, Eqs. (106) and (107)) to bound the integrands 

in certain sum rules. 

D. SCALING AND SUM RULES 

In Section VI we discussed the scaling behavior (109) of the spin 

averaged structure functions: that as v and q2 become infinite, Wl(v, q2) 

and vW2(v, q2) become nontrivial functions of w = 2MNv/q2. It comes 
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as no surprise that a similar behavior is expected on the same basis 

for the spin-dependent structure functions: one expects (110,111) 

vd(v, q2) and v2g(v, q2) to scale. Neglecting q2/v2 as v and q2 + 00 with 

w fixed, vd + MNv2g cc A(v, q2)W, from Eq. (IlSa), and we see that 

A(v, q2) should also scale. 

What magnitude and sign might we expect for these new structure 

functions in the scaling domain? For purposes of a very rough orienta- 

tion and guide to our intuition, let us consider the most naive parton 

model - something which can not possibly be completely correct and 

which I will consequently call “dumb1 quarks. Namely, let the nucleon 

consist of three point quarks: the proton is ppn and the neutron is nnp, 

i.e., just the three f%alence” quarks with no qq sea, gluons, etc. 

Then in the unpolarized case, the usual parton manipulations yield that 

vW2 and W1 scale with vW2 = (2MN/w)W1 and Win/W 1P 
= 2/3. The 

same calculations show, as expected, that vd and v2g scale with 

2 v g=o , 

for either the neutron or proton, and 

vd+ MNv2g 
5W 47rMN = 5 1 or A(w) = E 

for the proton and 

vd + MNv2g 
0 47rMN = Or A(w) = 0 

(116) 

(117a) 

(117b) 

for the neutron. Equation (116) is seen to follow in the detailed compu- 

tation from the (assumed) Dirac point particle nature of the partons. 
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The positive, or at least nonnegative, values of A found in 

Eqs. (117) are to be expected on naive grounds. For A in a parton 

model is just a measure of the extent to which the parton and nucleon 

spins are aligned, weighted by the parton charges squared. Therefore, 

since we don’t expect the parton spins on the average to tend to line up 

opposite to the nucleon’s spin, we expect A > 0. 

In general, the use of a polarized target and beam could be thought 

of as weighting the individual parton contributions to the scattering by 

an additional factor: their spin alignment (112). For example, in the 

naive three quark model the p quark in the proton is weighted more 

heavily in ol,2 and less heavily in u 
3/2 

than in the spin averaged cross 

section aT = z L tc l,2+o3,2 ). If there is a connection of the parton charges 

to the excess (113) of positive hadrons projected forward in the hadronic 

final state at large q2, then the excess should be different in UI,~ and 

a3/2* 
Now let us turn from “dumb” quarks to what might be called 

llsophisticated*’ quarks. By this I mean the algebra of currents at equal 

time, and more generally the quark light cone algebra (8). Here one 

abstracts certain algebraic properties from the free quark model; 

properties which might be exactly true in Nature. But one discards 

the quark themselves. These algebraic relations can often be con- 

verted into sum rules. For example, the equal time commutator of 

two space components of the vector current as abstracted from the 
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quark model (see Eq. (43)), 

[i$$i, t), $7, t)] = -ieijk d”“q (2, t) s(3)(%?) 

+ terms symmetric in i, j 

leads to the sum rule (114) 

Rewriting this in the scaling limit gives (115) 

S 1 
m %A(w) (eW#)) = Z . 

(118) 

(119) 

(120) 

The quantity Z on the right-hand side of Eqs. (119) and (120) arises 

from the one nucleon matrix elements of the axial-vector current, q , 

on the right-hand side of Eq. (118). With the indices a! and p chosen to 

correspond to the electromagnetic current, the index y takes the values 

3, 8, or 0, so that one has for protons and neutrons 

z = Z(3) + z(8) + z(O) 
P 

and (121) 

z = -z(3) + $8) -I- z(O) . n 

Z(3) = gA/6 is directly measurable in weak interactions. Thus by 

taking the difference between Eq. (120) for protons and for neutrons, 

one obtains a sum rule with the known quantity Z 
P 

- Zn = gA/3 on the 

right-hand side. z(8) , arising from the same octet of currents as Z (3) 

is calculable if we know the F/D ratio of the axial-vector currents. If 

(F/D),xial = 2/3, then Z(8)/Z(3) = l/5 D 
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It is instructive to examine the sum rule, Eq. (120)) in the naive 

quark parton model discussed previously. There A = 5/9 and 

S cOdo 
1 

; (2MN/~) W,(O) = 1 for the proton, while in the same naive 

quark model Z(3) = 5/18 (since gA = 5/3), Z(8) = l/18, and Z to) = 4/18. 

Therefore Z p = (5+ 1+4)/18 = 5/9 and the left- and right-hand sides of 

Eq. (120) are both 5/9 for the proton. Similarly, since A=0 and 

Zn = (-5+ 1+4)/18 = 0, both sides are zero for the neutron. Therefore 

we might regard Eq. (120) as being the correct “sophisticated” quark 

version of the “dumb” quark results in Eqs. (117). 

Independent of any particular model recall that we expect A 2 0. 

If this is to be correct for both proton and neutron (116), 

z(8)+z(O) , ,z(3) I. As a result Zp > 2Z(3) = gA/3 N 0.41, which, as 

we will see in a moment, demands large asymmetries over a consider- 

able w range for the proton. 

A second sum rule for the spin dependent structure functions (117), 

S 
co 

dv g(v,q’) = 0 , 
0 

or (115,118) 

s 
co 

dw v2g(w) = 0 
1 

(123) 

in the scaling limit, can be derived as a superconvergence relation or 

from the quark light cone algebra. Regge arguments indicate (117) that 

both Eqs. (122) and (123), where the amplitudes involved receive no 

contribution (119) from a Pomeranchuk pole, should converge on the 
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basis of known Regge pole intercepts. In particular, one expects 

A(o) -0 as W-CO. 

Can anything rigorous be said about the validity of these sum rules 

in the absence of actual data from polarized beam experiments? An 

examination of the left-hand side of Eq. (120) shows that if we replace 

A(U) by its upper bound (of l), then we have 

z5 S * dw 2MN - 
w - W,(w) - w (124) 

1 

However, @MN/W) W,(w) -L constant as w - 03 if the usual assumption 

of dominance of the high u behavior by the Pomeranchuk singularity is 

made. The right-hand side of Eq. (124) is then logarithmically diver- 

gent, and we have no rigorous bound which is useful in this case. 

We can use bounds on A(w) and presently existing data though to 

answer a lesser question. For example, suppose Ap 5 0.5 (remember 

that A = 0.5 is a large asymmetry - it is equivalent to ol,2/a3,2 = 3). 

How far in w do we have to carry the integration in Eq. (120) to get 

Z = 5/9, as in the naive parton model discussed above? Present data 

on W,(W) shows that the upper limit of integration must be 2 50. Even 

for Zp 2 gA/3, which we expect from the argument that Ap and An 

should be nonnegative, the upper limit of integration must be > 25. 

Thus if Zp obeys our expectations, present data on deep inelastic scat- 

tering and the sum rule in Eq. (120) indicate that we must have large 

asymmetries over a very considerable range of w values (120). Put 

another way, if the sum rule in Eq. (120) is correct, it converges 
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I 

slowly and receives important contributions from the large u region. 

In this regard it is similar to the Adler sum rule (121), and the parton 

model sum rule (discussed in Section VI) 

* da 
J [ w vw2p(w) - vW2Jw) 

= 1/3 . 
1 1 

One might ask in this regard if the coefficient of Al in the commutation relation, 

Eq. (118)) and consequently the Z on the right-hand side of Eq. (120)) 

could’be reduced by a factor K from the quark model value, making the 

sum rule easier to satisfy without large asymmetries. Here we are 

constrained by the Crewther relation (122) 

3S=KR , (125) 

where K is defined as above (K= 1 in the quark model), S is the coeffi- 

cient of the Adler anomaly (123), and R’ is the ratio 

a(e+e- --)r y (3) - hadrons)/o(e+e- - P’,Q-). Since S= l/6 and R’= l/2 for 

ordinary quarks, and S= l/2 and RI = 3/2 for colored quarks, we see 

that the relation is satisfied in both these cases. Note that if S is 

fixed (say by PCAC and I(,” - m/)) then large values of R’ force K to 

be small and vice versa. One therefore has an interesting relation 

between the results of e+e- colliding beam experiments and those in- 

volving polarized lepton beams. 
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Finally, we note that if we subtract the second sum rule, Eq. (122), 

from the first, Eq. (119), and use Eqs. (107) and (115), we have 

lZI=I iirn q2J cOdv vd < -- 
I v4MN - Lim $%&3Wl 

q-co q2+xl 

2MN 
_ Lim -;;; ~W,(w) < 

s c 
co da P-- v2W’q2 . 

q2- 0 

2 2 21111 Therefore, if Z # 0, R must not vanish faster than q /v = w ; at 

fixed w as v,q2--m. Of course exactly the behavior (124) R= (q2/v2)f(w) 

is what is expected from the quark light cone algebra from which both sum 

sum rules were derived, so that everything is consistent in this regard. 

E. DUALITY AND THE POLARIZATION ASYMMETRY IN DEEP 

INELASTIC SCATTERING 

By now it is rather well accepted that there is a substantial non- 

diffractive component of the structure functions, at least for 15~ 110, 

and that the distinguishable s-channel nucleon resonances exhibit a 

behavior which is closely connected (125) with that of vW2 near W= 1. 

Inasmuch as there is no Pomeranchuk pole contribution to the spin 

dependent structure functions, one might look here also for a connec- 

tion of deep inelastic behavior with that of s-channel resonances. To 

examine this question further, it is useful to construct a sum of reso- 

nances, in the spirit of the Veneziano model, which duplicates parton 

model results, and in particular the results of the naive three quark 

model for the structure functions which we discussed earlier. 

(126) 

- 72 - 



For this purpose, we consider the states generated by three quarks 

with harmonic potentials between them. We let the electromagnetic 

current interact with only one quark at a time, considering only inter- 

actions with the quark magnetic moments. This immediately leads to 

R= oL/uT=O. 

The ground and excited states of such a set of three quarks are 

classifiable in terms of SU(6) representations, with the nucleon itself 

being in the ground state, the totally symmetric 56 representation. 

Since only one quark at a time is to be excited, only resonances in the 

totally symmetric 56 and mixed symmetry 70 representations can be - - 

produced. A little calculation (126) shows that summing over all pos- 

sible excitations of resonances lying in a 56 at some given v and q2: 

wln/wlp = 12/17, Ap = 5/17, An= 0, 

while for excitation of a 70, 

w In/W lP 
= 3/5, 

AP= l) 
An=0 . 

(127) 

(128) 

In particular there exists a combination of 56 and Jo- s-channel 

nucleon resonances excited in photon-nucleon collisions which yield (126) 

wln/wlp = 2/3, Ap = 5/9, A, = 0, (12% 

exactly the naive three quark parton model results. Therefore it is 

possible to construct (126) a sum of s-channel resonances which for 

some, or for that matter all, v and q2 duplicates the naive parton 

results. Varying the weights of different 56’s and 70’s with v and q2 - - 

then yields an infinity of models of the nondiffractive part of the struc- 

ture functions in terms of an infinite sum of s-channel nucleon resonances. 
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Does this s-channel model make sense when compared to the 

behavior of the known individual resonances which have been classified 

in 56’s or 70’s of SU(6) ? In particular, we have the well known - - 

P33(1236) in a 56 (with the nucleon), the D13(1520) in a 70, and the 

F15(1688) in another 56. 

Now in photoproduction (on a proton target) all these resonances 

have 03,2 (resonance) > o - l/2 (resonance), i. e. , Aptresonance) < 0. 

Quark models (127) with harmonic forces (128) provide a neat explana- 

tion of this for the D.,3 and F15. Both magnetic and convection current 

terms enter g1,2, where they cancel, while (T 
3/2 

comes from the con- 

vection current alone. Thus 03,2 >>~i,~ or A N -1 for these two reso- 

nances. However, the same quark models also make a prediction. 

As q2+m, the magnetic term dominates, just as we assumed in the 

model discussed above, and there is no longer any cancellation in CT 
l/2 

for these resonances. In fact uI,~ >>u3,2 or A N +l is predicted for 

these resonances as q2 +w. Detailed calculations (126) show that this 

change from A(resonance) N -1 to A(resonance) N +l should occur 

rapidly as q2 goes from zero to a few tenths of a GeV2. These reso- 

nances would then have the same sign (positive) of A at large q2 as is 

expected for deep inelastic scattering. 

Experimentally there are no results from using polarized beams 

and targets, but the relevant information on the D13 and F I5 is obtain- 

able from observation of the angular distribution of their TN decays. 

Up to q2 = 0.6 GeV2, where large effects are expected, no appropriate 
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change is observed in the rap angular distributions (129). It appears 

that the quark model with harmonic forces predicts the wrong result, 

as the D13 and F15 still seem to have the opposite sign of A at 

q2 = 0.6 GeV2 from that expected in deep inelastic scattering and in 

the quark models of resonance excitation. 

What then happens to duality for the spin dependent structure 

functions near a= l? To discuss this one must first say what behavior 

the deep inelastic scattering will have. On the basis of the sum rules 

we have discussed here and the ratio vWZn/vW 
2P 

observed near 0 = 1, 

I expect (126) that both Ap and A, will be ~1 +l at C,J = 1 with An dropping 

rapidly to zero with increasing W, but Ap staying large and going to 

zero only at very large values of a. There are then two possibilities 

for the resonances: (1) all resonances eventually have Ap>O for large 

q2 and one has a kind of “local duality” as in the case of vW2, with 

each resonance mimicking the deep inelastic behavior; or (2) only the 

nucleon (with A = +l), of the “prominent’* resonances, has A > 0. A 

“global duality” situation holds, as in TN charge exchange at t = 0, and 

the average over many contributions of different sign must be taken to 

give the deep inelastic behavior (130). Experimentally, a few sweeps 

through the region of prominent nucleon resonances with a polarized 

beam and target should answer this. Perhaps next year at this time 

we will know the answer to whether possibility (1) or (2) is realized in 

Nature. 
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F. SUMMARY 

We have now seen some of the many and varied theoretical or 
-- i 

phenomenological questions which are susceptible to experimental 

answer with a polarized lepton beam and target. Among the possibili- .I 

ties we have examined are that: 

(1) A detailed, and in principle complete, amplitude analysis of 

virtual photon induced processes can be carried out; 

(2) The scaling behavior of two new spin-dependent structure 

functions can be tested; 

(3) The size of the asymmetry, A, which indicates in parton 

models the alignment of the charged constituent and nucleon spins can 

be measured. The various constituents are weighted in their contri- 

bution to the deep inelastic scattering in a different way from the spin 

averaged case; 

(4) Rigorous sum rules exist which have right- and left-hand sides 

that both can be directly measured, providing a test of the quark light 

cone algebra; 

(5) The asymmetries of individual resonances can be measured, 

providing a very restrictive check of quark models of resonances and 

their electromagnetic excitation, as well as of the validity and form 

duality takes in spin-dependent scattering near W= 1; 

(6) The large v or (.,J behavior of the structure functions is meas- 

urable, yielding additional information on Regge singularities which 
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I 

are essentially inaccessible in other processes, and in particular the 

position of the leading singularity of odd signature and even parity. 

An interesting period of the beginning of experimental answers to 

these and other questions lies immediately ahead. 
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Table I 

Some baryon states expected in the constituent quark model and candidates 

for the SU(3) singlets and for the nonstrange member of each other SU(3) and 

P multiplet (see text). 

SU(6) x O(3) 
multiplet 

SU(3) 
multiplet 

Total quark JP 
spin, S 

Candidate 
members of 
the multiplet 

70 L=l 

c 

56 L=2 l 
- 

s 
10 - 

- 1 

1 

‘8 

8 - 

10 - 

10 - 

* 8 

ii 

s 

s 

s 

10 - 

10 - 

10 - 

10 - 

l/2 1/2+ 

l/2 3/2+ 

l/2 l/2 - 

l/2 3/2 - 

l/2 l/2 - 

l/2 3/2 - 

l/2 l/2 - 

l/2 3/2 - 

3/2 l/2 - 

3/2 3/2 - 

3/2 5/2- 

l/2 5/2+ 

l/2 3/2+ 

3/2 7/2+ 

3/2 5/2+ 

3/2 3/2+ 

3/2 1/2+ 

P11(940), . . . 

P33(1236), . . . 

YZ(1405) 

YT(1520) 

Sll(1550), . . . 

D,,(1520), . . . 

S31(1640), . . . 

D33(1690), . . . 

S11(1715), . . . 

D13(1700), . . . 

D15(1670), . . . 

F15(1688), . . . 

P13(1860), . . . 

F37(1950), . . . 

F35(1890), . . . 

P,,(?), l * l 

P31(1860), . . . 



Table II 

Some meson states expected in the constituent quark model and possible 

candidates for the isospin one and zero members of each SU(3) and J 
P 

multiplet. 

SU(6) x 0 (3) SUP) 
multiplet multiplet 

Total quark 
spin, S 

JPC 
Candidate 

members of 
the multiple t 

{ 

ii+.& 
35 L=O :[ 

E 
1 L=O 2 II 

s 

3 
1 

: 
0 

I 

F4 

35 L=l 

S+l 

8+L - 

g+ 1 - 

s 

35 L=2 

I 

-- 
1 

0 3 

0 -+ 

2++ 

1* 

-O++ 

1+- 

-- 
3 

-- 
2 

-- 
1 

2 -+ 

A2,f,f’, . . . 

Al?, D,. . . 

6,0-?,... 

B, ?, . . . 

g, W3’ l * - 

F1?,?,... 

pl?, ? ,... 

A3?,?,... 
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Table III 

Decays of nonstrange 35 L=l mesons into 35 L=O mesons by pion - - 

emission. a& All decay rates are fixed in terms of I’Izo(B-~~)=O 

and r (A2 - ro)=77 MeV. 

I’(predicted) I? (experimental) (40) 
(Mew PW 

A2(1310) - rp 77 (input) 77 f 20 

B(1235) - 7~ A=0 0 (input) dominantly h= 1 

B(1235) - 7~ A=1 76 100 f 20 total width 

A1(1070) - rp A=0 52 
? 

A1(1070) - rp A=1 26 

A2(1310) - 71 17 16 -+ 4 

u(975) - 7r 35 - 60 total width 

f(1260) - 7r.1~ 118 

u(760?) - mr 234 

125 i 25 

Broad ? 

a. Decay rates of the corresponding K* states are simply obtained 

using SU(3) for the matrix elements of Q5. 

b. The W, f and o mesons are taken as ideal mixtures of singlets 

and octets, so as to be purely constituted by nonstrange quarks. 

Zweig’s rule (2) is used to relate decay amplitudes involving 

the SU(6)w 35 and I parts of the h=O W, cr and f. 
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Table IV 

Decays of 70 L=l and 56 L=2 baryons into 56 L=O baryons by pion emission. - - 

All rates are fixed by the D13 and Sll decays to TN for the 70 L=l decays, - 

and by the F15 and PQ1 decays to TN for the 56 L=2 decays. For two states - 

which may be mixed, a combination of widths which is independent of mixing 

is used and listed under l?(predicted). 

De cay I’(predicted) I? (experimental) (40,47) 
WeV) WeV) 

D13(1=0) - (rN)d 
D13(1700) - bvd 

r(l520) + 0.50 r(l700) 

= 79 MeV (input) 

D13(1520) - tTA),-j 
D13(1700) - (“hd 

P(1520) + 0.243 I’(1700) 

= 30 MeV 

s11(1535) - (aa), 

S11(1715) - bh, 

P(1535) + 0.264 I’(1715) 

= 35 MeV 

D,,tl670) - (nN)d 

D15(1670) - ba), 

S3 +1640) - (na), 

D33WO) - (‘ITN)d 

D33tlW - (ra), 

21 MeV 

82 MeV 

81 

19 

55 

Sll(l535) - w& 

Sll(l715) - (ms 

D13 (1520) - WY, 

D13t1700) - Wls 

S3+1640) - Ws 

D33tlfW - (“AJs 

r(l535) + 0.505 r(l715) 

= 116 (input) 

I’(1520) + 0.243 P(1700) 

= 46 

18 

61 

79 * 20 

10 =k 6 

not seen 

56 * 14 

84* 21 

52* 20 

32 f 9 

not seen 

116 * 55 

19 f 10 

48 f 9 

172 zk 60 
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Table IV (continued) 

De cay l?(predicted) l?(experimental)(40,47) 
tMeV) (Mew 

Fl5(1688) - (XVf 

F37WW - bmf 

F37WW - (4, 

F35(1880) - (rN)f 

F35 (1880) - (r4f 

p33( 1 - W), 

Fl5(1688) - trhf 

Pl3(1860) -L (r4f 

P31(1860) --L (nN)p 

P3 l(l860) - wp 

p33( I- bwp 

p33( ) - WJp 

F35W3W - Wlp 

Pl3(1860) + trNlp 

Pl3(1860) --L (~4~ 

Fl5(1688) -+ (~4~ 

84 (input) 

74 

65 

14 

77 

12 

57 

75 (input) 

8 

44 

118 

5 

15 

84* 25 

92 f 20 

37 * 18 

36 f 18 

16* 16 

? 

not seen 

not seen 

75 f 25 

not seen 

? 

? 

not seen 

75 i 25 

not seen 

22 5 7 
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Signs of resonant 

and 56 L=2. The - 

Table V 

amplitudes in nN 3 N* ---A for N*‘s in the 70 L=l 

arbitrary overall phase is chosen so that the 

DD15 (1670) amplitude is negative. 

Amplitude 
in TN-~ A 

Theoretical Theoretical Experimental Sign 
sign from sign from Solution Solution 

(89 1)o-(L 8Jo (3,5),-(3, 311 A(46,47) J3(55) 

r 

DS13(1520) 

DD13(1520) 

SD31(1640) 
4 

DS33(1690) 

DD,,(1670) 

c 
DS13(1700) 

i 

FP15 (1688) 

FF37(1950) 

FF35(1880) 

+ 

+ 

+ 

+ 

+ + 

+ + 

+ 

-I- + 

-b + 
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FIGURE CAPTIONS 

1. 

2. 

Kinematics of inelastic electron-nucleon scattering. 

The structure functions vW2 and 2MNW1 versus wt for various 

q2 ranges (67). 

3. The ratio of neutron to proton inelastic electron scattering cross 

4. 

5. 

sections (72) for large values of 0’. 

The x distribution of inelastic neutrino scattering from the Caltech 

experiment (82) at NAL compared to Fid(x) measured at SLAC. 

Values of <q2> plotted versus the incident neutrino energy, E, 

6. 

from the Caltech experiment (82) at NAL. 

Experimental results (87) for o(e+e- +hadrons)/o(e+e- ep+p-). 
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