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1. INTRODUCTION 

In these lectures I am going to attempt to review the status and 

methods of analysis of three body final states. In the last few years 

there has been a great deal of activity in the phenomenological analysis 

of these systems motivated by a variety of reasons. The three body 

states considered have been obtained in both formation and production 

experiments as indicated in Fig. 1 and the main emphasis has been in 

the llspectroscopiclf aspects of the results. 

In the formation experiments work has centered primarily around 

the reactions flerndon et al., 1972; Mast et al., 1972) 

TN - mN (1) 

k-p - Am (2) 

Such reactions constitute a large part of the inelastic cross sections 

derived from the incident two body systems. Indeed for TN collisions 

with E c m < 2000 MeV, the XXN channel accounts almost completely for . . 
the inelastic cross section which itself is approximately 50% of the total. 

Thus if we are ever to understand the TN interaction it will be essential 

to have a description of these three body states. Furthermore, this low 

energy region is dominated by overlapping resonances (“the resonance 

region”) many of which are highly inelastic. In our present attempts to 

understand the systematics of these resonances, the existence and 

branching fractions of each statearerequired. Of particular interest are 

the decays into ETA, Np, rYT(1385), etc., which can be related to TN, 



KN, R7r, etc., in any symmetry scheme higher than SU3 . The fact that 

the parent resonances are overlapping necessitates partial wave analyses 

which would be comparatively easy were the A, p, etc. , stable particles 

(although of course O- + l/2+ -c O- + 3/Z+ is necessarily more compli- 

cated than O- + l/2+ --) O- + l/2’). Unfortunately they are not and their 

widths are sufficiently large that for much of the Dal& plot their ampli- 

tudes (Breit-Wigner) are large, as is clear from Fig. 2. In these 

circumstances it is difficult to select the data to produce a pure sample 

of, e.g., ?rN -, 7rA and any detailed analysis of such selected data will be 

correspondingly suspect. Thus one must resort to other techniques 

which can take into account these overlapping resonance bands and per- 

haps even exploit their presence. Such methods and one in particular, 

the isobar model, together with their results will be the subject of these 

lectures. At this time the most important results have emerged from 

the analysis of reaction (1) but one should expect in the future valuable 

results from m induced. reactions, the Y* situation being at least as 

complicated as the N*. 

The activity in production reactions is essential for a variety of 

reasons (Ascoli et al. , 1971). For meson systems parity conservation 

forbids the decay into two pseudoscalar mesons of any resonance belonging 

to the unnatural spin parity series O-, l+, 2-. The first available state 

is then usually the three pseudoscalar meson system and thus we expect 

to observe such resonances there. The requirement of G-parity con- 

servation means that for G= -1, S=O meson resonances the decay into 
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two pions is forbidden. We then once again expect to see these states 

first in three pion systems, e.g., A2 - 3n. The whole discussion of 

the existence of many of these resonances is further complicated by 

dynamical processes which may occur. The diffractive excitation of a 

‘IT or K (see Fig. 3) will automatically lead to a system of particles with 

unnatural spin parity if the following rule is obeyed 

AP = (-l)& 

where AP is the change in parity and AJ the change in angular momentum. 

Hence we have long had the debate as to whether the low mass enhance- 

ment in the three pion system is due to a resonance or a dynamical 

effect (Deck mechanism). The resolution of this problem is vitally 

important to meson spectroscopy and awaits study of these three particle 

states in reactions in which diffraction dissociation is not possible, e. g. , 

the charge exchange or hypercharge exchange reactions of Fig. 4 

K-n -. 7r-*+nA (4) 

f 
7rn-+ ,+*-Top (5) 

Of course we would also like a clear understanding of the process of 

diffraction excitation and as already noted this leads naturally to the 

consideration of three particle final states (these are in general the 

easiest to observe experimentally). Thus we will continue to study the 

reactions of Fig. 3, but we will in addition direct our attention to the 

diffractive excitation of the nucleon as indicated in Fig. 5. Indeed the 

latter is possibly the best system in which to study this process as one 
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already has detailed information on the baryon resonances spectrum. 

In general the analysis of these states in production reactions will always 

give information on the production dynamics. 

In the following sections, I will discuss the various techniques of 

analysis (Section II) leading to a very detailed description of the isobar 

model (Section III), in order to allow people both to use the method them- 

selves but also to be familiar with the approximations, definitions, etc., 

involved in any of the quoted results. Sections III. A and III. B will be 

concerned with the calculation of matrix elements while Sections IlI. C 

and III. D will contain the applications to formation and production reactions 

respectively. In Sections IV and V, I will describe and try to evaluate the 

results which have so far been obtained and finally in Section VI I will 

attempt to summarize the situation and indicate in which directions we 

will proceed. 
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II. THE METHODS OF ANALYSING THREE BODY FINAL STATES 

In the introduction I have already hinted at some of the methods one 

might apply and I would now like to discuss them in more detail. I will 

first deal with the approach in which one attempts to reduce the problem 

to one of the stable two body scattering by suitable cuts on the data. 

This will be followed by a discussion of the general methods of analysing 

three body final states. . However the ambiguities, the variety of experi- 

mental data required, and the difficulties of interpretation render these 

approaches of little value at present making it necessary to use somewhat 

more model dependent methods, The most successful of these models is 

introduced and dealt with in detail in Section III. 

A. SELECTION OF TWO BODY REACTIONS 

The oldest approach to analysing three body final states is to attempt 

to isolate specific two body reactions, e.g., 

n-p + $A- (6) 

or 

r+P 
O-l-l- -77A (7) 

Q - ~TK* 03) 

This is done by selecting events in which the invariant mass of a pair of 

particles lies in the required resonance band, As I have already indicated 

this can be a dangerous business. In general the resonances are wide and 

this means that at almost any point in the Dalitz plot their amplitudes are 

still quite large. Thus even though we believe we are selecting a clean 
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sample of reaction (6) from the final state ?7r-n the presence of the 

reaction (see Fig. 2) 

rip-n -A+ (9) 

can produce appreciable interference effects within the A- band. Since 

the helicity angle in the decay of the A- is linearly related to the position 

along the A- band, the decay distributions (and hence density matrix 

elements) are particularly susceptible to these interference effects. Of 

course the higher the centre of mass energy the smaller the proportion 

of resonance overlap and thus this technique becomes more reliable at 

higher energies. 

The reason for attempting this isolation is that the calculations are 

comparatively simple (even if somewhat tedious). The complete expres- 

sions for the production differential cross section and decay density 

matrix in terms of partial wave amplitudes in the reaction 

o- I- l/2+ - 0- + 3/2+ (10) 

have been published (Brady and Kernan, 1969) and this has been the 

reaction most exhaustively studied in this manner. The limited data has 

necessitated energy dependent analyses, i. e. , the partial wave ampli- 

tudes are parametrized in terms of Breit-Wigner resonances and energy 

dependent backgrounds and data at a variety of energies fitted simul- 

taneously. This ensures continuity and hopefully reduces ambiguities 

which might exist by specifying the partial wave energy dependence. 

The results from analyses of this type are probably satisfactory 

for the large dominant waves whereas the smaller partial waves are 
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poorly determined. Such analyses do however provide a useful guide to 

and check on the results of more sophisticated methods. 

The final objection to this type of analysis is that one does not obtain 

the relative phases of partial wave amplitudes for different channels, e.g. , 

nN - 7rA 

- NP 

because the regions of the Dalitz plot which would allow this are explicitly 

removed from the analysis. As we shall see such quantities are of 

interest in higher symmetry schemes. 

B. MODEL INDEPENDENT ANALYSES OF THE THREE BODY 

FINAL STATE 

In general five variables are required to describe a three body final 

state. These variables are usually three Euler angles specifying the 

orientation of the three particle state with respect to some co-ordinate 

system together with two Dalitz plot variables i 
2 WI and w 2 2 giving ) 

effectively the energies of the three particles in their c. m. system. In 

the case of formation reactions using unpolarized targets one of these 

angles does not appear as it corresponds to arbitrary rotations about the 

beam direction. In order to use the data to maximum advantage it would 

be best to exploit all the correlations that exist. However the correlation 

between Dalitz plot populations and the angles requires specific dynamical 

assumptions, e. g. , a resonance is produced in a particular angular 

momentum state. 
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In model independent analyses one selects regions of the Dalitz plot 

and attempts to find the Jp states associated with that area. The for- 

malism for these types of analysis has been discussed exhaustively both 

for formation (Cashmore and Hey, 1972) and production reactions 

(Berman and Jacob, 1965). In both cases the angular orientation of the 

three body place is considered, the form of the distributions and the 

correlations present indicating the partial wave structure. 

I will demonstrate some of the properties of this type of analysis by 

using the reaction 

TN -mN (121 

as an example. In this case the differential cross section from an 

unpolarized target is written as (Cashmore and Hey, 1972) 

d40 

d,;dw; dcos B d$ 

where an integration has been performed over the angle about the incident 

beam direction, 8 and @ the polar angles of the incident pion within 

a co-ordinate system defined by the final state particles. The object of 
M any analysis of this type is then to determine the WL as functions of 

Dalitz plot position. The WM L are then analogous to the expansion 

coefficients A and B of two body scattering differential cross sections 

M and polarization distributions. These WL possess many similar proper- 

ties, e.g., (a) interference of waves with opposite (same) parity lead to 

terms with odd (even) values of L. (b) If Jmax is the maximum angular 

momentum contributing to the reaction, and only one parity is present 
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corresponding to this value, then Lmax = 2 Jrna - 1 (for J half integral). 

However if waves of opposite parity are present with this value of Jmax 

then Lmax = 2 Jmax. (c) The e are bilinear products of the partial 

wave amplitudes BP7 J#““2”) (Cashmore and Hey, 1972) 

A complete parity ambiguity exists unless the final state nucleon polari- 

zation is observed (Cashmore and Hey, 1972). This is equivalent to the 

* Minani ambiguity of two body scattering. 

In Figs. 6a, b as an example, we can see the e averaged over the 

Dalitz plot for the final state r+r-n. The absence of moments with L+M 

odd is required by parity conservation, while the large moments with 

L odd indicates the presence of waves of opposite parity. At a given 

energy the maximum L present does give an i.ndication of the largest 

angular moment wave present. However one should not put too great a 

reliance on this since in the region of 1700 MeV, the L=4 and 5 moments 

are small where we know the F15 and D15 resonances are important, 

From the measured values of the Wf w:, W: 
( 1 we would like to extract 

the partial wave amplitudes for this Dalitz plot position. It would then be 

possible to study the variation of these amplitudes with c.m. energy just 

as one does in conventional elastic scattering. Unfortunately there are 

many factors which reduce the value of this method. 
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(aj It is essential to make polarization measurements (preferably 

of the final baryon) to give enough WM L to allow the extraction of partial 

wave amplitudes. 

(b) The partial wave amplitudes are functions of the Dalitz plot 

position, andideally we would like to know them everywhere. The deter- 

mination of the moments WM L requires - 1000 - 2000 events and thus we 

can only hope to obtain these WM. L mtegrated over regions of the Dalitz 

plot. At this time the lack of experimental data does not allow the use 

of even a coarse grid (characteristically there are - 1000 - 10,000 events 

in a given channel at a given energy). 

(c) The overall phase of the amplitudes is undetermined from one 

Dalitz plot position to the next. 

(d) Optimistically one would hope to see variations of the partial 

wave amplitudes as a function of the Dalitz plot variables indicating the 

association of a Jp state with a particular decay decimal. However to 

extract couplings to these decay channels still requires a detailed model 

which predicts the variation of these amplitudes with Dalitz plot position. 

However one must point out that the results of such an analysis are 

model independent and do represent a permanent record of the correlations 

which exist in the data. Furthermore these methods are useful when 

considering model dependent analyses in that they can provide an indica- 

tion of waves which should be present (eS g., of opposite parity) and do 

sometimes limit the maximum angular momentum it is necessary to 

consider (a.lthough this can be misleading). 
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In the case of production reactions one usually considers the angular 

distribution in Q!, p and y, the three angles of the problem (Berman and 

Jacob, 1965), for a given region of the Dalitz plot 

du 
dadcos/?dy - c 

and the WJMA are again products of the partial wave amplitudes. These 

results are published (Berman and Jacob, 1965) and we will see many of 

the general properties later in our discussion of model dependent analyses. 

If the object of our analysis is finally to measure the couplings to 

decay channels then point (d) above suggests that it would be more sensible 

to make a specific model which will do this from the very beginning. 

This will immediately specify the correlations between the angular 

variables and the Dalitz plot position which we can exploit in our analysis. 

Of course the drawback is that it does become a model dependent analysis. 

However the situation is somewhat analogous to ihe state of 7r.N partial 

wave analyses of 10 years ago, Then one performed energy dependent 

partial wave analyses on small quantities of data. In this case we are 

performing mass dependent (in the sense of Dalitz plot variables) partial 

wave analyses on similarly small quantities of data. 

In the following section I will introduce such a model dependent 

analysis and subsequently discuss it at length. 

C. MODEL DEPENDENT ANALYSIS - THE I~SOBAR MODEL 

If we study Fig, 2 or Fig. 7 we immediately notice the existence of 

strong resonance bands, the A and the p. Since we are not in a position 
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fruitfully to follow a model independent discussion, this suggests a 

course in which we insert as an integral part of our analysis the 

presence of these resonances. The method then consists of writing the 

transition amplitude for reaching a given final state as a coherent sum 

of two body processes as indicated in Fig. 8. The transition matrix is 

then written as (Deler and Valladas, 1966; Cashmore et al., 1972) 

Wbl, w2s qw) = 

= c 
AIJLSQgy) CI xJLS ‘(W 

JLSI 
,w1,w2,W3,~~ J3Lb,,w2) . . . 

Q - (16) 

where WI, w2, (Y, @,r are the kinematical variables required to specify 

the reaction, C1 the product of all isospin Clebsch-Gordan coefficients, 

+sL contains all factors related to an&ar momentum decompositions, 

BL(ul, a,) is the final state enhancement factor, e.g. , a Breit-Wigner, 

where d is the orbital angular momentum in the decay of the isobar. The 

partial wave amplitudes A lJLsnW) are then obtained in fits to the data. 

One considers many intermediate states in analysing the different 

reactions: 

TN- mN TN - nA, No, NE 

A- 37~ A - E, rp, ?rf 

Q,L-Knn Q- KE, Kp, rK*, nWds wave, ~K*WW 

and in order to unravel these, one would like to use all of the correlations 

present in the data. 

However it is possible to obtain more limited results by analysis of 

the Dalitz plot distributions done. In this case there are no longer terms 
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corresponding to the interference of waves of different J or different 

parity P and moreover the different magnetic substates (Jz substates) 

in which’s resonance may be formed all lead to the same Dalitz plot 

distribution. Thus it is now only possible to determine the contribution 

of each J, P state. Furtherm.ore, ignoring the a, p and y dependences 

of the cross section will lead to a less reliable estimate of these partial 

wave amplitudes. 

The following section is devoted to a detailed discussion of the 

calculations of these cross section formulae and their properties while 

the results are reserved for Sections IV and V. 
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III. THE CALCULATION OF TRANSITION AMPLITUDES TO THREE 

PARTICLE STATES 

In this section I will develope the formulae for the transition to a 

three particle state in formation reactions, e.g. , 

TN -, mrN (171 

together with the similar results for the decay to three bodies of states 

obtained in production, e. g. , 

TN -+A2+N 

(18) 
mm 

In Section III. A I will deal with that part of the calculation which is 

common to both results - the decay of a spin parity state 1 Jp &I > which 

is defined in a co-ordinate system related to the final three particles. 

Section III, B deals with .t.he presence of two identical particles, e. g. , two 

n’+(s and the isospin decompositions which occur. In Section III. C I 

specifically deal with formation reactions while Section III. D contains a 

similar discussion of production reactions. Finally in Section III. E I 

remark on the methods of applying this formalism in the analysis of 

experimental data. 

Before I begin I would like to summarize the notation and symbols 

I use in order to prevent their introduction in a random manner. It is 

not possible to do this completely but I hope the confusion will be reduced. 

I have also committed to the appendix the definition of states, angular 

momentum projections, normalizations, phase spaces, properties of 22 
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functions and any detail manipulations in an attempt to -keep the text as 

clear as possible. 

Notation 

Final three particle system. Let j, k and 1 represent the final 

three particles. Let the diparticle be composed of particles k and 1 . 

All quantities pertaining to the diparticle are indexed by the subscript j. 

All quantities are defined in the three particle c. m. system S. 

(a) Total three particle c. m. energy, total angular momentum and 

parity - W, J, P 
. 

Z-component of J in system S - M 

c.m. system four momenta - Qj, Q,, Q 1 

Particle spins - V., ak, al 
J 

c.m. system helicities - pj, ~1,’ ,u~ I 
Intrinsic parities - 7~~) nk3 nl 

Mass of diparticle - W. 
3 

Spin of c. m. s. helicity of the diparticle - j ., A. 
J J 

Outgoing orbital angular momentum and total spin - 4;. , S. 
J J 

In the diparticle rest frame we have the quantities 

(j) Four momenta of decay particles - qk,ql 

(k) Helicities of decay particles - vk, v1 

(l) Orbital angular momentum and total spin of the decay 

particles - I., s . 
J J 
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We then use LS coupling to give 

7 = Ok + 7 1 
jj = lj + s. 

J 

Sj=oj+j. 
J 

/ 
J = Lj -t S. 

J J 

We assume that Lj and lj are chosen to conserve parity 

L.+l. 

(19) 

(20) 

These definitions are summarized in Fig. 9. * 

Incident two particle state in formation reactions 

Let a and b represent the incident particles. In this case the c.m. 

system for the two particle state is the same as that for the three particle 

state. 

(a) c.m. s. four momenta - p p a’ b 

(b) Particle spins - (Ta,Vb 

(cl c. m. s. helicities - pa&b 

(d) Intrinsic particles - na,qb 

(e) Incident orbital angular momentum and total spin - L, S 

Then 

s = cTa + Cb 

J=L+S 
(21) 
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and we assume parity is conserved so that 

w-9 ’ = ~a?$,(-l)L 

These are summarized in Fig. 10. 

Production reactions 

In this case we have three other particles to describe besides j, k, 

and 1 of the three particle system we are considering. In this case the 

j, k, I c. m. system is not the same as the overall (ab) c. m. system. In 

general all quantities pertaining to a, b and c will be measured in the 

overall c. m. system. c 

(a) c. m. s. four momenta - pay I$, pc 

(b) Particle spins - oa, Ub, (rc 

(c) Ilelicities - pa, s, PC 

(d) Intrinsic parities - qa, ribs 77, 

These are summarized in Fig. 11. 

For simplification in many of the following formulae n will be used 

to represent a set of quantities 

Decay of three particle system: nr j,J,P,M; L.,S.; j 1 s. 
I J J j’ j’ 3 I 

Formation reactions: nr j,J,P,lvI; L,S; L.,S.; j.,l.,s. 
1 J 3 JJ J 

Production reactions: j,J,P,M; L.,S.; j.,l*,s. 
J 3 JJ J I 

In some cases it may be necessary to display one particular quantity of 

this set, in which circumstances I will continue to use n to represent the 

remaining quantities. 
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A. THE DECAY OF AN INTERMEDIATE STATE INTO THREE FINAL 

PARTICLES 

We first define a co-ordinate system S with respect to j, k and 1 as 

shown in Fig. 12. We now wish to consider the decay of a state I nJM> 

defined in this system to a state whish is the product of three usual 

helicity states 

1 &jPjQ~kQlPl ' = IQjclj> iQk/-$> IQl/.y (23) 

i.e., we wish to calculate the transition 

fnJM 
/-J 

= < Gjpj 8pk q&t1 I T I nJM > (24) 

where we envisage the reaction as first proceeding through a quasi-two 

body state followed by the decay of one of these particles 

f nJM =J d3Qnl d3Q I-J =p -.- 2Em 2E; <Qj’jQpkQl’l IT IQ P Q P > 2 m m n n 
m 

cln 
< QmpmQnc”, IT1 1 nJM > I 

The isobar model then consists of writing 

(25) 

‘Qj’jQ~kQlcll 2 IT ‘Qm~mQn~il> = 6”(&j-Q,) 6 
’ j%n 

~3tQl,-Qlc-Ql~ 

< Q&$1/-+ 1 T2 1 Qnpn ' 4261 

so that 

f nJM ZZ 
P c 

A. 
< Qp,,Q,p, I T2 I -Qjhj x Qjpj-Qjhj I T1 I JMn > (27) 

J 

This is summarized in Fig. 13. 
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1. Primary Decay T1- 

We write this using the decomposition into angular momentum states 

(see appendix) 

112 
<Qjpj-Qjhj lTllnJM> = $2 (q - gJ* ‘M ~ A (fij) <QjJMcLj ITI InJIb 

’ j’ j 

633) 

where the arguments of the g function are angles aj = (aj, 0 ., - 4), the 
J 

production angles of particle j in frame S. We can then perform a further 

partial wave decomposition converting from helicity states to LS states 

(see appendix) L 

= ($‘” (2lgl)l’2 C(uj, jj, Sj Ipj-hj) C(Lj, Sj, JIO,pj-hj) 

J” 
gM, /A.-A -(j) <Qj JMLjSj I T1 InJM > 

J j 
(29) 

The last partial wave amplitude is independent of M, due to rotational 

invariance and we will write it as 

<QjJMLjSj ITIInJM> = TIL 

2. Decay of Isobar T2 

We wish to evaluate the decay of the diparticle and this is most 

easily done in the isobar rest frame 

(30) 

<‘tikQl? 2 IT I-Qjhj>= c G “i: kn ? 
(0.11 .)G (0:; ) 

QV 1 
q<+ J k “lc”1 3 1 

<qk”kql”l IT2 1 jj-hi > 

(31) 
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The 98 functions correspond to the rotations introduced-by Lorentz tr,ans- 

formations not along the directions of k and 1 (see appendix). The isobar 

when at rest is in a magnetic substate I j .- A. > with respect to the direc- 
3 J 

tion Qj since it was initially the x state in the two particle helicity state 

(see appendix). We finally require the matrix element to a product of 

three helicity states as defined in Eq. (23). Thus when we perform the 

angular momentum decomposition of the helicity matrix element in 

Eq. (30) we’must convert the second particle 1 from the conventional x 

state to an + state (see appendix). Inserting the angular momentum 
. 

decomposition gives 

Ijj-hj> = e,“” fyr’ C(uk,al,~jl~l~,-~l) 

jJ 
C(1 jSjjj lo, Vk-Vl) g-h v -v 

j’ k 1 
. -A 1 s IT,1 jj-hj> ‘9kJj j j j (32) 

where the arguments of the C8 function are ad k = (+$j, 0 j-$j), the decay 

angles of isobar j in its rest frame ‘defined using particle k. Due to 

rotational invariance we can then write 

<q j.-h. 1 .s. IT ‘lj.-A.> = 5 
kJ Ill 21 J 

01 s (wj) 
j j 

Thus the final amplitude is then written as 

f” JM 
= GnJM 

’ j’k’l 
T;“, s Wwj) ‘D:js (wj) 

‘j’lP1 j j j j 

(33) 

(34) 
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I 

where 

C(uj jj Sj Ipj-hj) C(LjSjJ IO pj-hj) 

3 -4’ cf”ppj I ‘Ig-Vl) C(1 js jjj IO J$<-JQ) 

Note we do not include sums over L., S 1 s. as these are specified in 
J j’ j’ J 

n, i.e., we are considering the transiti.on by a very specific intermedi- 

ate state. 

The angles of the Q functions are summarized in Figs. 12 and 14. 

3. The Reduced Matrix Elements 

(a) Initial Decay Matrix Element: T!$W, wj). It is usual to extract from 

this the barrier penetration factors 

which have the correct threshold dependence. 

The charge dependence may also be removed by including the isospin 

Clebsch-Gordan coefficients. Thus 

L.+1/2 
Q. J 

c ID ,j IiIDIi .“(W L‘.) TnlOi’,wj)= ~- )f zz 1 ‘“J ( ) 

. * 
I’, 1: isospin and z component of isosp in for 
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I 

ID D ’ Iz isospin and z component of isospin for the isobar 

I, Iz= 1;+1; total isospin and z-component of isospin . 

It is often common to introduce further Qj dependence through the Blatt 

and Weiskoff barriers 
L. 

BL 
j 
(Qj) . These have the desirable property of 

damping the Qj J factors at large Q.. 
I 

Other parametrizations may be 

used which possess this threshold behaviour, but in all cases we expect 

the ri(W, wj) to be essentially independent of w.. 
J 

All analyses assume 

this to be the case. 

(b) Decay Matrix Element: Dij, (wj) . We can again remove the charge 
j j 

dependence from the decay term 

.jjs 

j j 
(wj) = C jIk,Il,IDII;$) D;js (tij) 

j j 
(37) 

where Ik k * , Iz mospin and z-component of isospin for k 

11, 1: isospin and z-component of isospin for 1 . 

‘j To evaluate Dl s (cJ~) one uses either the Watson final state interaction 
j j 

theorem or a modified Ereit-Wigner . 

Watson: 

6- elastic scattering phase shift at the energy W. 
3 

is a factor added to ensure correct threshold 

behaviour . 

(33) 
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Relativistic Breit-Wigner: 

Yj 

rj(wj) = rj(wO) [ 1 c$$-j) J f-l-b.) u 4 (o’ ) h o 
k 0 qlr(wO) wj 

and w. is the resonance ‘energy. 

Non-relativistic Breit-Wigner: 

D;s (Wj) = IL 
JFGj75 

j j (0 -cd.) Gq OJ - ilTj(wj)/2 

(39) 

(40) 

(41) 

and rj(wj) is defined as above. 

Both of these forms are defined so that in the limit of zero width 

Lim 
I? 0 .-) 

(wj) 1 2 du; = b(w;-a;) 

J 

(42) 

In general the.dependences of T1 and D on the subenergy wj constitute 

the major assumptions and approximations of the isobar model. 

4. Other Isobars 

In the cases in which we are interested, each two body subsystem 

may contain a number of isobars, e.g., in $r’n- we can have p(I=l, J=l) 12 

or E (I=O, J=O) states in either (7,-i 7r-) or (7; n-) . The total amplitude for 

the decay of the state J&I is then given by 

fJM 
‘j’*lrl= n 

c GJMn 
’ jPkP1 

” 
‘j 

Tag s (w, Wj) D1 s (c~)j) 
j j j j 

j 
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i.e., we add all of the amplitudes together coherently. This does result 

in some slight double counting but this has been shown to be small and 

in practice is far less significant than the assumptions within the decay 

matrix elements. 

In making this addition if identical particles are present care has 

to be made in making this addition in order to observe the correct sym- 

metry. This is discussed in the next section. 

B. THE PRESENCE OF TWO OR MORE ISOBARS, ISOSPIN 

DECOMPOSITION AND BOSE SYMMETRY 

We are mainly interested in situations with two or more pions 

present in the final state and hence we require the final amplitude to be 

Bose-symmetric. Furthermore we will concentrate on the reactions 

TN -- m-N (43) 

A - TOUT (44) 

and use these to demonstrate a method of calculation which always 

ensures the correct result. In the following discussion, I explicitly 

demonstrate the Clebsch-Gordan coefficients of Eqs. (36) and (37) and 

derive the necessary factors of &2, etc. , which must be inserted when 

we have identical particles present. 

The isospin decomposition also allows the determination of the same 

partial wave amplitudes in different charge states where the interference 

phenomena are different. In practice this is a valuable point . 
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1. TN - mN 

Consider 

*+p - AT*p 

f-l- -r7rn 

(45) 

(46) 

and decays through intermediate A.n states. 

13 3, 
22 -. $(A1lapl~+ A2f.Ag2>} 

2 
(47) 

Here I use the pion not resonating to label the A state and the decay 

amplitude. The expression is clearly symmetric in nl and ~~~ A1 and 

A2 will contain the kinematical information associated with the decay. 

Now 

(48) 

We next consider the decay of the A and introduce a transition matrix 

element D which contains all the kinematics. 
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and if we write Gi = AiDi we have 

Thus the amplitude for obtaining a R?p final state is then 

g [3G1- 2G2] (5 1) 

Since there are two distinguishable ways of obtaining this and these must 

be added incoherently (1 =n”, 2 = ?). The amplitude for obtaining ,‘,‘n 

is 

--$j [Gl+G2] (52) 

We now have the correct factors of $2 which account for the presence of 

the two identical $ls in the ?n’n final state. 

Similar calculations can be performed for all of the 7r7rN states 

obtained from x*p incident particles and these results are contained in 

Table I. This table includes the isospin decomposition of the incident 

state. 

-I- 33 I7rp>= ‘z-> 
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WW 

7 a. I=O, I=1 Meson Decay into 37r’s 

The other three particle final state so far analysed by the methods 

I describe is the 3n final state. Consider an A1 or A2 (I=l) state decaying 

via the intermediate states 7rp and PZ . Then we can write as above 

lA +- E E1r1tE2*2+ ‘3’3 1 (54) 
$3 

(55) 

Then for 

Ill> = 

Ill> = EO?;t. 

and subsequent p, E decay we obtain 

-I- similar terms for 7r 2’ r3 
1 
I 

+ similar terms for 7r2, 7i3 I 
I 
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Gathering terms together we eventually have 

@k 1 /J J3 A -Bp(2,3) + Bp(3, 1)) + 2AE(BE (293) + Be(3, $1 

+ T;T;< /J3 Ap (- Bp(3, 1) + BP& 2)) + 2.4& (321) + BE(& 2,)/ 

f +;r; ($3 AP (-, B (1,2) + B&2,3)) + 2AE(BE (L2) + BE (293))) p 

- +r;n; /.J3 AP (-Bp(1,2) -t Bp(3, 1)) + 2AeB,(2,3)j 

p (-Bp(2,3) + Bp(1,2)) + 2ACBE(3J)) 

- - +;T; 14-3 Ap (- BP (3,l) + Bp (2,3)) + 2AeBe t&2) /] (57) 

where the arguments of B represent the pions of the intermediate isobar, 

the first labelling the decay. This expression is symmetrical in any pair 

of pion labels because 

B&l, 2) = -Bp(2, 1) 
1 (58) . . 

BE(U) = 9291) j 

We see there are three ways of obtaining 7r’$n- and thus the amplitude 

for obtaining this final state is just J3 times an individual expression. 

Similar calculations can be performed for the other charge states and also 

the I=0 state. These results are summarized in Table II. 

3. Bose Symmetry 

If one now follows the same prescription for calculating the angular 

momentum factors, etc. in the transition matrix element (in the same 

overall co-ordinate system) then Bose symmetry will be automatically 

satisfied, i. e. , we use the formalism described in Section IILA. 
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4. Summarv 

In Tables I, II, and III which summarize the results we associate 

the product of the Clebsch-Gordan coefficients with the pair of particles 

resonating in the intermediate state. This is slightly different from the 

text where we used the particle not resonating as the label. However 

the charge is obvious. Furthermore the subscripts 1, 2, etc., label 

specific charge states. 

C. FORMATION REACTIONS 

In this section we will develope the formalism to deal with reactions c 

a+b --cj+k+l 9% 

We begin with a calculation of the transition amplitudes, then derive 

formulae for all the observable quantities in reactions of type (17) and 

discuss the unpolarized cross section in some detail. Finally we review 

the quantities of physical interest we wish to obtain using such an analysis. 

1. Transition Amclitude 

Suppose the initial beam has polar angles 0, + in co-ordinate system 

S. We then consider the transition matrix element and make an LS partial 

wave decomposition 

S<“JMITI-~;P~P> p aabb 

= (y i”” (q,“” C(LT~,V~, SI,u,, -s) C(LSJI0 I”~-/+,) 

csJ 
M, c”~-P,, t+;T1) 0, -@ SaJMITpIpJMLS> (60) 
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where rotational invariance implies that we can write - 

<nJM ITplpJMLS> = T (6 1) 

It is often convenient to again remove the charge dependence from this 

and also display explicitly some of its kinematical properties 

T;‘(W) 7 
L-l- l/2 

l+-- C(I”lb III;I;) TpJLS(w) (62) 

These isospin Clebsch-Gordan coefficients have been explicitly included 

in Table I. Also note that Eq. (60) does not contain a sum over L, S as 

n implies a specific choice of these. s 

The final amplitude for the process (59) is then given by a coherent 

sum over all intermediate states 

= FJ M (iq2 (E$” c(“apb s 1 pa/-$,) C(LSJ 10 pa-i-$,) 
, s 

GnJM gJ 
CL j’lkP1 M, Pa-C”b 

(~, 8, -~) T,JLsb) TV”, 
‘i s cW,Wj) IDL’s (Wj) 

j j j j 

(63) 

where G nJM is given by (35). It is then convenient to define 
p jcLII*l 

T”~, “j) = Tp JLs~) Tr:s ~~, Wj) 
j j 

(64) 
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It is important to note that c may be removed since 
M 

(65) 

where 

R(a!,/?,r) =.R(IPj,-Qj,-+j) R(+,@,-+) (66) 

2. Transition Amplitude when using a Polarized Target or Beam 

In this case we have an initial co-ordinate system defined when there 

is transverse polarization. If the polar angles of the beam are again 

0, @ in system S, then the initial co-ordinate system will be related by 

an extra rotation o! about the OZ axis of S (S is the co-ordinate system 

obtained by rotation of S through the Euler angles 9,0,-G), i. e. , we 

have 

OXYZ ---c OX'Y'Z' 

OX'Y'Z' j oxyz 

OXYZ - oxyz 

Euler angles +, 0,-Q, 

Euler angles o!, 0, 0 

Euler angles +, 0, o-4 

(67) 

Oxyz is the frame in which the target polarization is defined. Then 

Afin’ = A: e 
-i(rua-Qa 

(68) 

3. Transition Amplitude when-a Final State Particle Decays 

If one of the final particles is a baryon which can undergo weak 

decay, e.g., A -+ p r- then the decay angular distribution will give 

information on the parent baryon polarization. This decay amplitude 

can then be directly introduced into the transition amplitude. 
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Suppose particle j of (59) undergoes weak decay. We express the 

decay matrix in terms of canonical spin states with respect to the helicity 

frame axes of particle j (see Fig. 15), i. e. , the matrix element for 

j- 1+2 (69) 

is written as 

BD 
mlmPj 

= <CT m g m IT I~./J.> 112 2. D JJ 

= c 
BLdsd 

LdSd 

C(cp2Sd lmIm2) C(LdSdaj Ipj-m m) 
PjBm 

YL 
d 

led’ +d) 

(70) 

where 

BLdSd = <CT u L S IT lu.> 12dd D J 
(71) * 

Thus the final transition amplitude becomes 

(72) 

In the case of A decay obtained for instance in the reaction 

K-p - nlr+7r- (73) 

many simplifications occur; Q 2 = m2 = 0 and 

c 
L 

BD = B d 
P.-ml 

C(ldglgj Ipj-ml ml) YLJ ted’ +d) (74) 
mlm2Pj ‘Ed d 

Further if we perform scattering from polarized targets the total transi- 

tion amplitude will be (using (68)) 

Al D =AD 
-Wa-+J Q 

e 
pa%n1 lm2W5 Palm lm2’kPl 

(75) 

- 32 - 



4. Experimental Observables 

In order to simplify this discussion, I will specialize to 

MIBl - B2”2M3 (76) 

where 

If 
B1B2= ‘z , Ml, M2, M3 = 0 

e.g., reactions 

?TN - Nnn 
(77) 

RN - Ann 

We assume the initial polarization is specified’in Oxyz and final baryon 

polarization in the helicity frame (see Fig. 15). The transition amplitudes 

are then given by Eq. (68). 

(a) Unpolarized Cross Sections. The initial density matrix is 

(78) 

and the differential cross section is given by 

10=Tr[A1piATt]=iC IA;12=$FlAp12 
P 

(79) 

(b) Asymmetry from a Polarized Target. In this situation the initial 

density matrix is given by 

/)i=;[l+ p+.c&] 

and the differential cross section is 

Ip=Tr[A’piA”]=IOIIc?;b.~] 

630) 

03 1) 
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where 

I,T; = $ Tr [AYcb A”] (82) 

(c) Final Baryon Polarization in Scattering from an Unpolarized Target. 

‘In this situation the final baryon density matrix is given by 

*op 
f = I;AIAT~ 

2 

Then the polarization, PL, of B2 in a direction L is given by 

IoPL = iTr[,tAltcL] 

(83) 

(84) 

(d) Depolarization Tensor, i. e. , Final Polarization from a Polarized 

Target. If P 
L j 

is the polarization of particle j in direction L then 

‘Lj = Tr pfoLj [1 1 (85) 

and we obtain 

I P 
P Lj 

= Tr Ato A1 
C 

* t o 
L j 1 

- ~.~ ‘ib Dib 
J i , Lj 1 

where 

These results are summarized in Table IV. 

We now turn to a detailed discussion of the scattering from an 

unpolarized incident state. 
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5. The Differential Cross Section from an Unpolarized Incident State 

In the appendix I give the phase space which corresponds to our 

normalization of states and this leads to the following differential cross 

section for reaction (59) 

T2 1 
“=wp (20a+1)(2crb+1) c1 c IAP12dp (88) 

where AC1 is given by Eq: (63). 

(a) Conservation of Parity. The variety of terms in this sum can be 

reduced by understanding the effects of parity. This is equivalent to 

setting p - -p in (6 3). We write 

An ’ j 
c”a%‘-l j’k’ll 

= g; Tn Dl s 
j j 

(89) 

and it can be shown (Cashmore et al., 1972) that 

For any specific problem this reduces the number of independent g:. In 

the case of reaction (76) we have 

n g+ = t-11 
Pf-fLi n * 

(P& (9 1) 

where pi and pf are the helicities of the incident and final baryons. Since 

T” is independent of ~1 we finally obtain in this case 

An -cl = (-1) 
~f+l n * jj 

gP Tn D1 s 
j j 

(92) 

(b) The Cross Section due to Isobars in the (Id) system and the Relation 

to Two Body Scattering. We first calculate the cross section due to isobars 
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in the (kl) system and then relate this to the equivalent expressions for 

stable two body final states through the zero width approximation for 

these isobars. 

Using the fact that we can integrate over a! (the angle of rotation 

about the incident beam) we can write 

rqk&- 
Q=+ &? 

j ’ 
dcosej dcos@ da (93) 

The total cross section is then 

u =I Ii 2 &;g;*X”(W, wj) Xn*(W, c,jj) $ ,o; dcos ej dcos 0 d4, 
WP ~1 nm j 

(94) 

where 

C= 
CL 

(2ua+ 1):2ub f 1) F 

and 

x”~,wj) = T”(W, ~j) Do’, (~j) . 
j j 

The above expression can then be reduced to give (Cashmore et al., 1972) -- 

rJ= L c (2J+L 
P2 n 

(2ua + 1) (2Ub + 1) / 
IX”(K wj) I 2 do; (95) 

where we see that isobars of different quantum numbers in the (kl) system 

do not interfere. 

- 36 - 



j. 
If we now use Breit-Wigner form for DIJs (uj) and take the zero 

j j 
width limit the cross section becomes 

J. 
(-JCL 

c 
254-l 

p2 n (2aa + ‘) @-$ * l) tW 

which is the usual form in two body scattering. 

Finally we note that .our forms of the kinematical factors (see 

Eqs. (72) and (62)) mean that the total cross section has the correct 

threshold dependence, i , e e , 

1 (TCC- 2P 
2L+I Q2Lj+l 

P j 

6. The Quantities of Physical Interest 

The object of analysing reaction (59) is 

(i) to measure the partial wave amplitudes 7n where 

Tn = T;fL$) Ts”, s (W, wj) 
j j 

L:+1/2 
L-t-1/2 Qi J 

,P 
&w Jaw 

ryw) 

and we define 

cm 

(98) 

n 7 = TJLs p f-w 7;; s (W c-w 
j j 

The variation of this quantity will then indicate the presence of resonances 

(together with their decay channels) and its values can be compared. with 

theoretical predictions. 
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(ii) to measure D Jj (w.) in some specific cases. This has been used 
1.j J 

to try to determine the I=O(rr) phase shifts at low energies, a difficult 

thing to do by other techniques. Unfortunately the results are very 

dependent on the form of the model and there are some problems of 

interpretation making this a much less rewarding application. 

In the rest of these lectures I will concentrate on (i) as these are 

the most reliable results of this type of analysis and are providing the 

most excitement in this area of physics. 

I want finally in this section to list the isobar states that we have L 

considered in our analysis of- 

TN - n?rN WO) 

for EC m < 2000 MeV together with their partial waves. We have so 
. . 

far only considered the prominent A, p and E (I=0 7r1r7i) final state inter- 

actions and their partial waves are listed in Table V, where the notation 

isL. L in’ OUt, 21, 2J. One can easily see how rapidly the number of 

partial waves grows. Furthermore certain aspects of the data already 

indicate that an improvement will be obtained by inclusion of P1l, DI3 

and F15 isobars particularly in the r’n+n final state. 

D. PRODUCTION REACTIONS 

In these types of reactions we are concerned with three particle 

subsystems in final states containing four or more particles, i.e., 

reactions 

a+b-c+X 

L j+k+l (101) 
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of which there are many examples at present being studied, e.g., 

r+P - P + (A+$‘A3) 

KP -P+ (Q,L) 

r,K,p -t p - r,K,p + N* 

These are sketched in Fig. 16. 

. 

PW 

(103) 

(104) 

The variables we require to define the particles a, b and c have 

already been given at the beginning of Section III. We do however have 

to introduce a new co-ordinate system S in which to describe the pro- 

duction properties of the state X. S will be related to the other particles 

a, b and c and will reflect our prejudices about the type of production 

process occurring, e. g. , 

(i) S will be the Gottfried-Jackson system if we are interested in 

one particle exchange (see Fig. 17). OZ’ is defined as F$r and OY* by 

% * Gut in the jkl rest system. 

(ii) S’ will be the helicity frame if we are concerned with S-channel 

helicity conservation or absorption model predictions. In this case OZ’ 

is defined as -F out in the jkl system. OY1 has the previous definition. 

1. Amplitude for Production of X and its Subsequent Decav 

We assume that X is produced in an angular momentum substate 

InJM> with respect to S . Let the amplitude for the production of this 

state together with a final helicity EC, of particle c from particles a and b 

be 

(105) 

- 39 - 



where W is the mass of the three particle system, t is the four-momentum 

transfer to the three particle system and E is the total c. m. energy (i.e., 

in the ab system). We also include n in the state definition at this point 

to account for the fact that different channels of the same JPM may be 

produced with different helicity changes at the other vertex. In general, 

I will not include the total c. m. energy E in the arguments of R but it 

should always be understood to be there. 

In order to describe the subsequent decay of X we require the 

following transition matrix element 

A nJPm 
PjP@l = 

= 

S’nQjpjQk?k Q p ITI JPMn>S, 1 1 

= 

c SCQ jp jQpkQ1pl I T 1 JPmn >s S<JPmn i JPMn z~, (106) 
m 

c m S<‘j’l jQIC% 1 1 Q P ITI JPmn>s gfl,ta, P,Y) (107) 

where a$, y are the Euler angles defining the transformation from S to 

S. We have already calculated the first factor in this sum - it is just 

the PJM of Section III.A. Thus we can write 
p j%‘l 

AnJPM = 
c G nJm nJ ‘j 

CljClkFll m CljClk~l T1 L s ~, Wj) D1 s (Wj) ~~lM(~, P ,Y) W-3) j j j j 

= FnJM nJ 

cLj’l?l 
T1 L s (w, wj) “:‘s (wj) PW 

j j j j 

Note that I have just written the amplitude for reaching the final state via 

one intermediate isobar state. The total amplitude is again obtained by 

coherently adding the terms due to other isobars ensuring that the correct 
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-1 
t. 

.; 

symmetry properties are obtained. The forms of T:k-S and Jj 

j j 
D1 s twj) 

j j 
have been discussed in Section III. A. 

2. Properties of Production and Decay Amplitudes under Parity 

(a) Production Amplitude: RnJM 
ILabpc’ 

Consider a co-ordinate system 

S in which the Z axis is defined by a polar vector and the Y axis by an 

axial vector, e.g. , the Gottfried-Jackson system as defined in Fig. 17. 

Then 

, 

IP-‘PTP-‘PI+ II, > 

qc’“c capa $i’$, 

=<~JM$- 

aa-~a+ab-,$,+(Tc-~c 

-4,-i, 
‘~,77$-,,k1) 

-qa-pa -qb-y-b ’ 
“J 

tihere P T P -1 = T and P$ JM = q J$ Jfil, i.e., q J is the parity of state X. 

If we now use an operator 0 which produces a rotation r about the Y 

axis we have 

‘@JM = td1JJ-"61~-M 

N.B. this assumes the Z-axis is in the production plane. 

Thus eventually we have 

RJM = RJ-M “a-~awb-i$Nc-~c 

cla%clc 
+a-q,-pcqJ~a~b~c(-l) t-u J-M (110) 
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(b) Decay Amplitude: AnJM e 
’ j’k’l 

In this case the properties under parity 

are most easily seen by setting p -) -p and following a similar calculation 

to that for the formation reaction (Cashmore et al. , 1972). The result 

we obtain is that 

nJ-M l.+L. 
A -I-1 j-&-P1 = (-l)J-M (-1) J J (-1) ‘+j+clj~Ok~~k+ol+cl FnJM [ 1 * Jn 

cL jFLk’l 
T1 L S (x, wj) ‘j 

j j 
D1 s (~j) 

j j 

(111) 

3. The Cross Section and its Properties for the Process a+b Lc+jfk+l 

The differential cross section for the process is then given as 

da, dcos ,8 dy 

(112) 

i.e., the production amplitude R is a function of W (the mass of the inter- 

mediate system) and t, while A is a well defined function of W, CI, p, y, ~4 

and w;, the parameters necessary to describe the final three particle 

state. 

Note here we have five variables describing the decay whereas in the 

formation reaction (for unpolarized incident particles) we only require 

four. This is due to the fact that a, b and c define very specifically the 

initial co-ordinate frame (just as a polarized target would), 

- 42 - 



Thus if we consider the situation in which we do ndt observe the 

polarizations of the final particles in scattering from an unpolarized 

target we have 

(115) 

where we have defined an unnormalized density matrix 

c linJM 
Rn’JfM’* 

Pa%Pc cLa%pc pa%pc 

This density matrix possesses 

(i) the usual property of hermi.ticity 

(ii) the property from conservation of parity of 

g$,$, = ?Jn?-/,, (-l)J*J'-"-M' pmGI-M, 

(116) 

(117). 

(118) 

(11% 
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4. Structure of Cross Section 

We can now demonstrate some aspects of the structure of these 

cross sections which will lead us to well known results. 

We first display explicitly the (Y, /?, y dependence of the distributions 

d5u 0~ c cBJ (120) 
m,ml 

mM(a, fi,Y) g;‘*M, ta, ,%y b ’ ’ 

c 1 
, i 

The only terms containing 
(Y, p, y, M and Ml 

If we first integrate over Q we obtain the result that m-m’, i. e. , the 

dependence of the differential cross section on p and Y is given by 

d4cT Oc c Pgg/p 
nn’ 

MM’ 

a 
c g;l,to, P,Y) gf;-M, (O,/&y)(-l)m-M’ (W 
ml’ 

We can now use the result that 

GJ~M(O,P,Y) ~~m-I~l(O,P,y) = c C(J, J’Llm,-m) C(JJ’LIM,-M’) 
L 

= c C(J, J’L Im, -m) C(J J’L IM, -31’) 
L 

Yy-“(AY) 

(122) 

to display the (P,r) dependence of the cross section (12i), i. e. , the 

presence of spherical harmonics YT with m # 0 immediately implies the 
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presence of off diagonal terms in the density matrix and furthermore the 

maximum value of L can be a guide to the maximum J present (I;< 2Jm,). - 

If we now integrate over CV, p and y (i. e., we just look at the Dalitz 

plot population) we can use the orthogonality properties of the CB function 

to write 

M=M 

(123) 

JJ Thus the Dalitz plot population depends only on pMM and does not contain 

any terms corresponding to interferences between states which differ in 

J or M. Moreover since M does not appear within the parentheses we 

find that the Dalitz plot population is independent of M, the magnetic 

substate in which the state is initially produced. This result is expected 

since by integrating over o, ,O, and y we have effectively destroyed any 

knowledge of the initial orientation. 

The other result we would like to demonstrate is that waves of 

different parity do not interfere in the Dalitx plot distribution. To do this 

consider the interference of an isobar of @ye j with one of type k. We 

already know th.at we only have to consider states of the same J and M, 
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and thus the general term is 

+ P?;mM A-+ 
nJ-M An’J-M * 

I 
da, dcos /3 dy 

c1 c 

-f- WA- nJ-M(j) AEJ-M *(k) 1 dcr dcos /3 dr (124) 
P P 

But we know that 

AnJM. 
~ (J) AEJM*(k) da dcos ,8 e = AJnn’(j, k) (125) 

I-L 

i.e., independent of M 

Thus ifq=-q’, i.e., waves of opposite parity 

w-9 

(127) 
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Thus we have the well known results that 

(i) states of different J do not interfere in the Dalitz plot 

(ii) states of different parity do not interfere in the Dalitz plot 

(iii) the Dalitz plot density is independent of M, the magnetic 

substate in which a state is produced. 

5 c Application of Analysis to (K) n-!-N - (K) n-k ~-t- r+ N 

Here we want specifically to consider the ease one of the incident 

particles has spin O- and is transformed into a three body state, i.e., 

production of the AI, AZ, etc. We can write the cross section 

dcr a I 2 
RnJn$W, t) AnJMW, Q, P, Y, 04, w; ) (128) 

where pi and pf are the initial and final proton helicities and p.=p =p =O. 
J k 1 

As before we can define a density matrix 

(129) 

Clearly the object of any anaiysl ‘s is to determine the elements of the 

density matrix 

dc a c 
m-l’ 

PMMf 
AnJM An1JiM’ * 

nJM 
n’JIM1 

(130) 
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This equation will always hold even if we bin the data in W and t, i. e. , 

we integrate over certain regions 

In Table VI I have listed all the waves one might use in studying Al, A2 

decays considering only well known strong final state interactions 

A1,A2 - n.e 

- *P 
(132) 

For the strange particles we have 

Q,K*(1400) - KE , ~ (Kd S-wave 
(133) 

-+I , 7~ K* 

and there will be twice the number of amplitudes to consider. If one wishes 

to consider higher mass states, the A3 and L, then we have to include 

amplitudes corresponding to decay into pseudoscalar and tensor mesons. 

Even if we restrict ourselves to J$2 we realise that we have an enormous 

density matrix to determine, e. g. , a 29 x 29 density matrix. This will 

contain 841 complex elements which parity and hermiticily reduce to 

approximately 841 real numbers. These must also satisfy certain con- 

straints , e. g. , 

lpij12 5 Pii Pjj 

The imposition of these constraints is not entirely trivial and the 

, task is one of certain difficulty! Instead one makes simplifying 
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assumptions. These fall into turo classes 

(i) Resonance approximation - here one writes 

Pg-L’ = pg;, cn cn’* (134 

e.g., 

1+ - “P have the same density matrix just different 

- 7rITE i couplings to the final states . 

Furthermore these couplings are assumed to be independent of M, i.e., 

1’ M= 1, l+ M= 0 decays have the same C. This immediately reduces 

the number of parameters to (17 x 17) f 9 x 2 N 300. This is the approach 

followed by the Illinois group. 

(ii) One parametrizes the density matrix in terms of the production 

amplitudes 

ml’ nJM 
PMM’=~ R 

nlJIM1 * 
(135) 

and then attempts to determine the R nJM . This has the advantage that we 

now only have 29 complex numbers to determine (58, if we allow both 

spin flip terms and spin-nonflip terms at the proton vertex) and the rela- 

tions amongst density matrix elements arc automatically ensured. EIow- 

ever there is a disadvantage in that we have to assume that R nJM are 

constant in any bin we consider or at least have the same t dependence. 

In reality 

RnJM Rnl J’M’ * dW dt # RnJMp,f) RnlJ”~‘m,?) AWAt 

(136) 
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Even after these simplifications the number of parameters remains 

large and in order to make the problem tractable it is then essential to 

choose a subset of the partial waves. This is done in all analyses so far. 

In using the last approach it is essential to realise that we really 

only determine the density matrix, the production amplitudes although 

having a physical foundation at this point only serve as a parametrization. 

Of course with more polarization experiments one will eventually be in a 

position to measure these. 

6. Results OF These Analyses L 

I want finally to list the results that one usually sees quoted from 

these analyses. 

(i) The cross section in a given J 
P state is given by 

aJp = 
J 

c 
2 

nmv 
/I;;~, AnJM AnlJM * da! dcos p dy dwl dw; 

nn’ 

/ c ml = 
M PMM 

AnJMAnV JM * da! dcos /3 dy dw; dw; (137) 

Note that we retain n, n’ even though J=J’, P=P’, M=M’ since these still 

contain the different p0ssibl.e decay channels, e. g. ) 

I., bs 

1+ - ?rp - s-wave 
t 

- 7rE - p-wave I 

(ii) The cross section for a given Jp and a given decay channel 

nJ P 
o- = 

/ 
c p;M 1 AnJM 12da!dcospdy 
M 

(138) 
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Note cJ 
P P 

# cno nJ because of the presence of interference terms 

between different n, e. g. , 

1+ --* 7rp - s-wave 
1 

- m - d-wave I 

(iii) Normalized density matrix 

uw 

PP 
Of course within any Jp state CM p$i # 1 but these can be suitably 

renormalized. 

(iv) The complex coupling constants Cn. As we will see the phases 

of these are important and from the C” can be deduced the branching func- 

tions for resonances. 

7. Application to (K, p)n -t N - K(n) + nnN 

The next important application of this type of analysis will be to those 

types of reactions drawn schematically in Fig. 1Gb. I just want to remark 

at this point that for K, r induced reactions the problem is somewhat 

simpler. Since these particles are spinless we do not have to consider 

spin flip terms at this vertex. We do of course have to consider the 

transition from protons of different helicity to the various n, Jp, .M states. 

However as we have seen these amplitudes are simply related by parity 

fnJM = fnJ-M 
-I” Tj (-1) (-1) J-M 
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where -,+ are the initial helicities of the proton. For pp interactions 

this simplification clearly does not occur . 

8. Application to Polarized Target Experiments 

In this case it is most convenient to consider the helicity system. If 

the target proton is transversely polarized then this will define an initial 
. 

co-ordinate system St . The co-ordinate system S will then be related 

to St1 by Euler angles 0, - 0 
P’ -+P 

where 6 and @ 
P P 

are production angles 

of the final multiparticle system with respect to 9’ . This is illustrated 

in Fig. 18. Note Qp is defined for a given W and t . We then have 
c 

amplitudes 

(141) 

where pi is the initial proton helicity . 

We can then repeat the calculations of Section III. C in order to obtain 

expressions for the asymmetries from polarized targets, the polarization 

of the final recoil nucleon and the depolarization tensor of the nucleon. 

We will again obtain Table IV with the charge CY - -+ . It is also 
P 

important to remember that the order of the proton helicitics is reversed’ 

in the table. 

9. St~~~turc of the Production Amplitude R ;f (x7, t) 
C 

It is often convenient to extract the minimum angular momentum 

structure which must exist in this amplitude. Again the calculation is 
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most easily performed in the helicity system in which we have 

R%b 
nJM 0% t) = S,<nJM qcpcl TI apa y+, +, (142) 

where St is a co-ordinate system defined with respect to the 

incident particles. If the production angle is Op and the initial state 

unpolarized we have 

RnJM 

53% 
(w>v - c 1’ 

(0, -ep,o) R;c 

-c 
r dil-, c~-+b (0, -ep, ?> q-y; 

C 
(143) 

where r is the total angular momentum. For small BP we can write 

di!l-p c’ -?I 

(OJ-@ sin ($j M-PC+pb’(144, 
(0, -Bp,O) - cos 2 

If M-p, = -pb (no helicily flip) 

If M-P, = ++,+I 
I 
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Now since 

t = (Ec-Eb)2 - (Fc-q.J2 

= mf-t-m 2 b - 2EbEc + 2pbpc cos 8 
P 

t min. = mc+rn b” - 2EbEc + 2PbPc 

t - tmin = 2pbpc (cos BP - 1) 

= 2sp, 2 sin2 BP/2 , 

sin ep/2 - (t - tmin) l/2 (148) 

We have the well known result that amplitudes with a net helicity flip of 

A behave as - (t - tmin)“2. This minimum t dependence can then be 

displayed explicitly and we then have to determine the R1 
nJM 

hh’ 

If such a 

technique is employed then the approximations used in the parametrization 

of the density matrix (see Eq. (136)) can be improved. 

Of course this will not necessarily be the tot& t-dependence of the 

amplitude but it is the mini.mum structure required by angular momentum 

considerations, 

E. FITTING THE EXF’ElU3~ENTAL DATA 

In fitting the experimental data, either from formation or production 

reactions, it is quite common to integrate over some of the variables, I 

i.e., one fits projections of the data such as the Dalitz pl.ot population. 

However the best results will be obtained by making maximum use of the 

correlations that exist in the 4 (formation) or 5 (production) dimension 
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variable spaces. This is most easily done by the maximum likelihood 

technique. One constructs a likelihood function 

N 
g= n @(E Yq (149) 

i=l 

where zi is the vector corresponding to the ith event in the multi- 

dimensional space, 7 is the vector of partial wave amplitudes and 

cr( F, zi) is the probability (cross section) for such an event as calculated 

in Sections III.A, III. C, and 1II.D. Then log LX? is maximized by varying 

the parameters 7. 

Finally a check is usually made that these set of amplitudes F corre- 

spond to a good fit to the data by calculating the x2 for fits to the pro- 

jections. 

The results I will quote in Sections IV and V are obtained using this 

, . 
;; 

technique. 
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IV. THE RESULTS OBTAINED FROM FORMATION EXPERIMENT 

In this section I will attempt to summarize the situation that exists 

in the analysis of formation experiments. The results at tltis time bear 

mainly on the classification of resonance states and on understanding of 

their various decays within these classification schemes, The major 

results have come from analyses (Herndon et al., 19’72) of -- 

but significant measurements have been made in the study of (Mast et al., 

1972) 

K-P -Ann (15 1) 

and (Bland et al. , 1969) 

K+P - KnN (152) 

Before beginning detail discussion of each set of results I would like 

briefly to review the motivations, some of which I have already noted in 

Section I, for pursuing such a study. 

(a) Identification cf Resonant States and Classification in Supermultiplets 

In the past few years the existence of many resonance states has been 

claimed from the partial wave analysis of two body reactions 

-4 I- 
TP -rP 

up -77--p, nPn 
I = l/2 and I = 3/2 N” (153) 

, 
K-p - K-p, Eon 

I=O,l Y” (154) 
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Many of these states are very inelastic. Furthermore the identifi- 

cation of low spin resonances tends to be difficult in the presence of high 

spin states. For example in the resonance region of nN scattering at 

E c. m. N 1600 - 1700 MeV there are two spin 5/2 resonances, the F15 

and D15. However only after extended analysis were the lower spin states 

S31, Sll, D33 finally identified. Both of these comments imply the need 

to study inelastic reactions. The first because this is where the reso- 

nances may be prolifically found and the second because momenta are on 

average lower and thus higher angular momentum states are expected to 

be suppressed (L N qR, with R N 1 fermi, is smaller). Indeed the Y* 

situation would be in very poor shape were it not for the analyses of the 

inelastic two body final states An, &r . Since the cross sections for 7;nN 

and ATT, Grr, l?rN are large one hopes for further improvements from 

study of these states. 

With the identification of many of these states classification within 

supermultiplets becomes possible. We are all familiar with the SU(3) 

classification of states into singlets, octets and decuplets. Of course 

there are many other irreducible representations of SU(3) but these are 

the ones predicted by simple yunrl; models (qqq for baryons and qc for 

mesons). For N* state with a given Jp all the other members of the 

octet must exist, just as for a A state all the other decuplet members 

must be present. At this point SU(3) classification and the quark model. 

works surprisingly well - many octets 1- 3- 1- 5- 5f z , 2 , 5 , T , 2 
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decuplets ( 3+ A 
2 ’ 

7+ 
z 1 are almost complete. The analysis of reactions 

KN - KN, KnN (155) 

if they demonstrated the exir:tence of Z*‘s (S=+l baryon resonances) 

could be fatal to simple quark. models (requiring qqqqi) and allow myriad 

of other resonant states. However it is possible #at such states might be 

dynamical in origin thus allowing the quark model a reprieve. 

Another highly successflll symmetry scheme is that of SU(6) x O(3) 

( SU(3) x SU(2) x O(3) of the qu;Lrk states) (Dalitz, 1969; Greenberg, 1969). 

This attempts to-group together known states of different JP into yet 

larger multiplets. Of cours(.: fewer of these supermultiplets are identified 

as they contain more resonant states. Again the most popular model for 

baryons is the L excitation s,ymmetric quark model of which the 56, L-O [ --+I, * 

[70, LY], [ 56, L=2 +] multif,letS appear on a sure footing. 

However many states still. need to be identified and the analysis of the 

inelastic reactions should provide the information with which to confirm 

or confound these schemes.. 

(b) Couplings to Decay Char~!:c:ls 

The success of the clas::llication schemes suggests that we might 

attempt to apply the same sy,l;metry groups to the coupling constants. The 

application of SU(3) to the dc:r:ays 

N*, A -NN~ 

‘1” Y* 0’ 1 -AT, Cc, ilN 
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has already been discussed exhaustively by many authors (Levi S&G, 

1969; Plane et al., 1970) . The undoubted success is summarized in 

Fig, 19 where the agreement is perfect (the one discrepancy has later 

been resolved (Plane et al. , 1970)). 

With the apparent success of SU(6) classification schemes one would 

like to apply this symmetry group to the decays as well (Faiman, 1971; 

Faiman and Plane, 1972). This means that we can now relate 

N* - NT and N* - AK 

(since the N and A belong to the same SU(6) multiplet) as well as the 

decays of different Jp states. 
c 

Furthermore since the p and r reside 

within the same 35 of SU(6) we have relations for N* - Np decays. It is - 

immediately apparent that one needs to analyse the n7rN final states and 

with successful analysis of Rr7r, Z 7r7rTT, E7rN one could again make the 

SU(3) tests for 

N* - 7rA 

q,q -+ 7iY;1(1385) , etc. 

The measurement of these decay couplings is clearly the next step 

in the developement of our understanding of the resonance region, 

(c) Multichannel Analyses 

If one can obtain a description of the inelastic states (i. e., the three 

body states for riN) for E < 2000 MeV we will essentially have all the infor- 

mation possible on the TN interaction, In any analysis we will be able to 

exploit the constraints of unitarity to the maximum effect. This should 

allow us to give not only resonance parameters but the complete analytic 
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structure of the T-matrix. This will then be a sensitive test of any 

dynamical theory of resonances just as the coupling constants described 

in (b) are a fundamental test of the symmetry schemes. 

(d) Dynamical Results 

With the advent of inelastic partial wave amplitudes it will be possible 

to construct finite energy sum rules relating the low and high energy be- 

haviour of the scattering ‘amplitudes, as was done in nN scattering. This 

should allow a new study of duality in a different set of reactions. 

Clearly I have not been exhaustive in listing all the motivations but 

these few emphasize the great importance of this type of analysis. 

A. TN - r?rN 

This reaction has been extensively studied by the SLAC/LBL collabor- 

ation (Herndon et al. , 1972; Cashmore, 1973) and many of its results are -- 

confirmed by or consistent with other analyses (Bowler and Cashmore, 

1970; Chinowslq: et al., 1970; DeBeer et al., 1969a; 1969b; Brody et al., -- 

1971; Mehtani et al; , 19 72). I will concentrate on the results of this -- 

analysis for a number of reasons. 

(i) It spans the c. m. energy range 1300 < E < 2000 except for a 

100 MeV gap 1540 < E < lG50 where the dnk is not yet available for 

analysis. 

(ii) It utilizes the dnta in the most efficient manner mnking simul- 

taneous maximum likelihood fits to the three major channels at each 

energy 
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-0 7r-p - 7r 7T p 057) 
+ +o ?Tp-7TlTp (158) 

(iii) Excellent agreement with the inelastic cross sections predicted 

by elastic phase shift analyses (EPSA). 

(iv) Continuous solutions have been identified throughout the energy 

range from the independent solutions at each energy. This allows the 

presentation of reliable Argand diagrams for the first time. 

(v) The analysis is of the type described in Section III. C the inter- 

mediate states considered being 

- NP S(the total Np intrinsic spin) = l/2 or 3/2 

denoted as p1 or p3 

The results are presented as partial wave amplitudes in an LS 

representation of the T matrix. The energies and the data considered 

are listed in Table’VII where its lack of data from 1540 to 1650 is par- 

ticularly conspicuous. 

(vi) The fits to the experimental data are of good equality although 

they deteriorate at the higher energies. As can be seen in Fig. 20, a 

4-D representation of the fit to $-n-n at 1690 MeV, the enormous varia- 

tions of structure are extremely well reproduced. Furthermore the 

partial wave amplitudes make excellent predictions of the 7r07ron cross 

section as demonstrated in Fig. 21. 
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1. Description of Partial Wave Amplitudes 

Before showing the Argand diagrams of the T matrix elements leading 

to inelastic channels I have to emphasize one point. In analysing inelastic 

reactions at a given energy E the relative phases of the individual partial 

waves are only determined and not the absolute phase (a distinct difference 

from elastic phase shift, analyses - there one essentially has the unscat- 

tered wave to define the absolute phase). Thus in order to present 

Argand diagrams it is necessary to specify the absolute phase at each 

energy (i.e., one free parameter for all waves, since their relative 

position is fixed). This has been done by using K-matrix fits to the Pll, 

D15 and F15, F35 waves in the low, middle and high energy regions of 

the data. Now unfortunately the absence of data for 1540 < E < 1650 

makes it difficult to be certain of the correct continuity. Indeed the 

presence of two marginally different high energy solutions indicates that 

it would be possible to obtain radically different continuity through this 

region. I stress this point as it is of crucial significance in the compari- 

son with theory at the present time; The Argand diagrams I will show 

correspond to one solution (A). Solution B diEfers qualitatively in Pll 

waves at the higher energies but at lower energi.es (< 1540) it is possible 

that the partial wave amplitudes may be rotated by 180’. I will not discuss 

solution B as the work on it is far from complete,except to point out the 

changes of interpretation it would produce. Of course this would be 

unnecessary had the data in the ‘gap’ been analysed! 
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(a) 1=1/Z States. In Fig. 22 are the Argand diagrams of all the 1=1/2 

waves determined in the analysis. The figures contain a great deal of 

information and I will only point out the most important and striking 

features. 

(i) The considerable motion in the Argand diagrams is not sur- 

prising, essentially all the structure is associated with the existence 

of known resonance states. 

(ii) The following resonant states are clearly observed (the notation 

is L, L’, 21, 25,where L is the incoming orbital angular momentum, L’ 

the final state orbital angular momentum, I the isotopic spin, and J the 

total angular momentum) 

s11(1700) in Npl(SS11) and NE (SPll) 

Pll(1470) 

Pll(- 1780) 
in nA(DS13 and DD13) and Np3(DS13) (see Fig. 23) 

D13(1520) in nA(DS13 and DD13) and Np3(DSl3) (see Fig. 24) 

D15 (1680) in rA(DD15) 

F15(1680) in nA(FP15), Np3(FP15), Ne(FD15) (see Fig. 25) 

P13(- 1860) in Npl(PP13) 

(iii) D13(1700): This state which has been hinted at in EPSA is definitely 

present in this analysis (see Fig. 24) decaying strongly into ~A(Ds13) and 

Ne(DP13). This state has long been required to complete the S=O members 

of the [70, 1-1 supermultiplet of negative baryon states. 

(iv) Strong Np couplings are observed for the P13(1860), D13(1520) 

and F15(1690) resonances. This is not surprising as the last two 
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. . . 
FI 

resonances are strongly seen in photoproduction and application of VDM 

would imply this result. 

(v) As can be seen in Figs. 23, 24 and 25 the agreement with the 

EPSA predictions is excellent. 

(b) 1=3/2 States. In Fig. 26 are the Argand diagrams of the 1=3/2 waves. 

(i) The following resonances can be clearly seen 

Although only the upper 

S31(1600) in rA(SD31) and Np1(SS31) part is observed (since 

D33(1670) in ~rA(Ds33) E > 1650 in our c. m.. 

analysis) 

F35 (1890) in rA(FF35) and Np3(FP35) (see Fig. 27) 

F37(1930) in nA(FF37) and Np3(FF37) 

(ii) There is no evidence for the existence of a P33 resonant state 

within the energy range of the analysis (see Fig. 28). 

(iii) Again the N~J couplings are not surprising as these resonances 

are strongly excited in photoproduction. 

(c) Further Comments. There are some problems in the analysis which 

can be used as a guide to the physics which may be present. 

(i) The ~‘7r+n final state is badly fitted in the anal.ysis. This is not 

surprising as the only intermediate states which may lead to this channel 

are XA states and from inspection of the Ir’n mass projection.s it is clear 

that N* isobars (Pll, D13, F15) may be present. The absence of these 

states in the analysis probably also accounts for the inability to reach the 

EPSA predictions for the P31 and D35 waves (7r(F15) is an S-wave and 
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n(D13) in a P-wave would be derived from D35 whereas n(P11) in an 

S-wave would come from. P3 1). 

(ii) The deterioration of the fits at higher energies is generally 

associated with being unable to fit the peripheral nucleon. This probably 

indicates the necessity of including n-exchange in the production of the 

No final state, so that higher partial waves are generated. 

2. Comparison with Theory 

(a) Classifications. The observation of the D13 resonance at 1700 MeV 

completes the [70, 1-l supermultiplet of baryon states. However the 

absence of any P33 states is embarassing. One such state is required to 

complete the [56, L=2+] while another is required as a partner of the 

Roper Pll(1470) resonance if this is classified within a radial excitation 

of the [56, L=o+] (Dalitz, 1969; Greenberg, 1969; Feynman et al., 1970). 

(b) Decays. This area has seen most recent activity. In Fig. 29 I 

have drawn the arrows which correspond to the sign of the couplings of 

the resonances observed in solution A of the nnN analysis. Should solu- 

tion I3 be satisfactory i.t would imply changes of sign for the lower Pll 

and D13 states (as indicated by dashed arrows). To emphasize this 

problem I have also separated the low and high energy pa.rts of the 

analysis, The predictions for these reactions have been derived from 

two directions 

- Phenomenological analysis of baryon decays assuming a broken 

form of SU(6)W symmetry (Faiman, 1971; Daiman and Plane, 1972; 

Rosner, 1972; Faiman and Rosner, 1973) 
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- Application of results related to Melosh transfcrmations (Melosh, 

1973) assuming SU(6)W classification of the baryon states. 

But both lead to essentially the same results. However the second 

approach does give some indication of why the broken form of SU(6)W 

appears, 

These theories can. be used to predict numerical results but one 

expects these to be less satisfactory than the prediction of signs, since 

they are more susceptible tc the details rather than the overall structure. 

Thus I will concentrate on the prediction and comparison of the signs. 

(i) Phenomenological analysis. If one assumes SU(6)W invariance then 

the decays of all members of one multiplet into the members of another 

multiplet are related, i. e. , 

<H’A’ ITIH $,M,hM> N 
II 
SU(6)W Clebsch-Gordan coefficient 1 

x [SU(3) Clebsch-Gordan coefficient] 

x [SU(2) isospin Clebsch-Gordan coefficient] 

X [SU(2) W spin Clebsch-Gordan coefficient] 

X <IITRll > (159) 

where < llTR1 > is a reduced helicity matrix element. This is just the 

Wigner-Eckart theorem. Unfortunately it is already clear that this 

symmetry must be broken (e. g. , for mesons it predicts that in B - rw 

the (,J should have h=O whereas in practice it clearly has h=l. In photo- 

production of n’s it predicts the helicity 3/2 couplings of the D13 t.o be 

zero and these are the dominant couplings. ) 
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As we see Eq. (159) implies specific relations between different 

helicity matrix elements. As we have seen in Sections 1II.A and 1II.C 

this means specific relations must exist between the pair of waves 

allowed in decays to rA. Thus the manner in which the symmetry is 

broken is to recast (159) into LS partial wave amplitudes and then 

assume that these are entirely decoupled, i.e., one uses all the Clebsch- 

Gordan coefficients of (159) for each partial wave but does not apply the 

relation between the two waves contained in (159) (Faiman and Plane, 

1972; Faiman and Rosner, 1973). This is known as L-broken SU(6)w. 

Applying Eq. (159) twice once for the coupling to the initial state 

and once for the outgoing state allows a calculation of the sign of the 

amplitude in e.g., 

TN--C ?rA (160) 

In Fig. 30 I give clock diagrams (coupling signs) corresponding to the 

predictions (Faiman and R.osner , 1973) (for comparison with the SLAC/ 

LBL (Herndon et al. , 1972) results all 1=3/2 predictions should be multi- 

plied by (-1) (Cashmore et al., -- 1972)). One further point should bc ex- 

plaincd. SU(G)W sign means that the two orbital angular momentum states 

have the sign predicted by SU(G)W whereas “anti SU(G),l’ means that the 

two amplitudes have exactly the opposite relative sign compared to the 

SU(6)w prediction. 

In certain cases lvhere incoming and outgoing waves are the same 

the sign of the amplitude is given just by Clebsch-Gordan coefficients. 

This immediately indicates a suspicious point of solution A clocks. The 

relative sign of the DD15 and PPll(1470) nA decays implies that the 
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Pll should belong to a [70] representation of SU(6)W whereas it is usually 

assigned to a [56]. Furthermore the relative signs of the PPll(1470) 

and DD13(1520) TA decays would imply that the Pll belongs t.o a [56] 

providing the D13(1520) belongs to an {St2 of SU(3) x SU(2)W. Thus there 

would appear to be a problem in assigning the Pll. However if solution 

B is valid these problems are immediately removed since the Pll(1470) 

and D13(1520) amplitudes are changed in sign. However if solution A is 

the only tenable result we will immediately have to face the fact that 

SU(6)W symmetry in any of its broken forms can only be saved by con- 

figuration mixing. Not only is this unattractive it also implies the pres- 

ence of other low lying multiplets. It is important to note that one has to 

consider 7rA decays to test this symmetry as relations amongst nN, An, 

Cn only have one possible matrix element and we are thus only testing 

SU(3) symmetry. 

At the present moment it appears that the decays of the [70, 1-1 

favour anti-SU(6)W signs whereas the [56, L=2’] decays indicate the 

SU(6)W sign. This is summarized in Table VIII. 

(ii) Melosh transformations. The whole phenomenological analysis 

has received important support in recent months from the work of 

Melosh (Melosh, 1973) and its developements (Gilman et al. , 1973; 

Gilman, 1973). 

Many years ago Gell-Mann (Gcll-Mann, 1962) proposed that the 

16 vector and axial vector charges, Qa(t) and Q:(t) (integrals over space 

of the weak and electromagnetic current densities) commute at equal 
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times to form an algebra 

[Qa(t), Q”(t)] = i folpr Q’(t) 

From these charges one can define Qa (t) -I- Q;(t) and Qa! (t) - Q:(t) and 

these two charges commute with each other to give chiral SU(3) x SU(3). 

This group can be enlarged to form an SU(6)W algebra whose elements 

commute like SU(3) and Dirac matrices: h O, h$ax, fpo. 
Y’ 

ASz 

[ 
Note px, WY and oz are the generators of SU(2)W (Lipkin and Meshkov, 

1965). 1 This algebra is referred to as the SU(6)W of currents. To label 

the various representations it is convenient to use the SU(3) x SU(3) sub- 

group 

(A, Ws (16 2) 
z 

where A is the representation of Q* +QF , B the representation of 

Qa -Qs” and sz is the value of the (current) quark spin component along 

the z-axis. 

From previous comments it appears that the bnryon states [and the 

meson states] lie in irreducible representations of SU(6)W x 0 (3). This 

f3JWw algebra acts on constituent quarks, baryons being qqq and mesons 

si ’ Hadrons are simple in terms of this algebra, referred to as 

strong. SU(6)W 
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If these two algebras are identified as the same, many undesirable 

results follow, e. g. , gA = 5/3, zero anomalous magnetic moment for 

the nucleon, no magnetic N -+ A transition, etc. 

It was proposed that there might be a unitary transformation be- 

tween these two algebras 

W, strong 1 [ = V SU(6) W, currents 1 V--l (163) 

The achievement of Melosh was to suggest a possible form for V motivated 

by the free quark model. 

Instead of applying this transformation to the operators we can 

apply it to the states. Then 

Jhadron> = 1I.R. constituents> =VII.R. currents > (164) 

i.e., the I.R. of constituents then becomes a complicated sum of irre- 

ducible representations of the SU(G)W of currents. 

In order to apply these ideas to baryon decays we wish to consider 

hadron’ - hadron + r which is related through PCAC to 

< hadron’ IQ: I hadron > , Thus 

<hadron’IQF Ihadron> = <I.R.‘constituents IQ: I1.R. constituents > 

= <I.R.’ currents IV -1 o! Q, II. 12. currents > 

(165) 
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All we then have to know is V-1&i V and thanks to Melosh we have a 

possible form for it. As we have seen QF itself transforms as 

03 t lJo - (1, S), and Melosh found in the free quark model that 

~-1Q~~=R[(8,1)0-t1~8)o]~S[(3,1~1-t~,3~~1] (166) 

This algebraic property can now be extracted and exploited in calculating 

the decays of (165). Finally in order to complete the calculation we 

assume that the observed baryon resonances can be identified with I. R. 

of constituent quarks, and the different quark spin states are related by 

=JWw of strong interactions. The two terms of (166) can then be 

sandwiched between different states of the I.R. representations to give 

any transition matrix element just as in (159). We can immediately note 

the two parameters of this approach are then related to the different 

partial wave couplings of the broken SU(6)w predictions. Indeed the 

second term corresponds to that breaking. 

In Table VIII I reproduce the comparison of signs from Gilman, 

Kugler and Meshkov (Gilman et al. , 1973) with the present solution A. -- 

The [56, L=2’] - b6, L=o+] d ecays have consistent signs and indicate 

the dominance of the (8, l). - (1, 8). term (in the language of Rosncr 

et al - --* the SU(6) w like sign). However the [riO, I-] --L- [56, L=o’-] decays 

are inconsistent with both sets of relations. However if the D13(1520) 

signs could be reversed there would be total agreement with the 

(3,5), - (5, 3)-l term (the anti SU(6)w of Rosner et al.). This is just the -- 

result that would occur should the solution B, at present under study, 

prove to be tenable. (The changes are recorded in brackets in Table VIII. 
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I can only stress that these comments would be unnecessary if data 

in the ‘gap’ could,be analysed. This is just the region which links the 

1500 MeV and 1700 MeV groups of resonances. 

(iii) SU(3) comparisons. With improved analyses of the S=-1 states 

it will eventually become important to relate 

N* - nA(1235) 

N* - Np 

Y* -rL: (1385) 

- fZA(l235) 

Y* --+ 4dp 

Mm* 

(167) 

Pw 

and test the SU(3) symmetry in these decays. 

(iv) Quark model comparisons. At the present time quark model pre- 

dictions for the photoproduction of 71 mesons from nucleons agree quite 

well with experiment (Moorhouse and Oberlack, 1973). The same 

dynamical arguments can be used to predict the 7rA decays of resonant 

states (Moorhouse and Parsons, 1973) (an essentially parameter free 

calculation). . 

Table VIII also contains the results of the comparison of these 

calculations with the results of the present experimental solution A. The 

same malady exists in tiiat the D13(1520) signs are again wrong compared 

to the others - of course this problem would be removed if the D13(1520) 

signs could be reversed as we have noted before. However one furt,her 

discrepancy is present and that is in the sign of the FP15 TN - XA 

transition and this indicates a problem with the detail calculations of the 

quark model interactions. 
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(c) Multichannel analyses. The ability to account for all of the TN 

inelasticity in many partial waves means that we are in a position to 

perform multichannel fits exploiting the constraints of unitarity to the 

fullest extent in attempting to understand the TN interaction (Cashmore, 

1973). 

The K-matrix formalism (Dalitz, 1962) is a convenient way of 

assuming unitarity in these analyses. However the K-matrix parameters 

obtained often have ridiculous values, i. e. , they correspond to reso- 

nances having widths of -500 MeV where one can see that this is not e 

the case from inspection of the Dalitz plot. This problem probably 

results from the fact that one is not necessarily using the correct param- 

etrizations for resonances and background. However the K-matrix 

parametrization does give a’good’ representation of the Argand diagram, 

i.e., of the T-matrix elements. In order to identify resonances and 

properties we now search the T-matrix for poles in the complex energy 

plane. The motivations for this procedure are 

(i) pole positions and residues appear to be unique irrespective 

of the parametrization of the T-matrix, providing it is good (La.sinski 

and Barbaro-Galtieri, 1972; Gall. et al., 1972; Longacre, 1972) -- 

(ii) we expect the pole position and residues to be closely related 

to the Breit-Wigner parameters. However the pole position does not 

equal (MO, i/2 JJo), the parameters of the Breit-Wigner in the physical 

region, and the residues are not necessarily equivalent to the partial 
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widths. We expect these equalities to become very poor when we have 

either large backgrounds or wide resonances. 

The results of these investigations are summarized in Table IX and 

correspond to the present solution A for TN - anN. One can observe 

that many resonance parameters are substantially different from the 

results of naive estimations and indeed this whole problem of resonance 

parameter extraction is *a thorny one. However any detailed theory must 

predict T-matrices which should contain this pole structure. 

Finally I might add a note of warning - before using any resonance 

parameters always review their origin. The estimates can be very 

different. 

(d) Dynamical calculations. Attempts to understand the importance of 

local duality in the region 1500-1700 MeV for TN - TA have been made 

(Kernan and Shepherd, 1969) but unfortunately that analysis used pre- 

liminary results of 
+ r-p - r A- 

partial wave analysis which has been superccded. It is not clear that 

these results will still hold. When a fina. partial wave set is available 

that exercise will be repeated. 

It will also be possible to attempt to correlate the predictions of 

n-exchange (a real amplitude) with tile present. partial waves and also 

study the relation of photoproduction atnplitudcs with the vector meson 

decays. 
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As one can see the results of such analyses are very rich in valu- 

able data and clearly represent the next step in understanding strong 

interactions, at least in this energy region. 

B. K-p - ATT 

The only reliable results on this reaction have been obtained in the 

region of the Y;(1520) iD03) in an effort to make detailed measurements 

of its branching ratios (Mast et al. , 1972). This state is predominantly -- 

an W(3) singlet. If it were entirely such an object it would be forbidden 

to decay into nY;(1385) since an 8-x 10 coupling does not contain a 1 . 
l 

This state is then a mixture of singlet and octet (there is a close by 1 _ 

octet state,~ the D03(1690)) 

11520> = cos 8 II>+ sin 0 IS> (169) 

11690> = - sin 0 ll> + cos 8 .IS> (170) 

The value of this mixing angle can be estimated from the Gell-Mann- 

Okubo mass relation and from the two body decays EN and .E r. The 

result is that e = (21*5)’ (Plane et-al. , 1970). -- 

If we now consider the ~YT(1385) decays we see that the decay rates 

are simply related by 

Iq1520) PS(1690) = tan2 @ 
P(l690) FS(1520) (17 1) 

where PS represents the phase space in the decay, The value of 0 from 

this relation should be the same as above but unfortunately the result 

indicates 8 > 50’. We might expect this to be disastrous. However 

inspection of the [70, 1-1 su p ermultiplet indicates yet another DO3 Yg 
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state. If we now require mixing between all three states consistent 

results can be obtained (Faiman and Plane, 1972). This result then 

becomes an important factor in the description of the [70, 1-1 decays, 

which were mentioned in the previous section. 

At present it is important to stress the value of this type of 

analysis in K-p reactions. Just as we are understanding the N* situa- 

tion with the advent of this new data, the Y* region would be similarly 

helped and indeed our whole view of the symmetries of strong interactions. 

C. Kp- KzN 

The obvious reason for studying this type of reaction is to identify 

exotic Z*‘s . The analyses so far performed have been of the lselection 

by cuts’ type (see Section II. A). The reaction studied primarily is 

K+P - K” A++ (172) 

and the results have given no indication of such resonant states with 

I=1 (Bland et al. , 1969). -- 

However at this point the elastic phase shift analyses of the I=0 sys- 

tem are much more indicative of a resonant state at E - lSO0 MeV - 

a Zg. Again it would be desirable to study this possible state in the 

inelastic channels. Fortunately this is much simpler as the decay into 

KA is forbidden. At present this looks the most promising candidate 

for a ZT; . 

As I mentioned briefly in the introduction to this section the existence 

of such states can be predicted in certain dynamical models. These 

consist of models in which there is strong T exchange in the t-channel 
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V. THE RESULTS FROM SRODUCTION REACTIONS 

, As we have already discussed these isobar methods can be applied 

to the three body final states obtained in production reactions, The 

efforts have been almost exclusively limited to the three meson systems 

obtained in production reactions. These are grouped under the names 

A,(l+), A,(Z+), A3(2-); Q(l’), L(2-) and are central to the meson 

classification schemes but confused by the presence of diffraction disso- 

ciation. The analyses have been mainly of the type considering just 

M Dalitz plot populations or moments (<YL >) of the normal to the three c 

particle plane. The truly complete isobar analysis has only been applied 

by the group at Illinois (Ascoli et al. , 1971; Ascoli, 1972; Illinois s 2. , 

1972) and more recently by the SLAC/LBL group (Lasinski et al. , 1973). 

The Illinois group analysed almost exclusively the reactions 

-I- n-p - n-7r-7J p (17 3) 

where the 3n system is isolated by considering only events in which the 

four momentum transfer from incident proton to outgoing proton is 

comparatively small (t 5 1.0) and none of the pions resonante with the 

proton to give a A state. The questions that one would like to answer 

in such an analysis arc 

(a) What are the spin parity states present as a function of mass? 

(b) What a.re the production densjly matrix elements ? 

(c) What are the t-dependences of the processes and the production 

mechanisms of the states? 

(d) What are the s-dependences of the production mechanisms of 

the states ? 
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I will try to summarize the answers one has to these questions using 

mainly the results of the Illinois group (Ascoli et al., 1971; Ascoli, 1972; -- 

Illinois et al. , 1972) (the SLAC/LBL results, although at an early stage 

in general support their conclusions). I will first tackle the 3n system 

and then comment briefly on the K7rn and N7rn situations. 

A. THREE PION FINAL STATES 7rrr 

In order to have sufficient statistics to perform the analyses the 

Illinois group and their collaborators have gathered together essentially 

three sets of data 

(a) 5, 7, 7.5 GeV/c 7r-p - 7f-?T+7T-p -30 000 event.s 

(b) 11-25 GeV/c n-p - n *+7f-p -15 000 events 

(c) 40 GeV/c 7r-p - 7T-?T+7Fp -13 000 events 

(a) and (b) come ikom bubble chambers and (c) from the CERN boson 

spectrometer during its stay at Serpukhov. In discussing the results I 

will not always specify the exact source. An example of the 37~ invariant 

mass distribution is given in Fig. 31. 

Unfortunately the data are not yet sufficient to allow analysis in both 

mass and t bins so that the variable of least importance is usually ink- 

grated over. Thus for spectroscopic studies one is mainly concerned 

with the mass dependence and hence t is integrated over, while for 

discussions of production mechanisms (dynamics) the most important 

variable is t and larger siices of mass are usually considered. 
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1. Spin Parity States 

In Fig. 32 I show the intensities associated with the O-, l+, 2’, 2- 

and 3+ waves. Three features are immediately obvious: 

(a) the l+ enhancement around -1100 MeV - the Al 

(b) the 2+ enhancement at -1300 MeV - the A2 

(c) the 2- enhancement at -1700 MeV - the A3 

&early it is important to know the different isobar (two body) states 

which contribute to this cross section, The O-, 1’ and 2- waves are 

shown in Figs. 33, 34, 35 and have contributions from the q~, TE (O-, If, 

and q~, 7rf (2-) -states. The 2+ wave only has contributions from the no 

system. The l+ wave is dominated by (rp) in an s-wave whereas the 2- 

is predominantly (ti) in an s-wave. This result has been known for 

some time as has the fact that Deck diagrams of the type of Fig. 36 give 

s-wave enhancements near threshold. One might hope to identify the 

l+, 2- states as resonant by observing large rapid phase changes of 

these waves with respect to other partial waves. Unfortunately no such 

motion is apparent, e.g., in Fig. 37 we see the phase of the 2- nf wave 

relative to other waves through the A 3 region. No resonant phase vari- 

ation is observed. Figure 35 demonstrates the same result for the 1’ 

(up) s wave in the region of the Al. These results thus give little 

encouragement for the identification of these states as resonances. 

However the presence of small resonant effects on a large background 

are not ruled out (this could produce little phase variation). 
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Of course it is always desirable to demonstrate when one can 

observe a ‘good’ resonance. This is done for the A2 in Fig. 39. There 

one sees the Breit-Wigner shape in the 2+ (np) d-wave together with 

correct phase variation across the resonance. 

Thus we can conclude that the only resonance positively identified 

is the 2+ (7rp) state, the A2, and the l+ and 2- waves although large and 

changing in intensity give little support for resonance interpretations. 

2. Density Matrix Elements 

In the last two years the question of s-channel helicity conservation 

has received a great deal of attention. It appears to be essentially 

conserved for reactions (Gilman et al., 1970) 

TN - TN (174) 

yN -+p”N (175) 

However these reactions do not involve spin changes whereas 

excitation of the Al and Q enhancements does (O- --) l+). Thus attention 

has been focussed in the density matrix elements of the 1’ state measured 

both in the t-channel (Gottfried-Jackson) and s-channel helicity systems 

(see Section III. D for definition of these), In Fig. 40 one sees poo 

evaluated in the t-channel where it is -0.9 - 1.0. This indicates pre- 

dominantly t-channel helicity conservation although the existence of 

Re PO1 indicates that some M== *l production occurs, However these 

density matrix elements evaluated in the s-channel system would give 

values of poo N 0.4, Re polw -. 3 at the higher t value. Thus exact 

helicity conservation does not occur in either system but it is closer 

to being true in the t-channel. 
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It should also be noted that the 2- system is also produced pre- 

dominantly in the M=O substate . 

In contrast the A2 is produced almost entirely in the M=rt 1 states. 

In fact PI1 N PI-1 indicating the production of a pure state 121> + 12-l >. 

The near equality of these two density matrix elements indicates that 

natural spin parity exchange dominates (Ader et al. , 1968) since 

cmnatural cc pll + Pl-1 
(176) 

u innatural OiPll - Pl-1 

This result is expected if the reaction occurs through f” or p” exchange. 

3. Production Mechanisms and t-Dependence 

The dominance of natural parity exchange in the production of A2 

suggests the presence of f” and/or p” exchange terms. However by com- 

paring A2 production in the reactions 

n-p - A;p 

+ . R n - A”p 2 

(177) 

it is apparent that f” exchange dorninates. Further if the coupling is 

spin non-flip at the proton vertex (as we guess from elastic scattering) 

then there will be a net h&city flip leading to zero cross section in the 

forward direction, i. e. , at t1 N 0. This is demonstrated in Fig. 41. 

4. s-Dependence of Cross LSections 

The ratio of Al to A2 to A3 cross sections is surprisingly energy 

independent even up to the 40 GeV/c data. If these cross sections are 
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parametrized as 

aap;ib t-s 
-n 

1 (178) 

then the value of the exponent is 

Al: n-0.5* 0.2 

A2: n -0.57 * 0.08 

A3: ’ n -0.8 f 0.3 

Furthermore if one looks at the unnatural and natural parity ex- 

change contributions to the A2 cross section, Fig. 42, one sees that it 

is the unnatural parity contribution that is falling extremely fast. 

The fact that the A2 cross section does not appear to drop any more 

rapidly than the A1 has caused speculation that it may be produced by 

Pomeron exchange in violation of the empirical rule 

AP = (-l)M (179) 

At this time this can only be speculative and awaits more detailed 

measurements. 

Finally one can attempt ‘co cstract information from the relative 

phases of the A2 and A1 waves. If we write 

PA A 

Giyy 

1 a 2 2 (330) 
mA2 - m3.i, - in1A42rA2 

PA A 
2 ’ 

then we might expect PA A to be constant in phase and magnitude if the 
2 1 

AI phase does not change (independent of m3J. This will then represent 

the relative phase 6 of the A2 and Al production amplitudes 
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( &=+A~-+A The results indicate a slight variation 

of 6 with c. m. energy, 6--46’ at 5 GeV/c and --75’ at 40 GeV/c but 

it does appear to be independent of tl. Now if one assumes the A1 is 

,produced through the Deck mechanism, Fig. 36, its production phase 

is that of np diffraction scattering, i. e. , pure imaginary, qA 0 = 90 . 
1 

This then implies 

N 44O at5 GeV 

N 15O at 40 GeV . 

These phases are clearly inconsistent with Regge model predictions 

(a) pure f” exchange -)-GA - 145’ (t’ - .15) 
2 

(b) pure P exchange - 4A - 90’ 
2 

(c) mixture of f” + Pomeron exchange with Im (rD exchange) > 0 

- @A - 120° 
2 

However if we have 

(d) f” + Pomeron with Im (f” exchange) < 0 

agreement is possible but the energy dependence of +A onplab in this 
2 

latter case would be opposite to the observation. 

We can summarize these results by the statement that we appear to 

have problems with our interpretation of the A2 production mechanism. 

5. Summary 

This will haoc given a feeling for the great quantity of information 

that has been extracted from the analysis of these three pion production 

reactions, both spectroscopic and dynamical (production mechanisms). 

However, I think it is true to say that the hoped for goals of proving a 
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resonance contribution in the A1 has not been reached.- Clearly at least 

a large proportion of the 1 enhancement is dynamic in origin (Deck 

mechanism) and it is below the sensitivity of these experiments to detect 

a resonant contribution in this environment. The only hope is to consider 

reactions in which diffraction dissociation is impossible for the identi- 

fication of this state, e.g., 

K-n - 7r-7r+n-A0 

7?n - *+n-7T”p 
(18 1) 

Many of these comments apply equally well to the case of the 2- A3 

enhancement. 

These analyses have increased interest in ‘Ihe production mechanism 

of the AZ, the contribution of Pomeron exchange remaining a tantalizing 

possibility. Measurements of the KK decay of the A2$ if measured with 

a good absolute normalization, should help resolve this problem. 

However it does appear as though further investigation of the 37~ 

system in these reactions will not be terribly rewarding and new informa- 

tion on the resonant states will come from reactions such as (X31). 

B. Km FINAL STATES 

Here the situation is more ‘complicated than for 37r’s . We expect 

(from the qq model) two I+ mesons, the Q’s, the K*(1400) and a similar 

2- enhancement, the L. At this time there are no published results 

from an isobar model analysis. Analyses have concentrated around the 

Dalitz plot populations, rK* decays obtained by cuts, and general angular 
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momentum considerations (see Section II. B). The main results can be 

summarized as follows 

(a) l+ waves are dominant in the mass region 1.0 < M(Krn) < 1.4 

with decays into both 7rK* and Kp. In fact the Kp decay is 

strongest near threshold. 

(b) In this reaction t-channel helicity conservation is ruled out. 

(c) Comparison of Q and $ states in 

indieate the probable presence of other contributions to the 

production mechanism besides Pomeron exchange (diffrac- 

tion dissociation). 

(d) Varying production mechanisms of two interfering l+ states 

could explain the changes in Knn spectrum that are observed. 

The application of isobar model analyses to reactions of the type 

K*P --c K*~+T-p 

(183) K0 

- I 
-0 

IF TOP 
K 

will clearly result in advances simil.ar to those in the 377 system. 

However the problem is more complicated because of the increased 

number of decay channels which must be considered. 

C. Nnn FINAL STATES 

There is even less to say about these states, the work being little 

and the results few. The nucleon having spin l/2 makes the problem 
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somewhat more complicated and yet again increases the number of 

partial waves. Some Dalitz plot analyses have been performed and 

result in the statements that JP = l/2+ dominates in the region of 

1200 - 1400 MeV, Jp= 3/2- is present around 1500 MeV and 5/2+ large 

at -1700 MeV. As we have seen in the analysis of TN -TTTN these Pll, 

D13, F15 states are important at these masses and are the very states 

we expect in diffraction excitation if the k3 = (-l)iw rule holds. 

Application of the isobar model approach is clearly going to bring 

about a dramatic improvement. Furthermore these wou1.d seem to be 

the obvious states in which to study diffraction dissociation as the 

formation reactions give us a clear bench mark. 
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VI. SUMMARY AND CONCLUSIONS 

The isobar model analysis gives an excellent phenomenological 

description of the data on three body final states both in formation and 

production reactions. 

The major problems in the analysis of 

TN -) mrN (184) 

is associated with the lack of results from the data that exists in the 

energy range 1540 < E < 1650. The measurement of the noron final state 

together with experimental results on single pion production from polarized 

targets will be sensitive tests of the present partial wave amplitudes. 

However problems do already exist in the 7;‘n’n final state and at the 

higher energies, and any future analysis will have to introduce both 

1=1/2 isobar intermediate final states and r-exchange contributions. The 

wealth of information one has already gained suggests that such an effort 

will be fruitful. This initial information has already been valuable in 

discussing higher symmetry schemes for the strong interaction in the 

resonance region. The existence of the D13(1700) is vital to SU(6JV 

schemes but the absence of the P33 states is a nagging emharassment. 

This is just the beginning of the theoretical activity that should now occur 

in an effort to reproduce the essentially complete T-matrices that we 

obtain. 

In the future one might expect to see similar analyses of 

(185) 
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where the weak decay of the final baryon gives a good description of its 

polarization. The Y* situation needs new information to unravel the 

exceedingly complicated set of states which should be present (for every 

octet and decuplet there must be YT states while Y$ states are singlets 

and members of octets). The advent of this information will then allow 

tests of the SU(3) content of any theory we have for these three body 

reactions. 

The analyses of the positive strangeness KN induced reactions is 

going to be absolutely vital in testing the validity of quark model schemes. 

However the preliminary results from analyses of reactions 

K+P - K”Af+ (186) 

give little indication of I=1 resonant structure and I do not believe any 

different conclusions will appear from the more sophisticated isobar 

analysis. The more intriguing situation is in the I=0 state where there 

is not only a candidate for a Zz at -1800 MeV but dynamical calculations, 

considering r exchange in the t-channel, do give poles in the s-channel. 

The Zz system is more likely to contain resonances from this type of 

mechanism due primarily to the fa.ct that s-t channel isospin crossing 

matrix predicts the strongest effects in the Is=0 state from isospin 1 

exchange in the t channel (r) to make the K*N intermediate state (Aaron 

et al. , 1969; Aaron et al. , 19 70). Thus the detailed comparison of 

observed T-matrix elements with those predicted by theory will be a 

sensitive test of the validity of such calculations. Indeed this whole 

question is a somewhat sensitive one - every new resonant state that we 

- 89 - 



find is automatically regarded as a new elementary particle and ciassified 

as such, However resonances may occur through an accident of the size 

of inter-particle forces and the proximity of thresholds, e. g., is the 

Yg(1405) a bound state of the l?N system just as the deuteron is a bound 

state of the 3S1 pn interaction? Such questions (if they have any meaning) 

will only be resolved by detail analysis and careful thought. 

Let me now turn to production reactions. The question of the 

existence of the AI, A3, Q’S, L is still open and will eventually be 

resolved by analysis of the hypercharge or charge exchange reactions 
-I- K-p - AT r-r- 

(187) 
7r-p - AKOT+r- 

There is still no reason to believe that they will be produced as pure 

Jp states (i.e., no other large partial waves present) in such reactions. 

I expect the isobar model type of analysis will still be required to deter- 

mine the JpM states present and their decay channels, As we have seen 

one automatically obtains an enormous amount of information on the 

production mechanism of such states and this has already led to a number 

of surprises, e.g. , the energy dependence of the AZ. In attempt,s to 

understand tie phenomenon of diffraction excitation both at meson and at 

nucleon vertices the reactions 

K’P - K* ri- n-p 

zt + -1- - 7rp-7r7rnp 
(188) 

will continue to receive a lot of attention. Perhaps most results will 

emerge from the nucleon vertex studies (i, e. , diffractive excitation 
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of N*ls) where one already has information on the spectrum of states 

from the analyses of the formation reactions. Finally the increase in 

the use of polarized targets will lead to an increased understanding of 

the production mechanisms of these states. 

It is clear that we have only be&gun to extract all of the latent infor- 

mation in these three body states. The indications we have so far are 

that this information can be very rich indeed and will be a valuable 

tool in unravelling the mysteries of the strong interaction. 
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APPENDIX 

In this appendix I gather together the definition of states, the 

angular momentum projections, normalizations, phase spaces, cross 

section formulae, etc. The conventions are those of Cashmore et al. 

(1972) and are essentially taken from Jacob and Wick (JW) (1959). 

A. PARTICLE STATES, NORMALIZATIONS, CROSS SECTIONS AND 

ANGULAR MOMENTUM DECOMPOSITION 

We use the phase convention of JW but the normalization is different 

If +ph represents a state with momentum p along the Z axis and helicity c 
h, then the general state is defined by 

lP 0 $ A> = R($, 0 , 4) qph (18 9) 

and 

<p’iY c$lXt IpQ $A> = 2E S3(?;,-3) 6 hht (190) 

we also define states x 
PA 

by 

xph = (-l)S-h eTinJy $pA = (-l)S-h #-ph (191) 

The general x state is then given by 

These states are denoted by a minus sign on p. Thus 

I -p0 l$h> = (-qS-h li37T-8 ,$+7i,h> (1.93) 

We also need to know how the stat.es IpQ ghh> transform under 

Lorentz transformations. Let the Lorentz transformation be I where 

p1 =1p and let U(a) be the unitary operator corresponding to I. Wick 
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(1962) has shown that 

U(Q) IpB $A> = c 9Qni$ Ip’e’ $1 v> 
V 

(194 

where fi is a vector along T A TV, We will require this result to trans- 

form from an isobar j rest frame to the overall c. m. system (see Fig. 

43) 0 is then an angle of rotation about the normal to the three particle 

plane and is given (for particle 1) by 

cos !G? = ( cash p - cash ak cash “i, /sinh[Tk sinhcrk (195) ) 

where 
* 

talh p = v . = velocity of j in the c. 111. S. 
I - 

tanh ak= v k = velocity of k in the c. m. S. 

tanh crt =v t = velocity of k in the isobar rest frame . k k 

$I can also be calculated as 

sl=@-f3-cLJ 

where w is the Stapp angle and is given by 

(196) 

where 

pi - 13 for the isobar in the c. m. system 

pk - /3 for pa.rticle k in the c. m. system 

$)- p for partic1.e k in the isobar rest frame . 

- 93 - 

(197) 



Multiparticle final states are defined as the direct product of one 

particle states. Thus 

tq x1 > IF2h2> . . . iFnAn> = tpl~l#~A~>. . . IP&&$> (198) 

and 

-1 -qqpg.. . P,?$ ‘“;15~2h2’ . . $&> = “n (2Ei) b”($-$) dh At 
i= I. i i 

(199) 

For two body states it is sometimes more convenient to use 

Letting (p, 8, $) be the polar co-ordinates of 

ww 

p, we have 

I Fpo $hlh2> = I 5 &> 1F2A2> (20 1) 

where the states on the right-hand side are either Ic, or x states. It 

can then be shown (Cashmore et al. , 1972) that in the c. m. s. , P’= 0, the -- 

normalization is 

(202) 

where w = (0 , 9) and W = EI+E2. 

For the normalizations of (190) the number of particles of type i in 

a volume V is 2EiV/(27r)3. In a volume V the total number of states 

available is Vd3pi/(2*)3, so that the density of final states per Particle is 

d3pi/2E i. Thus the number of three-Particle final states available, 
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I 

dpF is given by 

d3pl d3p2 d3p3 
d~F=~-- 1 2E2 2E3 ’ 

With the normalization of (190) the incident flux is 

4 -- =- pw 
(d 

The transition probability/unit volume/unit time is 

64 (Pout - Pin) 

(W4 
lW2dpF . 

(203) 

(204) 

(205) 

where M corresponds to the transition matrix element with our normali- 

zation of states. Now Berman and Jacob (1965) have shown that 

dp ’ ‘4 @out - Pin) dp F 

= ; dE1 dE2 dcos 0 d Q, d Q! (206) 

where 0 , @ and Q! are the Euler angles specifying the orientation of the 

final three-particle state with respect to the incident system. Equation 

(206) may also be rewritten in many forms using the kinematical relations 

that exist 

1 41Ql 

1 9lQl = - - 
8 Wd w1 d cos O1 d cos0 d@ da WI 

=L-.L 
8 4w2 

d,2,dw; dcosOd+da! 
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We can summarize by writing 

2 
(208) 

where F = pW. 

We npw turn to the decomposition of the tw+particle states into 

angular momentum states. We work in the two-particle c. m. system and 

assume particle 2 is in a x state, i.e., 

IP=O pB @$I2 > = i& > I $X2> = R(+, 8, -4) q9 
pA XplhZ 

(209) 

We now define the following state of total angular momentum J and 
L 

z-component M by 

(P=o pJMhlh2> = NJ 
J 

CZf&$, 6, -4) IP=o, p8 4 hlh2 > d20 (210) 

where d2w = d cos B d @ and A = Al-A2 . Choosing 

NJ zz (?i!$f’2 (&f” (211) 

ensures that 

<P’=0,p’J’M’A~A~IP=0,pJMhlh2> = 6JJ, 6MMf $ h, 6 
1 1 h2hH 

S3(P’-P) S(W’-W) 

(212) 

and wc then have 

<P=O,pe 4 Alh2 IP’=O,p’J M hihi> 

= (2g2 (?!y2 q&($, 6, -#J) S(w’-W) 63(P’-P) 6 6 
hlhi h2hi 

(213) 
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In terms of the orbital and spin angular momenta, - L and S, we have 

lP=O pJMLS>= c (Ei”’ C(LSJI0 &+,) C(S,S,Sl~,-p,) lP=O, pJM/+p2> 

c"P2 
(214) 

with the normalization 

<P J’M’L’S’ IpJMLS’> = 6 JJt csMM, tjLL, fiss, (215) 

B. 9 FUNCTIONS 

We use the following definition of the rotation operator 

-icrJ 
’ y 

-ipJ 
ye 

-i’yJz * 
W%p,r) = e (216) 

Since the product of two rotations is again a rotation, we have that 

R(Q, P,r) = R(@, p”,r” ) R(@‘, P:r’) (2 17) 

The elements of the matrix corresponding to R are given by 

cBJ mlm2(R) = <jmllJWm2> (218) 

and in the terms of matrices (217) becomes 

The matrix elements can be simplified to 

caJ mlm2@,P,~~ = evirnf dk m (0) 
1 2 

-im2Y 
e (220) 
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. 
where the d’ 

mlm2 
@) are real. These functions satisfy the general 

relations 

dj mlm2/3) = (-l)m1-m2 dj m2ml(j?) = (-l)m1-m2 dj -ml-m2 @) 

dj mlm2bP) = (-1) j-m2 dj -mlm2(P) = l-1) 
j+ml dj 

ml-m2(P) (221) 

dj mlm,(-P) = dk m (P) 1 
2 1 

d; m (p+Zr) = (-1)2j dm m (0) 
1 2 12 

The matrix elements have the following normalizations c a((~,P,r) da! d COSP dy=~ “jjl”m ml ’ 
1 1 m2mi 

(222) 

and 

J- d j 
“l”2 

(0) dj’ 
m P2 

(0) dcos 0 =A 6 2j-b1 jj’ (223) 

C. THE REACTION a-kb - c+d 

It can be shown (Cashmore et al., 1972) that the cross section for 

this reaction, with these normalizations of sirttes, is 

g= -E c 
(&Jr-l) 

p2 J 
( 2aa-i-1) ( 2Ub+ 1) Ix ! <Q JML’S’ I T I pJI\/ILS > I 2 

LS L’S’ 

(224) 

For TN --, TN this becomes 

o(F) = 7rh2(J+1/2) I<Jp ITIJ? I2 . (225) 
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I 

Table I 

The Isospin Decomposition in nN - r?rN Reactions 

1=3/Z 

(=1%=3/Z ("2%=3/Z W)I=1/2 ("2%=1/z (“17$&l) (“lQ=1 (577&z 

+o 
=1=2* & 2 0 

1 
-1 3 0 1 

1 
-1 5 

++ -1 -1 . 1 1 4 
nlTln Jrs 7% J v J 5 0 0 J 

-+ 2 nln2n -3n - 2Ji 0 x2 0 
J-x5 ,, .I% 

-fi ; 
zs 

+> s5 7% -2 -1 3 

3 j% 

0 -1 1 
i7 -$ E 

-1 1 2 EE 5 0 0 
j% 

1=1/z 

("1?=3/2 (=2%=3/Z (nlN)I= l/2 ("2%=1/z ("l"&O (n1"2)1=1 (77l791=2 

n; n$ -3 -2fi 
Ji? 

i% 0 
.pE 

-J 2 3 n 0 
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Table II 

Isospin Decomposition of I=0 and I=1 Decays to Three Pions 

I=1 

(5’2)p @24), (=33"1)p ("lT2L (T22"3)~ (*3*lL 

‘+ + - 

0 

1 1 

“1=2 ‘3 - *- 2 +z 0 ji $ 

oo+ 
=1=2T3 0 -$, 

1 
+z 

1 
-5 O 0 

7r17r;7r; + 0 +- & -; %I- 5 2 O 0 

000 
"lTZn3 0 0 

I=0 

(n 7r 1 
12P 

(T2r3) 
P ( "3Q P v24 ("lT3L ("3% 

+ "l& - _I - - - - 
Ji ; ,:3 O 

0 0 
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Table III 

Isospin Decomposition of 1=1/2 Decays to Km 

+--I- 
=1T2K 

,7pK+ 12 

+$KO 

(T1K)I=l/2 ) (T2%1/2 
I 

+fi fi 
3. -- 3 

0 2 
+z 

2 
z 0 

+G- -q 
3 

1 1 -- -- 
3$2 30 

(7y&~ 

-I- J 
2 
-5 

1 -J -5 

1 J 5 

2 
$ 3 

0 

by&) 

0 

2 J- 5 

_ I J 3 

2 J 3 

0 
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Table IV 

The Observable Quantities in MB - BMM 

Io=~[lA,+12+ IA+J2. IA-+12+ IA--l’] 

IoP$’ = Re b*A>] + Re k+-Az-] 

IoPc) = -Im [A,Af+] - Im b+-AT-] 

IODxY = -Im A+ AZ+ eSia! 
[ - 1 II - Im A++A* eia’ -- 1 

IODxZ =Re A,A: 
C 

eicr - eiff - 1 [ Re A-+A* -- 1 
ID 
0 YX 

= -b-n A+ AT+ eTia 
[ - 1 + Im A++ A* eia: -- 1 

ID 0 yY = Re - Re b-F AZ+ es’@-] 

ID 0 yz = Im 1 c - 1171 

IODZx=Re[AtlA~+]-Re[;I+~A~-] 

The amplitudes A are written with pi, pf = f l/2. Also 
pfcli 

note that the order of the subscripts of A has been reversed. 
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Isospin Incident 
Wave 

nA Np3 Npl NV 

Sll SD11 SD11 SSll SPll 

Pll PPll PPll PPll PSll 

D13 DS13 DS13 
DD13 DD13 DD13 DP13 

I= l/2 P13 PP13 PP13 
PF13 PF13 PP13 PD13 

D15 DD15 DD15 DD15 DF15 

F15 FP 15 FP 15 FD 15 
FF15 FF15 FF15 

F17 FF17 FF17 FF17 

s31 SD31 SD31 ss31 

P31 PP31 PP31 PP31 

D33 
DS33 DS33 
DD33 DD33 DD33 

1=3/2 P33 PP33 PP33 
PF33 PF33 I’P33 

D35 DD35 DD35 DD35 

F35 
FP35 FP35 
FF35 FF35 FF35 

F37 FF37 FF37 FF37 

The 60 waves with angular momenta L, L’, Q each 5 3. There are two 

nucleon-rho terms in the isobar model, indicated by p3 and pl, where 

the subscript indicates the coupling between the spin of the p (1=1) and 

the spin of the outgoing nucleon. 

Table V 

The Partial Waves Used in TN - x7rN 
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Table VI 

Partial Waves in Decay to Three Pseudoscalar 

Mesons for IF 2 (E, p, f) and L L 3 

Jp 254-l L Q Number of 
Amperes 

0- 1 0 0 1 

1 1 1 
. 

2 2 1 

1- 3 1 1 3 

2 2 3 

-1+ 3 1 0 3 

0 1 3 

2 1 3 

1 2 3 

3 2 3 

2+ 5 2 1 5 

1 2 5 

3 2 5 

2-’ 5 2 0 5 

1 1 5 

3 1 5 

0 2 5 

2 2 5 

3- 7 3 1 7 

2 2 7 

3+ 7 3 0 7 

2 1 7 

1 2 7 

3 2 7 

Total (J52, all) 
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Table VII 

Number of Events for the Energy Bins Used in the Fits 

Range - + - - f 4-O C. M. Energy 
(MeV 

rip--arm R p -47pp Tp--n np 

1310 1300-1330 

1340 1330-1360 

1370 1360-1380 

1400 1380-1410 

1440 1430-1460' 

1470 1460-1480 

1490 1480-1510 

1520 1510-1530 

1540 1530-1560 

1069 

1664 

2471 

5049 

4918 

3252 

5555 

3241 

151 

11 

2 

964 78 

1802 359 

1629 175 

3197 1523 

2588 795 

3285 $114 

1650 1630-1670 6061 3757 2467 

1690 1670-1710 5901 3689 1139 

1730 1~10-1750 3455 2630 4061 

1770 1750-1790 3214 2352 2853 

1810 1790-1830 2447 1541 3855 

1850 1380-1870 3931 3183 6372 

1890 1870-1910 5072 3170 12690 

1930 1910-1950 5817 4080 4298 

1970 1950-1990 5277 3544 7744 
L '--- 

Total 1300-1990 72299 41575 49523 
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Table VITI 

Signs of the Amplitudes for nN -N* - TA 

for N*‘s in the [70, L=l] and [56, L=2] 

[70, L=l] 

b6 ,;=O] 

r 

, 

c 

[56, L=2] 

[56 ,;=O] 

FP 15 (1688) - + + 

FF35(1880) - * - * - * 

FF37(1950) - * - * - * 

Products of the experimental and theoretical signs (in various models) are 

DD13(1520) * -I- * (-) f * l-1 + * t-1 

DS13(1520) - (+) ‘+ t-1 + C-1 
- 

SD3!(1640) + 

DS33(1690) I- 

DS13(1700) f 

DD15(1670) - * - * - * 

presented. Signs which are independent of the model are denoted by I*‘. 

Exponent and theory agree within the [7O, L=l] or within the L56, L=Z] if all 

the signs in any column are the same. 
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Table IX 

Pole Parameters and I? partial from Pole Residues 

7 

BA L 
Other 

Channel ‘tot i =iT 

11 

46 

70 

94 

80 

120 

40 

37 

5 

75 

125 

232 

25 84 109 

so 38 3 180 

16 22 

15 

3 62 108 

69 92 161 

101 

17 

13 

44 

111 

12 42 21 182 

11 35 63 

56 56 125 

26 107 177 

76 132 (junk) 380 

Wave Pole 

Sll 

1 1498 -i 9 

2 1648 -i F 
- 

Pll 

P13 

D13 

D15 

1 1383 -i 29 

2 1724 -i y 

1 1728 -i y 

1 1515-i? 

2 1646-i? 

1666 -i 9 

F15 1672 -i y 

s31 1605 -i y 

033 1650 -i y 

F35 1824 -i y 

F37 1866 -i y 
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FIGURE CAPTIONS 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

The three body final states: (a) formation reactions;(b) production reactions. 

Dalitz plot for n-p - r-r+n. 

Diffraction excitation. 

Hypercharge and charge exchange reactions. 

Diffractive excitation of the nucleon. 

The moments w”;: as a function of energy in the final state n-lr+n 

normalized such that Wi = 1. The x axis is defined as zN and the 

z-axis as ‘i;,- A CT+ * 
c 

x+~-‘IT- Dalitz plot M’(n+a-.) vs M2(?*2) for events having 37~ 

masses in the interval 1.0 - 1.4 GeV. The curves define the Dalitz 

plot boundaries for MQa = 1.20 and 1.40 GeV. The data is from 

5 and 7.5 GeV/c n-p collisions. 

The isobar model. 

Definitions in the three particle decay. 

Definitions in the incident two particle state in formation reactions. 

Definitions in production reactions. 

The co-ordinate system S. 

The isobar model.. 

The decay angles of the isobar. 

The helicity frame axes Ox’y’z’ for particle j. Oxyz are the axes of 

frame S. 

Production reactions. 

The Gottfried- Jackson system. 
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18. Production angles of x in W, a system defined by a polarized target. 

19. Relative signs of Y* couplings. The arrow is the prediction from 

SU(3) and the X represents the experimentally observed coupling. 

20. Fits to the reaction n-p -c R’7r-n at a c.m. energy of 1690 MeV. 

The figure contains cos 8 vs @ plots for individual regions of the 

Dalitz plot where cos ,9 and # are the polar angles of the incident 

pion in a co-ordinate system defined by the final state. The z axis 

lies along FN and the y axis lies along ‘i;r- x‘i;L fi’ The plots outside 

the Dalitz plot are the sums of the corresponding plots within the 

boundary. I 

21. Single pion production cross sections. Data points are indicated by 

I and the predictions Tom our partial wave amplitudes by x. 

22. I= l/2 partial wave amplitudes. Arrows are spaced every 20 MeV, 

with wide arrows every 100 MeV: base of wide arrows mark integral 

hundreds of MeV. Lower-Q waves are plotted starting at s=1400 MeV; 

higher-Q waves only where they were first needed. Last arrowhead 

is always at 1940 MeV. 

23. Partial waves derived from the incident. Pll wave. 

24. Partial waves derived from the incident 013 wave. 

25. The F15 partial wave. 

26. 1=3/2 partial wave amplitudes. Arrows are spaced every 20 MeV, 

with wide arrows every 100 MeV: base of wide arrows mark integral 

hundreds of MeV. Lower-Q waves are plotted starting at s=1400 MeV; 

higher-Q waves only where they were first needed. Last arrowhead 

is always at 1940 MeV. 
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27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38.. 

Partial waves derived from the incident F35 wave.- 

Partial waves derived from the incident P33 wave. 

Relative coupling signs of the resonances in all inelastic channels. 

The vertical double line separates the two regions, since the con- 

tinuity is not unambiguously ascertained. The heavy arrows corre- 

spond to the present solution A. The dashed arrows will be the 

orientation if the second solution, B, is satisfactory. 

Prediction of resonant phases in TN - N* - 7rA corresponding to 

a choice of the ‘anti SU(6)w 1 relative sign for the two partial waves 

in the decay. To obtain SU(6)w results, reverse all double handed 

clocks. Finally to compare with experimental results all 1=3/Z 

waves must be multiplied by (-1) to give the same phase conventions. 

The $r-?r- mass spectrum for the data at 5.0 - ‘7.5 GeV/c. The 

shaded histogram is for t.’ < 0.7 GeV’, M + < 1.4 out, 
PT 

1.16 < M 
Pn- 

< 1.32 out. 

Contributions of various Jp states to the MQn distribution. 

Individual partial wave contributions to the O- state. 

Individual partial wave conlributions to the 1+ state. 

individual partial wave contributions to the 2- state. 

The Deck mechanism for the Al and A3. 

Phase of 2- ti (s-wave) production amplitude relative to other partial 

waves as a function of 35r mass. 

The l+ 7r’p (s-wave). Its intensity and phase relative to other partial 

waves as a function of 37r mass. 
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39. The 2+ 7rp (d-wave). Its intensity and phase variation relative to the 

l+ waves as a function of 3n mass. 

40. The density matrix of the 1’ state. 

41. Production angular distribution of spin parity 2+ events. Curves 

are fits of the form t’ e -Bt’ with B=6.41 and B=9.04 for low 

(5 - 7.5) and high (II- 25) incident 7r momenta. 

42. Cross sections as a-function of incident momentum for production 

of 2” by ‘natural parity exchange’ and %mnatural parity exchange’. 

43. Wigner angle - the rotations due to Lorentz transformations. 
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