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I. INTRODUCTION

In these lectures I am going to attempt to review the status and
methods of analysis of three body final states. In the last few years
there has been a great deal of activity in the phenomenological analysis
of these systems motivated by a variety of reasons. The three body
states considered have been obtained in both formation and production
escperiments as indicated in Fig. 1 and the main emphasis has been in
the "spectroscopic' aspects of the results.

In the formation _expe:iments work has centered primarily around

the reactions (Herndon et al., 1972; Mast et al., 1972)
N — 77N _ (1)
k'p — Anm (2)

Such reactions constitute a large part of the inelastic cross sections
derived from the incident two body systems. Indeed for #N collisions

with Ec < 2000 MeV, the 77N channel accounts almost completely for

" the inelastic cross section which itself is approximately 50% of the total,

Thus if we are ever to understand the 7N interaction it will be essential
to have a description of these three body states. Furthermore, this low
energy region is dominated by overlapping resonances (''the resonance
region') many of which are highly inelastic. In our present attempts to
understand the systematics of these resonances, the existence and
branching fractions of each statearerequired. Of particular interest are

the decays into 74, Np, TFY’{(1385), etc., which can be related to 7N,
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RN, Am, etc., in any symmetry scheme higher than SU3. The fact that

the parent resonances are overlapping necessitates partial wave analyses
which would be comparatively easy were the 4, p, etc., stable particles

(although of course 0~ + 127 0 +3/2" is necessarily more compli-
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widths are sufficiently large that for much of the Dalitz plot their ampli-
tl;des (Breit-Wigner) are large, as is clear from Fig. 2. In these
circumstances it is difficult to select the data to produce a pure sample
of, e.g., 7N — 7A and any detailed analysis of such selected data will be
correspondingly suspect. Thus one must resort to other techniques
which can take into account these overlapping resonance bands and per-
haps even exploit their presence. Such methods and one in particular,
the isobar model, together with their results will be the subject of these
lectures. At this time the most important results have emerged from
the analysis of reaction (1) but one should expect in the future valuable
results from KN induced reactions, the Y* situation being at least as
complicated as the N*,

The activity in production reactions is essential for a variéty of
reasons (Ascoli et al., 1971). For meson systems parity conservation
forbids the decay into two pseudoscalar mesons of any resonance belonging
to the unnatural spin parity series 0, 1+, 27. The first available state
is then usually the three pseudoscalar meson system and thus we expect

to observe such resonances there. The requirement of G-parity con~-

servation means that for G=-1, S=0 meson resonances the decay into



two pions is forbidden. We then once again expect to see these states
first in three pion systems, e.g., A2 — 3m. The whole discussion of
the existence of many of these resonances is further complicated by
dynamical processes which may occur. The diffractive excitation of a
7 or K (see Fig. 3) will automatically lead to a system of particles with

unnatural spin parity if the following rule is obeyed
AJ
AP = (-1) (3)

where AP is the change in parity and AJ the change in angular momentum.
Hence we have long had the debate as to whether the low mass enhance-
ment in the thrée pion system is due to a resonance or a dynamical

effect (Deck mechanism). The resolution of this problem is vitally
important to meson spectroscopy and awaits study of these three particle
states in reactions in which diffraction dissociation is not possible, e.g.,

the charge exchange or hypercharge exchange reactions of Fig. 4
Kn— 71 1A 4
- 7r+7r_7r0p (5)
Of course we would also like a clear understanding of the process of
diffraction excitation and as already noted this leads naturally to the
consideration of three particle final states (these are in general the
easiest to observe experimentally). Thus we will continue to study the
reactions of Fig. 3, but we will in addition direct our attention to the

diffractive excitation of the nucleon as indicated in Fig. 5. Indeed the

latter is possibly the best system in which to study this process as one
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already has detailed information on the baryon resonances spectrum.
In general the analysis of these states in production reactions will always
give information on the production dynamics.

In the following sections, I will discuss the various téchniques of
analysis (Section II) leading to a very detailed description of the isobar
model (Section IM), in order to allow people both to use the method them-
selves but also to be familiar with the approximations, definitions, etc.,
involved in any of the quoted results. Sections II. A and IIL. B will be
concerned with the calculation of matrix elements while Sections III. C
and III. D will c’ontain the applications to formation and production reactions
respectively. In Sections IV and V, I will describe and try to evaluate the
results which have so far been obtained and finally in Section VI I will
attempt to summarize the situation and indicate in which directions we

will proceed.



. THE METHODS OF ANALYSING THREE BODY FINAL STATES

In the introduction I have already hinted at some of the methods one
might apply and I would now like to discuss them in more detail. I will
first deal with the approach in which one attempts to reduce the problem
to one of the stable two body scattering by suitable cuts on the data.
This will be followed by a discussion of the general methods of analysing
three body final states. .However the ambiguities, the variety of experi-
mental data required, and the difficulties of interpretation render these
approaches of little value at present making it necessary to use somewhat
more model dependent methods., The most successful of these models is
inﬁoduced and dealt with in detail in Section III,
A. SELECTION OF TWO BODY REACTIONS

The oldest approach to analysing three body final states is to attempt

to isolate specific two body reactions, e.g.,

TP — 1A (6)
rp— At | (7)

or
Q — 7K* (8)

This is done by selecting events in which the invariant mass of a pair of
particles lies in the required resonance band. As I have already indicated
this can be a dangerous business. In general the resonances are wide and
this means that at almost any point in the Dalitz plot their amplitudes are

still quite large. Thus even though we bhelieve we are selecting a clean
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sample of reaction (6) from the final state 1r+1r—n the px:esence of the
reaction (see Fig. 2)

Tp— 7 A ©)

.can produce appreciable interference effects within the A" band. Since

the helicity angle in the decay of the A™ is linearly related to the position
along the A™ band, the decay distributions (and hence density matrix
elements) are particularly susceptible to these interference effects. Of
course the higher the centre of mass energy the smaller the proportion
of resonance overlap and thus this technique becomes more reliable at
higher energies.

The reason for attempting this isolation is that the calculations are
comparatively simple (even if somewhat tedious). The complete expres-
sions for the production differential cross section and decay density

matrix in terms of partial wave amplitudes in the reaction
- + -
0+ 1/2" — 07 +3/2" » (10)

have been published (Brody and Kernan, 1969) and this has been the
reaction most exhaustively studied in this manner. The limited data has"
necessitated energy dependent analyses, i.e. ,' the partial wave ampli-
tudes are parametrized in terms of Breit-Wigner resonances and energy
dependent backgrounds and data at a variety of energies fitted simul-
taneously. This ensures continuity and hopefully reduces ambiguities
which might exist by specifying the partial wave energy dependence.

The results from analyses of this type are probably satisfactory

* for the large dominant waves whereas the smaller partial waves are

-6 -
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poorly determined. Such analyses do however provide a useful guide to
and check on the results of more sophisticated methods.
The final objection to this type of analysis is that one does not obtain
the relative phases of partial wave amplitudes for different channels, e.g.,
TN — wl
(11
— Np
because the regions of the Dalitz plot which would allow this are explicitly
removed from the analysis. As we shall see such quantities are of
interest in higher symmefry schemes.
B. MODEL INbEPENDENT ANALYSES OF THE THREE BODY
FINAL STATE
In general five variables are required to desecribe a three body final
state. These variables are usually three Euler angles specifying the
orientation of the three particle state with respect to some co-ordinate
system together with two Dalitz plot variables (wi and w;) giving
effectively the energies of the three particles in their ¢c.m. system. In
the case of formation reacﬁons using unpolarized targets one of these
angles does not appear as it corresponds to arbitrary rotations about the
beam direction. In order to use the data to maximum advantage it would
be best to exploit all the correlations that exist. However the correlation
between Dalitz plot populations and the angles requires specific dynamical
assumptions, e.g., a resonance is produced in a particular angular

momentum state.



In model independent analyses one selects regions of the Dalitz plot
and attempts to find the JP states associated with that area. The for-
malism for these types of analysis has been discussed exhaustively both
for formation (Cashmore and Hey, 1972) and production reactions
(Berman and Jacob, 1965). In both cases the angular orientation of the
three body place is considered, the form of the distributions and the
cc;rrelations present indicating the partial wave structure.

I will demonstrate some of the properties of this type of analysis by
using the reaction

’ aN — N (12)
as an example. In this case the differential cross section from an

unpolarized target is written as (Cashmore and Hey, 1972)

4
dts M/ 2 2\ .M

. Y WL(wl,w2)1L(6,¢)... (13)
dwldwzdcos 6 do L,M

where an integration has been performed over the angle about the incident
beam direction, 6 and ¢ the polar angles of the incident pion within

a co-ordinate system defined by the final state particles. The object of
any analysis of this type is then to determine the WII\J/I as functions of
Dalitz plot position. The WI{I are then analégous to the expansion
coefficients A and B of two body scattering differential cross sections
and polarization distributions. These W?J/I possess many similar proper-
ties, e.g., (a) interference of waves with opposite (same) parity lead to

terms with odd (even) values of L. (b) If Jmax is the maximum angular

momentum contributing to the reaction, and only one parity is present



corresponding to this value, then Lma_x =2 Jma_x - 1 (for J half integral).

However if waves of opposite parity are present with this value of Jmax

then Lmax = 2 Jmax’ (c) The WL are bilinear products of the partial
wave amplitudes B{;X(wi’ wé) (Cashmore and Hey, 1972)

M *
Wi~ 222 FEA AL BT BT s (14)

. JA TJIA
T JJ :
AA'

M A-A?

A complete parity ambiguity exists unless the final state nucleon polari-
zation is observed (Cashmore and Hey, 1972). This is equivalent to the
Minani ambiguity of two body scattering.

In Figs. 6a,b as an exar;nple, we can see the Wll‘:/j averaged over the
Dalitz plot for the final state 7r+7r*n. The absence of moments with L+M
odd is required by parity conservation, while the large moments with
L odd indicates the presence of waves of opposite parity. Ata givén
energy the maximum L present does give an indication of the largest
angular moment wave present. However one should not put too great a
reliance on this since in the region of 1700 MeV, the L=4 and 5 moments
are small where we know the F15 and D15 resonances are important,

f(wi, w;) we would like to extract

From the measured values of the W
the partial wave amplitudes for this Dalitz plot position. It would then be
possible to study the variation of these amplitudes with c.m. energy just

as one does in conventional elastic scattering. Unfortunately there are

many factors which reduce the value of this method.



(a) It is essential to ma.ké polarization measurements (preferably
of the final baryon) to give enough ng to allow the extraction of partial
wave amplitudes.

(b) The partial wave amplitudes are functions of the Dalitz plot
position, and-ideally we would like to know them everywhere. The deter-
mipation of the moments WII\:I requires ~ 1000 -~ 2000 events and thus we
cén only hope to obtain these WM integrated over regions of the Dalitz

L
plot. At this time the lack of experimental data does not allow the use
of even a coarse grid (characteristically there are ~ 1000 - 10,000 events
in a given channel at a given energy).

(c) The overall phase of the amplitudes is undetermined from one
Dalitz plot position to the next.

(d) Optimistically one would hope to see variations of the partial
wave amplitudes as a function of the Dalitz plot variables indicating the
association of a JP state with a particular decay decimal. However to
extract couplings to these decay channels still requires a detailed model
which predicts the variation of these amplitudes with Dalitz plot position.

However one must poiﬁt out that the results of such an analysis are
model independent and do represent a permanent record of the correlations
which exist in the data. Furthermore these methods are useful when
considering model dependent analyses in that they can provide an indica-
tion of waves which should be present (e.g., of opposite parity) and do

sometimes limit the maximum angular momentum it is necessary to

consider (although this can be misleading).

- 10 -
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In the case of production reactions one usually considers the angular
distribution in &, 8 and vy, the three angles of the problem (Berman and

Jacob, 1965), for a given region of the Dalitz plot

do 2 2\ ,.J
da dcos gdy ~ Z WinMa (wl’wz) Dapal@sB.7) o (15)
and the WJMA are again products of the partial wave amplitudes. These

results are published (Berman and Jacob, 1965) and we will see many of
the general properties later in our discussion of model dependent analyses,

If the object of our analysis is finally to measure the couplings to
decay channels then point (d) above suggests that it would be more sensible
to make a specific model Whi_ch will do this from the very beginning.
This will immediately specify the correlations between the angular
variables and the Dalitz plot position which we can exploit in our analysis.
Of course the drawback is that it does become a model dependent analysis.
However the situation is somewhat analogous to the state of 7N partial
wave analyses of 10 years ago., Then one performed energy dependent
partial wave analyses on small quantities of data. In this case we are
performing mass dependent (in the sense of Dalitz plot variables) partial-
wave analyses on similarly small quantities of data.

In the following section I will introduce such a model dependent
analysis and subsequently discuss it at length.
C. MODEL DEPENDENT ANALYSIS - THE ISOBAR MODEL

If we study Fig. 2 or Fig. 7 we immediately notice the existence of

strong resonance bands, the A and the p. Since we are not in a position

- 11 -~



fruitfully to follow a model independent discussion, this suggests a
course in which we insert as an integral part of our analysis the
presence of these resonances. The method then consists of writing the
transition amplitude for reaching a given final state as a coherent sum
of two body processes ‘as‘ indicated in Fig. 8. The transition matrix is

then written as (Deler and Valladas, 1966; Cashmore et al., 1972)

T(\V,wl, (02: a,Bv'Y) =

IJLS? I JLS¢
= CE:SI A (W) c X (Wawlsw23a5ﬁ"}/) BL(wlywz) cee
7 - (16)

where Wy Wos &, B,v are the kinematical variables required to specify

the reaction, CI the product of all isospin Clebsch-Gordan coefficients,

XJLSL contains all factors related to angular momentum decompositions,

BL(wl, wz) is the final state enhancement factor, e.g., a Breit-Wigner,
where £ is the orbital angular momentum in the decay of the isobar. The

IJLS¢

partial wave amplitudes A (W) are then obtained in fits to the data.

One considers many intermediate states in analysing the different

reactions:
N — 7N aN — 74, Np, Ne
A— 37 A — 7€, mp,
—_ . — * *k
Q,L—Knrm Q Ke, Kp, 7K*, 7r(K7r)S wave’ 7K*(1400)

and in order to unravel these, one would like to use all of the correlations
present in the data,
However it is possible to obtain more limited results by analysis of

the Dalitz plot distributions done. In this case there are no longer terms

- 12 -



corresponding to the interference of waves of different J or different
parity P and moreover the different magnetic substates (JZ substates)
in which'a resonance may be formed all lead to the same Dalitz plot
distribution. Thus it is now only possible to determine the contribution
of each J, P state. Furthermore, ignoring the «,p and ¥ dependences
of the cross section will lead to a less reliable estimate of these partial
wr;tve amplitudes.

The following section is devoted to a detailed discussion of the
calculations of these cross section formulae and their properties while

the results are reserved for Sections IV and V.

- 13 -



II. THE CALCULATION OF TRANSITION AMPLITUDES TO THREE
PARTICLE STATES
In this section I will develope the formulae for the transition to a
three particle state in formation reactions, e.g.,
7N — 7N 17
together with the similar results for the decay to three bodies of é’cates
obtained in production, e.g., |

N —»A2+N

B (18)
T

. In Section I A I will deal with that part of the calculation which is
common to both results — the decay of a spin parity state ]JP M> which
is defined in a co-ordinate system related to the final three particles.
Section III. B deals with the presence of two identical particles, e.g., two
7r+'s and the isospin decompositions which occur. In Section III.C I
specifically deal with formation reactions while Section III. D contains a
similar discussion of production reactions. Finally in Section II.E 1
remark on the methods of applying this formalism in the analysis of
experimental data.

Before I begin I would like to summarize ﬁle notation and symbols

I use in order to prevent their introduction in a random manner. It is
not possible to do this completely but I hope the confusion will be reducec.
I have also committed to the appendix the definition of states, angular

momentum projections, normalizations, phase spaces, properties of &

- 14 -



functions and any detail manipulations in an attempt to keep the text as
clear as possible.
Notation

Final three particle system. Let j, k and 1 represent the final

.three particles. Let the diparticle be composed of particles kand 1.
All quantities pertaining to the diparticle are indexed by the subscript j.
All quantities are defined in the three particle c.m. system S.

() Total three particle c.m. energy, total angular momentum and

parity — W, J, P

(b) Z-component of J in system S — M

(c) c.m. system four momenta — Qj’ Qk’ Ql

(d) Particle spins — Gj’ Oyer o

(e) c.m. system helicities — “j’ B By

() Intrinsic parities — M5 Mes M

(g) Mass of diparticle — w;

(h) Spin of c.m.s. helicity of the diparticle — jj’?‘j

(i) Outgoing orbital angular momentum and total spin — Lj’ Sj
In the diparticle rest frame we have the quantities

(i) Four momenta of decay particles — ék’ql

(k) Helicities of decay particles — Vi Vg

(1) Orbital angular momentum and total spin of the decay

particles — lj, sj

- 15 -



We then use LS coupling to give

SJ.=U'k+O'1
ji. = 1.+ 8.
TR
- (19)

S. =0, +]j.
i3
J=1L.+8,

J ] J

We assume that Lj and 1j are chosen to conserve parity

L+1.
P=n.nn-1) 17 (20)
j'k"

These definitions are summarized in Fig, 9.

Incident two particle state in formation reactions

Let a and b represent the incident particles. In this case the c.m.
system for the two particle state is the same as that for the three particle
state.

(a) c.m.s. four momenta — P, s Py

(b) Particle spins — 0,0y

(¢) c.m.s. helicities — Rasty

(d) Intrinsic particles — Mg My

(e) Incident orbital angular momentum and total spin — L, S

Then

S=¢ +0
a b} 21)

J=L+ S

_16_



and we assume parity is conserved so that
_ L
P=n 0 (-1) (22)

These are summarized in Fig. 10.

Production reactions

In this case we have three other particles to describe besides j, k,
and 1 of the three particle system we are considering. In this case the
j,k,1 c.m. system is not the same as the overall (ab) c.m. system. In
general all quantities pertaining to a,b and ¢ will be measured in the
overall c.m. system. -

(a) c.m.s. four momenta — Pys Py P,

(b) Particle spins — O O O

(c) Helicities — Boo by by

(d) Intrinsic parities — Nys My Mg,

These are summarized in Fig. 11.

For simplification in many of the following formulae n will be used

to represent a set of quantities

Decay of three particle system: n

il

i,3,P,M; L., S.; j.,l.,s,}
TR R M L

Formation reactions:

=
il

{ .
§,3,P, M; L,S;L.,S.;j‘,l.,s.}
PP T

Production reactions: n

il

1,3, P,M; L., S.; 15}
U e N K M R

In some cases it may be necessary to display one parficular quantity of
this set, in which circumstances I will continue to use n {o represent the

remaining quantities.

- 17 -



@

A. THE DECAY OF AN INTERMEDIATE STATE INTO THREE FINAL
PARTICLES
We first define a co-ordinate system S with respect to j, kand1 as
shown in Fig. 12, We now wish to consider the decay of a state | nJ M>
defined in this system to a state whish is the product of three usual

helicity states

inijkqulul> = leuj> lep.k> |Q1N1> (23)
i.e., we wish to calculate the transition
flé = <quj Qk“k Qlul IT] ndM> (24)

where we envisage the reaction as first proceeding through a quasi-two

body state followed by the decay of one of these particles

3 3
d'Q  d'Q
ndM _ m n
fu - Z/ 2Em 2En <Qj‘uij“le"tl'Tz!ern“an!‘Ln>
Hm
]

n

< Qm‘qun“n IT 1 | ndM > (25)

The isobar model then consists of writing
5° Q -Q -Q
(Q-Q-Qyp

)
<quijqulu1szlQmqunun> =6 (Qj—Qm) 6#-

Fm
QM IT,1Q p > (26)
so that
nJM _ '
= ; <@ QI T, 1-QA ><Qui-QA 1T, 10N> 27)

j

This is summarized in Fig. 13,

- 18 -
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1. Primary Decay T

1—

We write this using the decomposition into angular momentum states

(see appendix)

/ 1/2
<QU-QA T, IndM> = \ 2L (AWNTT 53% oy @ IME. IT, IndM>
0 T I R Vodr Q) M,pu. -2 YT
] } 3
(28)

where the arguments of the & function are angles QJ. = (<I>]., ®j’ —<I>J.), the
production angles of particle j in frame S, We can then>perform a further

partial wave decomposition converting from helicity states to LS states

(see appendix) -
. 1/2 (2L.+1)1/2
= (&Z —L_ ) ., 5,8 u-A) CL., S, T10,p.-A,
(Qj) ir @533 Syl Clhy 55 T10 K529
I ) <Q.IML.S, |T. InJM (29)
v <. M. st >
9M,uj-7»jJ j il

The last partial wave amplitude is independent of M, due to rotational

invariance and we will write it as

_ mhd
<QJ.JMLJ.SJ. lTlanM> = TlL.S.(W’ wj) (30)

2. Decay of Isobar Tz_

We wish to evaluate the decay of the diparticle and this is most

easily done in the isobar rest frame

o*

o*
k .
(9 lk)‘] (9 nl) <qy V), 4pv lszljj—Aj>

<Quy QI Ty Q> = L}:V @ vt
k"1

(31)

- 19 ~



The @ functions correspond to the rotations introduced by Lorentz trans-
formations not along the directions of k and 1 (see appendix). The isobar
when at rest is in a magnetic substate ljj— AJ.> with respect to the direc-
tion Qj since it was initially the y state in the two particle helicity state
.(see appendix). We finally require the matrix element to a product of
three helicity states as defined in Eq. (23). T'hus when we perform the
angular momentum decomposition of the helicity matrix element in

Eq. (30) we must convert the second particle 1 from the conventional x
state to an y state (see appendix). Inserting the angular momentum

-

decomposition gives

40 \Y? pra1\Y2
) COy, 01,8 1vs v

1 - = .——l
<q] 2 qlulszle >\j> (q 7) 1)
J;‘ | Sld 1 1_V1 j.-AL 1l [T,15.-A,>  (32)
C j - (9)] - ~AL LS, .~

where the arguments of the & function are Sli = (+qu, f)j~¢j), the decay
angles of isobar j in its rest frame defined using particle k. Due to
rotational invariance we can then write
| J
<qkjj~>\j1jsle2I Ji7h > = Dlisj (wj) (33)
Thus the final amplitude is then written as
JM ndM nd

j.
= T W,w) D) (w) (34)
. . 1L.S '\ l.s,
“Jnkul “Jukul i J JS] J

- 20 -



where

1/2
4.
nIM 1 law 295 .
G = = |22 C@.3.S.1p.-A) C(L.S.T0 .-\,
it 4%[Qj qk] ; 335518574 %) 0k
1
a (@,0.,-2)] Y C(@,0 s | c( 5.5.10 )
MNP T (@018 v CE 8310w,
k"1
j¥ oF . OF g.-v
2 ) o6y aE 05al eyt ! 35
D3 e @ %70 Doy O Do hIS) (35)

Note we do not include sums over Lj’ Sj’ lj’ sj as these are specified in
n, i.e., we are considering the transition by a very specific intermedi~
ate state.

The angles of the & functions are summarized in Figs. 12 and 14.

3. The Reduced Matrix Elements

(a) Initial Decay Matrix Element: T?(W , wj). It is usual to extract {rom
this the barrier penetration factors
L+1/2
Q. ’
R
JAW
which have the correct threshold dependence.
The charge dependence may also be removed by including the isospin
Clebsch-Gordan coefficients. Thus
L+1/2
Q. D i Do
n _ ] j > n \
ThW,0) = L (1L ) W, 0 (36)

JEW

IJ, IJZ isospin and z component of isospin for j

- 21 -
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P,

D . : . . : .
IZ isospin and z component of isospin for the isobar

I, IZ = Ii + I? total isospin and z~-component of isospin .

It is often common to introduce further Qj dependence through the Blatt

and Weiskoff barriers BL (Q }. These have the desirable property of
L,
damping the Q J factors at large Q] Other parametrizations may be

__-l

used which possess thls threshold behaviour, but in all cases we expect
the 'rIll(W , wj) to be essentially independent of w;e All analyses assume
this to be the case.

(b) Decay Matrix Element: (w ). We can again remove the charge

J J
dependence from the decay term

i.
lekl) (o 37)

D’ () = C{I', 1,17 IL 1
il J]

where Ik, 11; isospin and z-component of isospin for k

Il, I; isospin and z-component of isospin for 1
)
To evaluate D1 s (wj) one uses either the Watson final state interaction

i3
theorem or a modified Breit-Wigner.

Watson:
is . q,
sin & k
6. @)= =131\ 3 (38)
J j } )
QiR

5 — elastic scattering phase shift at the energy w;

g,
-4-‘%- — is a factor added to ensure correct threshold

behaviour.
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Relativistic Breit-Wigner:

js »Jw ' (w.)
DJ =L 0_j 7§
5 (@) = e (39)
] J \/-71' (wo—wj)-— 1w0rj(wj)
21,
. 4 @) ] q] (@) @ ‘0
' (w,) =T, .
j =il 1 @) (wo) wy (#0)
and w, is the resonance ‘energy.
Non-relativistic Breit-Wigner:
i. NT (w.)/2
D) (w) = i (41)

1
~w,) =1 (w,)/2
5550 Ve, o -t )3
and I‘j(wj) is defined as above.

Both of these forms are defined so that in the limit of zero width

Lim ID 3 (w )] = G(w(z)—w.2> 42)
Fj"’o J ] J J

In general the dependences of T1

the major assumptions and approximations of the isobar model.

and D on the subenergy w; constitute

4, Other Isobars

In the cases in which we are interested, each two body subsystem

may contain a number of isobars, e.g., in W;Tl’;’l‘l’ we can have p(I=1, J=1)

or €(I=0,J=0) states in either (7r-; T ) or (ﬂ’z 7 ). The total amplitude for

the decay of the state JM is then given by

M JMn J;
f = G G T W, w. ) D (w )
Hitky Zn: Hitiety 1L 5 Ls;

j
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i.e., we add all of the amplitudes together coherently. This does result
in some slight double counting but this has been shown to be small and
in practice is far less significant than the assumptions within the decay
matrix elements.

In making this addition if identical particles are present care has
to be made in making this addition in order to observe the correct sym-
n{etry. This is discussed in the next section.
B. THE PRESENCE OF TWO OR MORE ISOBARS, ISOSPIN

DECOMPOSITION AND BOSE SYMMETRY

We are mainly interested in situations with two or more pions
present in the final state and hence we require the final amplitude to be
Bose-symmetric. Furthermore we will concentrate on the reactions

7N -~ 7N (43)
A — mmw (44)

and use these to demonstrate a method of calculation which always
ensures the correct result. In the following discussion, I explicitly
demonstrate the Clebsch-Gordan coefficients of Egs. (36) and (37) and
derive the necessary factors of /2, etc., which must be inserted when
we have identical particles present.

The isospin decomposition also allows the determination of the same
partial wave amplitudes in different charge states where the interference

phenomena are different. In practice this is a valuable point .
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1. #N — 77N

Consider
1r+p - 1r+1rop (45)
— 7r+1r+n (46)

and decays through intermediate Ar states.

3 1
3>~ —-—{A11A17r1>+A2[A27r2>} @7

- J2

Here I use the pion not resonating to label the A state and the decay

oo

amplitude. The expression is clearly symmetric in T and T A1 and

A2 will COntain’the kinematical information associated with the decay.

Now

33 3 o 2
l5'2'~>= EA 7T-—f§ATF (48)

We next consider the decay of the A and introduce a transition matrix

element D which contains all the kinematics.

+ +
A —~ TP

+ 1 + 2 o
A »J%nn+]%wp

(49)



e '!‘,

and if we write G. = A.D. we have

“f‘ {jg_&m JEatt
2

}”‘ {f“? ™ ﬁ' ”;ﬂ
ﬁzp” /%(

rojes
nojeo

=_LA1D1 ﬁﬂ””f%ﬂ?ﬁ)
J2 L
2 1 + 2
+A2D2f 1p7r f;(\/;n j_lpﬁ>]
. . o + + +
_ [3(} zc;z] nSTp + [3G2 ZG] Timop -2 [G +G] wlnzn}
J30
(50)
Thus the amplitude for obtaining a 7ro7r+p final state is then
A2 [3(}1 - 2G2:l 61)
J30

Since there are two distinguishable ways of obtaining this and these must
be added incoherently (1 Evro, 257r+). The amplitude for obtaining 1r+7r+n
is

f % [Gl + G2] (52)

We now have the correct fa_ctors of J2 which account for the presence of
the two identical 1r+'s in the 7r+7r+n final state.

Similar calculations can be performed for all of the #nN states
obtained from chp incident particles and these results are contained in
Table I. This table includes the isospin decomposition of the incident

state.

(53a)

oo
S )
\%

+
Il p>= |
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- 1,3 -
l~np>=£l§—%>—j%|%—%> (53b)

2. I=0, I=1 Meson Decay into 37's

The other three particle final state so far analysed by the methods

I describe is the 3 final state. Consider an A1 or A2 (I=1) state decaying

via the intermediate states mp and re . Then we can write as above

[A> — ':/_]':; Ap [plﬂ'l + p27r2+ p3’n’3]+ :/—-1_- A [6 l‘[r1+ 627]”2 + 63 3] (54)

3
Then for
_ 1 +o0 1 o+ -
11> = j;—pw—j;pn
) (55)
11> = e%r

and subsequent p, € decay we obtain

1A>—»—-A ‘f [2 Ty E 23]Bp(2,3)
il s il

+ gimilar terms for o 7r3j
J% Ae-)f L [+" momg + T ]B @, 3)
\\/—3

+ gimilar terms for Tos Tg j (56)
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Gathering terms together we eventually have

J3 A ( -B (2,3) +B _©, 1)) + 2A€<B€ 2,3) +B€(3,1))}

A

B (3,1) +B (1, 2))+2A B_(3,1) + B (L, 2))}

p
¥
(B (1,2) + B (2,3)) + 24 ( (1,2) + B, (2, 3)}
S
5

» (% )
i ﬂ;,rgw 34 (-B (1,2)+B G, 1))+ 2A B, (2, 3)}
- Smhm f\/’s a (B @.3+B 2))+ 24 B_(3, 1);
7,‘1’7,‘;,, J3 A (_Bp(:z,;) +B (@, 3)) +2A€B€(1,2)}]

where the arguments of B represent the pions of the intermediate isobar,

the first labelling the decay. This expression is symmetrical in any pair

of pion labels because

B (1,2) = -B 1
,(1:2) =B (2,1)
B_(L,2)= B2,1

We see there are three ways of obtaining 7r+7r+7r— and thus the amplitude

for obtaining this final state is just J3 times an individual expression.

Similar calculations can be performed for the other charge states and also

the I=0 state. These results are summarized in Table I1.

3. Bose Symmetry

If one now follows the same prescription for calculating the angular

= momentum factors, etc. in the transition matrix element (in the same

overall co-ordinate system) then Bose symmetry will be automatically

. satisfied, i.e., we use the formalism described in Section III. A.
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4, Summary

In Tables I, I, and III which summarize the results we associate
the product of the Clebsch-Gordan coefficients with the pair of particles
resonating in the intermediate state. This is slightly different from the
text where we used the parficle not resonating as the label. However
the charge is obvious. Furthermore the subscripts 1, 2, etc., label
specific charge states.
C. FORMATION REACTIONS

In this section we will develope the formal%sm to deal with reactions

a+b—-j+k+1 (59)

We begin with a calculation of the transition amplitudes, then derive
formulae for all the observable quantities in reactions of type (17) and
discuss the unpolarized ‘cross section in some detail. Finally we review
the quantities of physical interest we wish to obtain using such an analysis.

1. Transition Amplitude

Suppose the initial beam has polar angles ®, & in co-ordinate system
S. We then consider the transition matrix element and make an LS partial

wave decomposition

S<nJM ITpl P M, Py >

il

1/2 1/2
2J+1 4W -
( yo ) (T) @M ua_ub(q)y @,-9) S<I]JM 'Tp ipJM!lap'b >
1/2

1/2

1l

J

),
M, n, -ty

(¢,@, -9 SmJMITpIpJMLS> (60)
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where rotational invariance implies that we can write ~
<nIM IT |pIMLS> = TgLS(W) (61)

It is often convenient to again remove the charge dependence from this

and also display explicitly some of its kinematical properties

L+1/2 - -
I8y = E—— C(Ialb IIIaIb) 355wy (62)
p [4W zZ zZi P

These isospin Clebsch-Gordan coefficients have been explicitly included
in Table I. Also note that Eq. (60) does not contain a sum over L,S as
n implies a specific choice of these.

The final amplitude for the process (59) is then given by a coherent
sum over all intermediate states

A =) A°
FabpHiiht 1 Hatpt i

1/2 1/2
4\V) (ZL-I-I)
= — C(o, o, Slu_p, ) CLSI [0p, - )
n’J’M(p in a'b " Hatp a b
M _J JLS . nd )
D ®e,-HT ~ W T W,w,) Dy’ (w))
. M, p - T1L.S, ls,
Byt TN P S Y s
©63)
nJM . . - . _ s
where G is given by (35). It is then convenient to define
By
ikl
JLS J
TOW, ) = TSOW) Ty o (W, ) (64)
] P lljsj j
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It is important to note that Z may be removed since

Z@JM* Y (@;@,“I’)@JM - ((I?,@,-—d)):ZQJJ - M(+q)',_®._q).)
M BTy L M HThy 3T

,0,-8) =27

(@,8,7) (65)
IJJ-—KJ-, l-‘a—lLb

J
7))
M Ha=Hy
where
R(CY,B,'Y) =R(¢],—®],_®J) R(é,@):'q)) (66)

2. Transition Amplitude when using a Polarized Target or Beam

In this case we have an initial co-ordinate system defined when there
is transverse polarization. If the polar angles of the beam are again
®,®d in system S, then the initial co-ordinate system will be related by

an extra rotation o about the 0Z axis of S' (S' is the co-ordinate system

obtained by rotation of S through the Euler angles &,8,-9), i.e., we

have
0XYZ  — 0X'Y'Z! Euler angles ¢,0, -
0X'Y'Z' — Oxyz Euler angles «, 0, 0 - (67)
0XYZ — 0xyz Euler angles ,0,a-%

0xyz is the frame in which the target polarization is defined. Then
nt_,n TR

AY =Ate (68)
woo T

3. Transition Amplitude when a Final State Particle Decays

If one of the final particles is a baryon which can undergo weak
decay, e.g., A —D x then the decay angular distribution will give
information on the parent baryon polarization. This decay amplitude

can then be directly introduced into the transition amplitude.

-~ 31 -



Suppose particle j of (59) undergoes weak decay. We express the
decay matrix in terms of canonical spin states with respect to the helicity

frame axes of particle j (see Fig. 15), i.e., the matrix element for

j—~ 142 (69)
is written as
BD =<om,o.m_ [T lo.u. >
mlmzuj 171 272.°D §7j
Z Lde < pj—m
= B C(olaz dlrnlmz) C(Ldecrj luj—m m) YL (ed, ¢>d)
Lde , d
(70)
where
L454
B = <010'2LdeITDIorj> (71)
Thus the final transition amplitude becomes
AL) m_ m ::ZBElmuAu By [ (72)
afp™ 1Motk T 1My HatpfitM
In the case of A decay obtained for instance in the reaction
Kp—Ar 7 (73)
many simplifications occur; aé =m, = 0 and
L B.-m
D B d i1
Bm mp, - Z B C(ldalcrj!uj—m1 ml) Y (()d,cpd) (74)
1727 1y d

Further if we perform scattering from polarized targets the total transi-

tion amplitude will be (using (68))
D D 1y -pp) @

A'u m.m. =Au mmuue (75)
a"Lbl.‘Zk“l afp™ 1M oMM
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4, Experimental Observables

In order to simplify this discussion, I will specialize to

M1B1—+ B2M2M3 (76)
_where

1t -

Ble— 5 Ml,Mz,M3—O

e.g., reactions

aN — N7u7w

(77)
RN — A7n

We assume the initial polarization is specified’in Oxyz and final baryon

polarization in the helicity frame (see Fig. 15). The transition amplitudes

are then given by Ed. (68).
(@) Unpolarized Cross Sections. The initial density matrix is

i

1
p =3 (78)
and the differential cross section is given by
= 1 i 'T] o .]_‘ \ 1 2 — ..]; 7 2
I,=Tr [Ap A 5 %‘, IAMI 5 %lAﬂl (79)

(b) Asymmetry from a Polarized Target. In this situation the initial
density matrix is given by

i_
p k=

BN | bt

:1+ P—bg-b] (80)

and the differential cross section is

_ i T . —-b.-—-»
Ip—Tr [A'p A | —IQ[1+ Py a] 81)
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where

|

Ioa =3 Tr [A'O'b A'T] (82)

(c) Final Baryon Polarization in Scattering from an Unpolarized Target.
In this situation the final baryon density matrix is given by

Iopf = Laad . 83)

8o

Then the polarization, PL, of B2 in a direction L is given by

=1 T
IOPL =3 Tr [A'A' O'L] (84)
(d) Depolarization Tensor, i.e., Final Polarization from a Polarized

Target. If PLj is the polarization of particle j in direction L then

T
PLj = Tr [p GLj] (85)
and we obtain

i
IpPLj=Tr[A'p ate ]

Lj
=1, [PLj +~§ P Dib,Lj] (86)
where
ID. . .=%Tr [A'cr ate (87)
0°ib,Lj 2 T Vib Lj

These results are summarized in Table IV.
We now turn to a detailed discussion of the scattering {rom an

unpolarized incident state.
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5. The Differential Cross Section from an Unpolarized Incident State

In the appendix I give the phase space which corresponds to our
normalization of states and this leads to the following differential cross

section for reaction (59)

o 1 9
v =5 @+ (o, + 1) %: A, do (88)

where Ap is given by Eq. (63).
(a) Conservation of Parity. The variety of terms in this sum can be
reduced by understanding the effects of parity. This is equivalent to

setting p — -1 in (63). We write

J

n n..n_’j
=g T D (89)
Fabpiifd  TH lj 85
and it can be shown (Cashmore et al., 1972) that
G+ 40, - O U A0, HU, O *
n _ a Pa b ™Hp i e e e W
8-y = Malpiiyeny (1) -1 (5,) O

For any specific problem this reduces the number of independent gz. In

the case of reaction (76) we have

n _ BeHi ny*
g, =D " " (g,) ©1)

where Ky and pgare the helicities of the incident and final baryons. Since

T is independent of ¢ we finally obtain in this case

Bty x
A =y Pl AT pl ©2)
-t W n ljsj

(b) The Cross Section due to Isobars in the (kl) system and the Relation

to Two Body Scattering. We first calculate the cross section due to isobars

- 35 -



o

in the (kl) system and then relate this to the equivalent expressions for
stable two body final states through the zero width approximation for
these isobars.

Using the fact that we can integrate over o (the angle of rotation

about the incident beam) we can write
dp = -—-—w-l dw;.Z dcos GJ. dcos® d& (93)

The total cross section is then

g, Q.
‘fn ZZgn m Xn(W, )X (W,w)—k-l 2dcos9.doos®d<1>
Wp ¢ nm J J J
(94)
where

= _ 1
Z/: @, + )20, +1) %

and

Xn(W,w)—T (W,w)DJ ()
JJ

The above expression can then be reduced to give (Cashmore et al., 1972)

_ (2J+ 1) n 2 2 -
- —% ; (20'a+1)(20'b+1)/lx ("V’wl)l dw] (95)

where we see that isobars of different quantum numbers in the (kl) system

do not interfere.
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i,
If we now use Breit-Wigner form for D.J (wj) and take the zero

l.s.
)]
width limit the cross section becomes
J.
T 2J+1 j 2
o = %L T W, w1 (96)
p2 4 (@0, + D)0 FT) LSLJ.SJ. 0

which is the usual form in two body scattering.
Finally we note that our forms of the kinematical factors (see
Eqgs. (72) and (62)) mean that the total cross section has the correct

threshold dependence, i.e.,

T oo __12_ p2L+1 Q?L3+1 o7)
]
p
6. The Quantities of Physical Interest
The object of analysing reaction (59) is
(i) to measure the partial wave amplitudes ™ where
n_ ~JLS - -0d
T = Tp W) TlL.S.(w’wj)
1]
Lj+1/2
L+1/2 Q.
~ 2 ] oS W) 11 5 W) (98)
Jaw J4wW i7j
and we define
n JLS nd
T = To (W) TlL.S-(\V) (99)

3]

The variation of this quantity will then indicate the presence of resonances
(together with their decay channels) and its values can be compared with

theoretical predictions.
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3 -
(ii) to measure Dll(wj) in some specific cases. This has been used

to try to determine the JI=O(1r7r) phase shifts at low energies, a difficult
thing to do by other techniques, Unfortunately the results are very
dependent on the form of the model and there are some problems of
interpretation making this a much less rewarding application.

In the rest of these lectures I will concentrate on (i) as these are
the most reliable results of this type of analysis and are providing the
most excitement in this area of physics.

I want finally in this section to list the iso‘tgar states that we have
considered in our analysis of

7N — 7N (100)
for Ec. m. < 2000 MeV together with their partial waves. We have so
far only considered the prominent A, pand € (=0 7n) final state inter-
actions and their partial waves are listed in Table V, where the notation
is Lin’ Lout’ 2I, 2J. One can easily see how rapidly the number of
partial waves grows. Furthermore certain aspects of the data already
indicate that an improvement will be obtained by inclusion of P 117 D13
and F15 isobars particularly in the 7r+7r+n final state.

D. PRODUCTION REACTIONS

In these types of reactions we are concerned with three particle
subsystems in final states containing four or more particles, i.e.,
reactions

atb —-c+ X

Lj+k+1 (101)
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of which there are many examples at present being studied, e.g.,

T+ P —»»p + (Al’AZ’A3) (102)
Kp —-p+ (Q,L) (103)
nK,p+p — m,K,p+ N* (104)

These are sketched in Fig. 16.

The variables we require to define the particles a, b and ¢ have
already been given at the beginning of Section I, We do however have
to introduce a new co-ordinate system S' in which to describe the pro-
duction properties of the sfate X. 8'will be related to fhe other particles
a, b and ¢ and will reflect our prejudices about the type of production
process occurring, e.g.,

(i) S' will be the Gottfried-Jackson system if we are interested in
one particle exchange (see Fig. 17). 0%!' is defined as pr and 0Y' by
f;in A —ﬁout in the jkl rest system.

(ii) S' will be the helicity frame if we are concerned with S-channel
helicity éonservation or absorption model predictions. In this case 0Z!

is defined as —Fou in the jkl system. 0Y!' has the previous definition.

t

1. Amplitude for Production of X and its Subsecuent Decay

We assume that X is produced in an angular momentum substate
|ndM> with respect to S'. Let the amplitude for the production of this
state together with a final helicity Ko of particle ¢ from particles a and b
be

P
rIMB E wy (105)
Pabpte
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where W is the mass of the three particle system, t is the four-momentum
transfer to the three particle system and E is the total c.m. energy (i.e.,
in the ab system).‘ We also include n in the state definition at thisk point
to account for the fact that different channels of the same JPM may be
produced with different helicity changes at the other vertex. In general,
I will not include the total c.m. energy E in the arguments of R but it
should always be understood to be there.

In order to describe the subsequent decay of X we require the

following transition matrix element

ndPm _
Aﬂjﬂkﬂl = S<anijkqulul |T| JPMn >
= Zn: §Q Qi QI TITPmn > (<JPmn | TPMn > (106)
_ J
= sl T Pmsg 95y (@0, (107)

where a,8,v are the Euler angles defining the transformation from S to
S'. We have already calculated the first factor in this sum — it is just

the > JM of Section III.A. Thus we can write

”Jp'kul
JPM ndm  .nd J; I

AN = T W,w) D (w) D (e, B,7) (108)

s e | 1Lij J ljsj i’ T mM
ndM  nJ Jj

= F T W,w.) DI (w) (109)

. 1L.S, 1.8,
Kt i Pooasd

Note that I have just written the amplitude for reaching the final state via
one intermediate isobar state. The total amplitude is again obtained by

coherently adding the terms due to other isobars ensuring that the correct
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symmetry properties are obtained. The forms of Tf IIIJ-S and DIJs (wj)
1] 3]
have been discussed in Section II. A.

2. Properties of Production and Decay Amplitudes under Parity
ndM

| afptec
S' in which the Z axis is defined by a polar vector and the Y axis by an

(@) Production Amplitude: R Consider a co-ordinate systiem
axial vector, e.g., the Gottfried-Jackson system as defined in Fig. 17.
Then

RnJ M
”a”b” c

<¢q¥o. Tl v >
qc“c qa“a. qb“b

-

IP"lPTP”lPIz/)“ o>
qa”a qbub

<¢JM¢?{ "

e

o ~-u +0 —-pr+O' ~U

a‘a b c'c

<orm¥_ ATl v >amn D
AeHe “AyHy G Ry

1

4 -1 _ _ ) . .
where PTP ~ =T and P¢JM = nJcpJM, le., nyis the parity of state X.
If we now use an operator 0 which produces a rotation 7 about the Y

axis we have

0y =7

—

g4 g

Oy = D70y

N.B. this assumes the Z-axis is in the production plane.
Thus eventually we have

TqH 0 Hp o H

JM _nd-M a
R N3N0 (1)

- 17 ™M (110)
Hatpte “HoHyHG

R
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ndM

Bt H
k1
are most easily seen by setting p — -y and following a similar calculation

(o) Decay Amplitude: A In this case the properties under parity
to that for the formation reaction (Cashmore et al., 1972). The result

we obtain is that

S0 SN Y O Mo DS Mot S "o T i Wit 'S £ U L o

gy - OO D) -1 Fupn| Tins & w) Drg (w)

BEREE kL i J7)
(111)

3. The Cross Section and its Properties for the Process a4b  ctj+k+l

The differential cross section for the process is then given as

5
dOW, b, p by ity 3 g nIM 2 2.2

P 9 «< R# I (W:t) A/J'“ (W,CY,B,'Y, wl’ (1)2)
da dcos f dy dw]dw, M Hafpte !

(112)
i.e., the production amplitude R is a function of W (the mass of the inter-
mediate system) and t, while A is a well defined function of W, @, 3,7, w“i
and w;, the parameters necessary to describe the final three particle
state. .
Note here we have five variables describing the decay whereas in the
formation reaction (for unpolarized incident particles) we only require

four. This is due to the fact that a, b and ¢ define very specifically the

initial co-ordinate frame (just as a polarized target would).
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Thus if we consider the situation in which we do not observe the
polarizations of the final particles in scattering from an unpolarized
target we have

2

JM M 2 2
do e Z ’Z RE u’b‘u (W:t) AE uk# (W’ayﬁ,y;wl’wz) (113)
Hobph ndM a’b"c J k71
|
T Xk ' T 1%k
o Z Z gIM gUIIM™*  ndM n'I'M (114)
Ho by JMn Habphe Hatphe “j“k“l ‘uj“k‘ul
a’bc
J'M'n'
bty
nn' ndM n'JM*
D DI DR (115)
by ndM MM ”j“k”l “j“k“l
J n'J'M!
where we have defined an unnormalized density matrix
nn! ndM n'JrM™*
Pt = > Ry, R (116)
HakpHe affe Hafpte
This density matrix possesses
(i) the usual property of hermiticity
nn' _ n'n*
PMM! = PpM (117).
(ii) the property from conservation of parity of
nn' J+J'-M-M! nn'
M/If = nnnnt ("' 1) p_M_M! (118)
o If J=J' and n=n"
& nn M- nn
Pyt = 1) _M-M! (119)
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4, Structure of Cross Section

We can now demonstrate some aspects of the structure of these
cross sections which will lead us to well known results.
We first display explicitly the «, B, y dependence of the distributions

&0 E pnn' (Z @an(a,B,'y) @il&.(a,ﬁm...) (120)
m!

L )

A g
The only terms containing
«, B,y, Mand M’

If we first integrate over a we obtain the result that m=m', i.e., the
dependence of the differential cross section on g and ¥ is given by

do « 3 oo 2 o057 2]y, 0.6}

nn'’
MM

. Z pMM'{Z @] 11 0.87) DT 0,87 ()™ M} (121)
MM

We can now use the result that

@7 (0.87) T L 0,8,7) = ; C(7,3'Lim, -m) C@J'L|M, -3)
L

@0,1\’1—1\«1‘(0’ B)'Y)

M'-M

4 172
) Y, B

= Z C(J,J'L|m, -m) C(JJ'LIM, -M") <§ETF_1

L
(122)

to display the (B,y) dependence of the cross section (121), i.e., the

presence of spherical harmonics Y?’ with m# 0 immediately implies the
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presence of off diagonal terms in the density matrix and furthermore the

maximum value of L can be a guide to the maximum J present (L< ZJm

ax)

If we now integrate over «, 8 and ¥ (i.e., we just look at the Dalitz

plot population) we can use the orthogonality properties of the & function

to write _
dza Z nn' | 123
T2 2 % oy (2o - - - (123)
dwldwz n,n' \'m
J=J
M=M!

Thus the Dalitz plot population depends only on pggM and does not contain
any terms corrésponding to interferences between states which differ in
J or M. Moreover since M does not appear within the parentheses we
find that the Dalitz plot population is independent of M, the magnetic
substate in which the state is initially produced. This result is expected
since by integrating over «, B8, and vy we have effectively destroyed any
knowledge of the initial orientation.

The other result we would like to demonstrate is that waves of
different parity do not interfere in the Dalitz plot distribution. To do this
consider the interference of an isobar of type j with one of type k. We

already know that we only have to consider states of the same J and M,
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and thus the general term is -

2 ' .
(21 . 2 < Z [ pnn AnJM () An,JM (k)] da dcos B dy
M

MM Bty Hoph B

dwl dwz uj#kul J

5 1 1
. / > 2o [pﬁlMAEfM(j) A g

B p

nn' nd-M ,n'J-M* |
+ o MM ATI A_ﬁ ] da dcos S dy

5
M,0 nn' ndM,. 'JM *
“fz Z (1" ) ) PyviM l:A_. (3) An_. (k)
M K
~M *
I_IIJ M (k)] do decos B dy
[ p

But we know that

*
> f AP AT da deos g oy = 471,10
Hibyy M i

i.e., independent of M
2 )
do nn' M,0] .Jnn' .
W o pMI\’I [1 - —"—2"—] A (J,k) [1+’rm’]
wq dw,
Thus if n=-n', i.e., waves of opposite parity
2

dc

= ()
dw?dw‘;
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Thus we have the well known results that

(i) states of different J do not interfere in the Dalitz plot

(ii) states of different parity do not interfere in the Dalitz plot

(iii) the Dalitz plot density is independent of M, the magnetic
substate in which a state is produced.

5. Application of Analysis to (K)74+N — (K) 7+ 7+ 7+ N

Here we want specifically to consider the ease one of the incident
particles has spin 0° and is transformed into a three body state, i.e.,

production of the Al’ Az, etc. We can write the cross section

2
ndM ndM 2 2
= Ruuf W,t) A W, a, 8,7, Wi wz) (128)
n 1

do «

Hikg
where Ky and u g are the initial and final proton helicities and uj=yk=ul=0.

As before we can define a density matrix

1 t T Tk
nn'  _ E RnJM RnJM

p , =
MM Hibe K o By

(129)

Clearly the object of any analysis is to determine the elements of the

density matrix

A\ 174 1 X
W« pon AR AT (130)
ndM
n'JIMY
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This equation will always hold even if we bin the data in W and t, i.e.,

we integrate over certain regions

t
2
nn' nJM n'JTM"' *
pamgr W8 = D / RV 1y R W,t) dt (131
e Jt Hits Hit's
Hifs 7t '
In Table VI I have listed all the waves one might use in studying A8y

decays considering only well known strong final state interactions

‘A VA, — Te
12 (132)
— ﬂp
For the strange particles we have
Q,K*(1400) — Ke , T (Km)
S-wave (133)
—- Kp , n K*

and there will be twice the number of amplitudes to consider. If one wishes

to consider higher mass states, the A, and L, then we have to include

3
amplitudes corresponding to decay into pseudoscalar and tensor mesons.
Even if we restrict ourselves to J< 2 we realise that we have an enormous
density matrix to determine, €.g., a 20X 29 density matrix. This will
contain 841 complex elements which parity and hermiticity reduce to
approximately 841 real numbers. These must also satisfy certain con-
straints, e.g.,
2

[Pijl < Pii Py

The imposition of these constraints is not entirely trivial and the

task is one of certain difficulty! Instead one makes simplifying
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assumptions. These fall into two classes

(i) Resonance approximation — here one writes

o = o Ch e (134)
e.g.,
1 i have the same density matrix just different
— TE couplings to the final states. |

Furthermore these couplings are assumed to be independent of M, i.e.,
1" M= 1, 17 M=o decays have the same C. This immediately reduces
the number of parameters to (17x17) + 9x2 ~ 300, This is the approach
followed by the Illinois group. .

(ii) One parametrizes the density matrix in terms of the production

amplitudes

nn' ndM n'JM'*
PMM! = R R (135)

and then attempts to determine the RnJM.

This has the advantage that we
now only have 29 complex numbers to determine (58, if we allow both

spin flip terms and spin-nonflip ter-ms at the proton vertek) and the rela-
tions amongst density matrix elements are automatically ensuved. How-
ever there is a disadvantage in that we have to assume that RnJM are

constant in any bin we consider or at least have the same t dependence,

In reality

1 — 1yt LEES T . 17t —
pi\l/?Mv(.W,t) ='/]RHJMRn IM™* o ai #RnJM(W,t) pi'd M‘(W,t) AWAL

(136)
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Even after these simplifications the number of parz-tmeters remains
large and in order to make the problem tractable it is then essential to
choose a subset of the partial waves. This is done in all analyses so far.

In using the last approach it is essential to realise that we really
only determine the density matrix, the production amplitudes although
having a physical foundation at this point only serve as a parametrization.
Of course with more polarization experiments one will eventually be in a
position to measure these.

6. Results of These Analyses

I want finally to list the results that one usually sees quoted from

these analyses.

(i) The cross section in a given JP state is given by

. /
J _ nn' ndM ,n'JM'* 2, 2
o _/1\2 :' P A A da deos B dy dw] dw,

nn'

_ nn' ndM,n'JM * 2,2
—f§ pug A A do deos B dy dw] dw,  (137)
nn'

Note that we retain n,n' even though J=J', P=P', M=M' since these still .

contain the different possible decay channels, e.g.,

+
1 — mp — s-wave 1
— T€ — p-wave 5

T . . P .
(ii) The cross section for a given J° and a given decay channel

P 2
o0 f%l: pﬁ‘M 1AMM 4o deos g dy (138)
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P P
Note (TJ # Zn crnJ because of the presence of interference terms

between different n, e.g.,

+
1 — 7mp — s-wave )
— 7€ — d-wave i

(iii) Normalized density matrix

pnn'
nn' MM!
PyvMr ~ Z pnn (139)
M MM
P JPJP
Of course within any J~ state ZM P MM # 1 but these can be suitably

renormalized.

(iv) The complex coupling constants c™. As we will see the phases
of these are important and fromthe C" canbe deduced the branching func-
tions for resonances. |

7. Application to K,p)m+ N — K(m + 7N

The next important application of this type of analysis will be to those
types of reactions drawn schematically in Fig. 16b. I just want to rémark
at this point that for K, r induced reactions the problem is somewhat
simpler. Since these pa.rficles are spinless we do not have to consider
- spin flip terms at this vertex. We do of course have to consider the
transition from protons of different helicity to the various n, JP, M states.

However as we have seen these amplitudes are simply related by parity

fr-xJM= f-nI‘J—Mn -1) (-1) J-M (140)
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where -,+ are the initial helicities of the proton. For pp interactions
this simplification clearly does not occur .

8. Application to Polarized Target Experiments

In this case it is most convenient to consider the helicity system. If
fhe target proton is transversely polarized then this will define an initial
co-ordinate system S" . The co-ordinate system S' will then be related
to S" by Euler angles 0, - Gp , ~¢>p where Gp énd qbp are production angles
of the final multiparticle system with respect to S'" . This is illustrated
in Fig. 18. Note ep is defined for a given Wand t. We then have

-

amplitudes

ndM ndM _i‘ui(pp
RMYMw 10 ) =RV W, 4 e
Kits ¢P) bt )

(141)
where Ky is the initial proton helicity.

We can then repeat the calculations of Section III. C in order tobbtain
expressions for the asymmetries from polarized targets, the polarization
of the final recoil nucleon and the depolarization tensor of the nucleon.

We will again obtain Table IV with the charge o — —-<1>p . Itis also

important to remember that the order of the proton helicities is reversed:

in the table.
ndM

9. Structure of the Production Amplitude R u (W, 1)
c

It is often convenient to extract the minimum angular momentum

structure which must exist in this amplitude. Again the calculation is
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most easily performed in the helicity system in which we have

ndM _ '
R“b“c(w’t) —S,<nJM qcucl Tl qH, Gty > (142)

where S" is a co-ordinate system defined with respect to the

incident particles. If the production angle is 8_ and the initial state
I

unpolarized we have

ndM T ndMr
R, WY~ 2:@ (0,-6_,0) R
R = M-, B by p Pt

JMr

~ Y, & ©,-6_,0) R® (143)
T M-obg, by Pt ipHe

where T is the total angular momentum. For small 9p we can write

. M—uc—ubl . IM-uc+ub|
r ‘
d (0,-6_,0) ~ cos (—R sin (—R) (144)
M-p s -y p 2 2
IM-p i, | M-ty |
nJM 6 5 JMn
R™M W, t) ~ |cos £ sin £ R'THW, 1)
MpFe 2 2 Fpte
(145)
If M—uc = =Py (no helicity flip)
I2ubl
0
RnJM = (cos "Q\) R'nJM (146)
Fpte 2 Fpte
If M-—uc = -ub+1
| -2u, +11
ndM 0) k 0 ndM
R ~ |cos 5= sin —%3- R! (147)
Fpte Fpte
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=

Now since
_ A2 - =2
t=(E,-E) - (p,-pp)

2, 2
mc+mb - 2E EC + ZpbpC coS Bp

i

b
and

.2 2 -
tmiu,_ mc+ m - ZEbEC + ZpbpC

it~ tmin: Zpbpc (cos 6_ - 1)

P
= 2p p_ 2 sin® 6 _/2
PpPe p

sin 0./2 ~ (-t ) 1/2 (148)

We have the well known result that amplitudes with a net helicity flip of

A behave as ~ (t- tmin))\/ 2. This minimum t dependence can then be
displayed explicitly and we then have to determine the R'nJM. If such a
c

technique is employed then the approximations used in the parametrization
of the density matrix (see Eq. (136)) can be improved.

Of course this will not necessarily be the total t-dependence of the
amplitude but it is the minimum structure required by angular momentum
considerations.

E. FITTING THE EXPERIMENTAL DATA

In fitting the experimental data, either from formation or production
reactions, it is quite common to integrate over some of the variables,
i.e., one fits projections of the data such as the Dalitz plot population.

However ihe best results will be obtained by making maximum use of the

correlations that exist in the 4 (formation) or 5 (production) dimension
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variable spaces. This is most easily done by the maximum likelihood
technique. One constructs a likelihood function
N ——
£ =11 o(r, X.) (149)
i=1 !
where ?{1 is the vector corresponding to the ith event in the multi-
dimensional space, T is the vector of partial wave amplitudes and
o(T, '}_fi) is the probabili’éy (cross section) for such an event as calculated
in Sections III. A, II.C, and III.D. Then log . is maximized by varying
the parameters 7 .
Finally a check is usually made that these set of amplitudes T corre-
spond to a good fit to the data by calculating the X2 for fits to the pro-

jections.

The results I will quote in Sections IV and V are obtained using this

| technique.
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IV. THE RESULTS OBTAINED FROM FORMATION EXPERIMENT
In this section I will attempt to summarize the situation that exists
in the analysis of formation experiments. The results at this time bear
mainly on the classification of resonance states and on understanding of
their various de'cays within these classification schemes. The major
results have come from analyses (Herndon et al., 1972) of
TN — 7N (150)
but significant measurements have been made in the study of (Mast et al.,
1972)
Kp—Anr (151)
and (Bland et al., 1969)
K'p — KN (152)
Before beginning detail discussion of each set of results I would like
briefly to review the motivations, some of which I have already noted in
Section I, for pursuing such a study.
(a) Identification of Resonant States and Classification in Supermultiplets
In the past few years the existence of many resonance states has been

claimed from the partial wave analysis of two body reactions

1T+p - 7T+p

I=1/2and 1= 3/2 N* (153)
Tp —TD, n
Kp— Kp, B°n

I=0,1 Y* (154)

— Aw, Zm
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Many of these states are very inelastic, Furthermore the identifi-
cation of low spin resonances tends to be difficult in the presence of high
spin states. For example in the resonance region of 7N scattering at
Ec.m. ~ 1600 - 1700 MeV there are two spin 5/2 resonances, the I'15
and D15. However only after extended analysis were the lower spin states
SS}, S11, D33 finally identified. Both of these comments imply the need
to study inelastic reactions. The first because this is where the reso-
nances may be prolifically found and the second because momenta are on
average lower and thus higher angular momentum states are expected to
be suppressed (L ~gR, with R ~ 1 fermi, is smaller). Indeed the Y*
situation would be in very poor shape were it not for the analyses of the
inelastic two body final states Aw, Zw. Since the cross sections for 7N
and Amr, Zrm, K7N are large one hopes for further improvements from
study of these states.

With the identification of many of these states classification within
supermultiplets becomes possible. We are all familiar with the SU(3)
classification of states into singlets, octets and decuplets. Of course
there are many other irreducible representations of SU(3) but these are
the ones predicted by simple guark models (qqq for baryons and qq for
mesons). For N* state with a given JP all the other members of the
octet must exist, just as for a A state all the other decuplet members
must be present. At this point SU(3) classification and the quark model

17 57 5+)

. 1™ 3
works surprisingly well — many octets <-— y 5 05 15 1 5

2
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+
) are almaost complete. The analysis of reactions

Do ~3

3+
decuplets (-2- ,
KN — KN, KaN (155)
if they demonstrated the existence of Z*'s (S=+1 baryon resonances)
could be fatal to simple quar) models (requiring qqqqq) and allow myriad
of other resonant states. However it is possible that such states might be
dynamiecal in origin thus allowing the quark model a reprieve.

Another highly successful symmetry scheme is that of SU(6) x 0(3)
(SU(3)x SU(2)x 0(3) of the quirk states) (Dalitz, 1969; Greenberg, 1969).
This attempts to-group togéther known states of different JP into yet
larger multiplets. Of cours« fewer of these supermultiplets are identified
as they contain more resonant states. Again the most popular model for
baryons is the L excitation ¢ymmetric quark model of which the [56, L:O+:|,
[70, L=1—], [56, L=2+] multij.Jets appear on a sure footing.

However many states still need to be identified and the analysis of the
inelastic reactions should prwvide the information with which to confirm
or confound these schemes.

(b) Couplings to Decay Char:cls

The success of the clasniiication schemes suggests that we might
attempt to apply the same sys:metry groups to the coupling constants. The
application of SU(3) to the der:ays

N* A - N7
‘/(";, Y’i — Am, Zm, KN

*

I

et
—_ =T
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~ has already bée'n discussed exhaﬁstively by many authors (Levi Setti,
1969; Plane et al., 1970). The undoubted success is summarized in
Fig. 19 where the agreement is perfect (the one discrepahcy has later
~ been resolved (Plane et al., 1970)).
| With the apparent success of SU(6) classification schemes one would
like to apply this symmetry group to the decays as well (Faiman, 1971;
Faiman and Plane, 1972). This means that we can now relate

N* — Nr and N* — Ar
(since the N and A belong to the same SU(6) multiplet) as well as the
decays of different el states. Furthermore sh;ce the p and 7 reside
within the same 35 of SU(6) we have relations for N* — Np decays. Itis
immediately apparent that one needs to analyse the #7N final states and
with successful analysis of Awm, Zar, K7N one could again make the
SU(3) tests for |

N* — 7A

* YV . ovE
YO’Yl 1rY1

(1385) , ete.

The measurement of these decay couplings is clearly the next step
in the developement of our understanding of the resonance region,
(c) Multi chahnel Analyses

If one can obtain a description of the inelastic states (i.e., the three
body states for aN) for I <2000 MeV we will essentially have all the infor-
mation possibie on the 7N interaction. In any analysis we will be able to

exploit the constraints of unitarity to the maximum effect. This should

allow us to give not only resonance parameters but the complete analytic
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structure of the T-matrix. This will then be a sensitive test of any
dynamical theory of resonances just as the coupling constants described
in (b) are a fundamental test of the symmetry schemes.
(d) Dynamical Results

With the advent of inelastic partial wave amplitudes it will be possible
to‘construct finite energy sum rules relating the low and high energy be-
haviour of the scattering amplitudes, as was done in 7N scattering. This
should allow a new study of duality in a different set of reactions.

Clearly I have not been exhaustive in listing all the motivations but
these few emphasize the great importance of this type of analysis.
A, N — 7aN

This reaction has been extensively studied by the SLAC/LBL collabor-
ation (Herndon et al., 1972; Cashmore, 1973) and many of its results are
confirmed by or consistent with other analyses (Bowler and Cashmore,
1970; Chinowsky et al., 1970; DeBeer et al., 1969a; 1969b; Brody et al.,
1971; Mehtani et al., 1972). I will concentrate on the results of this
analysis for a number of reasons.

(i) It spans thc ¢.m. energy range 1300 < E < 2000 except for a
100 MeV gap 1540 < E < 1650 where the data is not yet available for
analysis.

(ii) Tt utilizes the data in the most efficient manner making simul-
taneous maximum likelihood fits to the three major channels at each
energy

TP — A (156)

- 60 -



Tp — 7r_7r°p (157)
1r+p —- fﬂop (158)

(iii) Excellent agreement with the inelastic cross sections predicted
by elastic phase shift analyses kEPSA).

(iv) Continuous solutions have been identified throughout the energy
range from the independent solutions at each energy. This allows the
presentation of reliable Argand diagrams for the first time.

(v) The analysis is of the type described in Section HI.C the inter-

mediate states considered being

N — 1A
— Np S(the total Np intrinsic spin) = 1/2 or 3/2
denoted as p; oT pgy
~ Ne

The results are presented as partial wave amplitudes in an LS
representation of the T matrix. The energies and the data considered
are listed in Table VI where its lack of data from 1540 to 1650 is par-
ticularly conspicuous.

(vi) The fits to the experimental data are of good equality although
they deteriorate at the higher energies. As can be seen in Fig. 20, a
4-D representation of the fit to 1r+7r—n at 1690 MeV, the enormous varia-
tions of structure are extremely well reproduced. Furthermore the
partial wave amplitudes make excellent predictions of the 7r07r0n Cross

section as demonstrated in Fig. 21.
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1. Description of Partial Wave Amplitudes

Before showing the Argand diagrams of the T matrix elements leading

to inelastic channels I have to emphasize one point. In analysing inelastic

reactions at a given energy E the relative phases of the individual partial
Qaves are only determined and not the absolute phase (a distinct difference
from elastic phase shift analyses — there one essentially has the unscat-
tered wave to define the absolute phase). Thus in order to present

Argand diagrams it is necessary to specify the absolute phase at each
energy (i.e., one free parameter for all waves, since their relative
position is fixed). This has been done by usinglK-matrix fits to the P11,
D15 and F15, F35 waves in the low, middle and high energy regions of

the data. Now unfortunately the absence of data for 1540 < E < 1650
makes it difficult to be certain of the correct continuity. Indeed the
presence of two marginally different high energy solutions indicates that
it would be possible to obtain radically different continuity through this
region., I stress this point as it is of crucial significance in the compari-
son with theory at the present time. The Argand diagrams I will show
correspond to one solution (A). Solution B differs qualitatively in P11
waves at the higher energies but at lower energies (< 1540) it is possible
that the partial wave amplitudes may be rotated by 180°. I will not discuss
solution B as the work on it is {far from complete, except to point out the
changes of interpretation it would produce. Of course this would be

unnecessary had the data in the 'gap' been analysed!
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(a) I=1/2 States. In Fig. 22 are the Argand diagrams of all the I=1/2
waves determined in the analysis. The figures contain a great deal of
information and I will only point out the most important and striking
features.

(i) The considerable motion in the Argand diagrams is not sur-
prising, essentially all the structure is associated with the existence
of known resonance states.

(ii) The following resonant states are clearly observed (the notation
is L, L', 21, 2J _where L is the incoming orbital angular momentum, L!
the final state orbital angular momentum, I the isotopic spin, and J the
total angular momentum)

$11(1700) in Np (SS11) and Ne (SP11)

P11(1470)
in 7A(DS13 and DD13) and NpS(D813) (see Fig. 23)

P11(~1780)

D13(1520) in 7A(DS13 and DD13) and Np3(D813) (see Fig. 24)

D15(1680) in 7A(DD15)

F15(1680) in 7A(FP15), NpS(FPls), Ne(FD15) (see Fig. 25)

P13(~1860) in Npl(PP13)

(iii) D13(1700): This state which has been hinted at in EPSA is definitely
present in this analysis (see Fig. 24) decaying strongly into 7A(DS13) and
Ne(DP13). This state has long been required to complete the S=0 members
of the [70, l’] supermultiplet of negative baryon states.

(iv) Strong Np couplings are observed for the P13(1860), D13(1520)

and F15(1690) resonances. This is not surprising as the last two
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resonances are strongly seen in photoproduction and application of VDM
would imply this result.
(v) As canbe seen in Figs, 23, 24 and 25 the agreement with the
EPSA predictions is excellent,
(b) I=3/2 States. In Fig. 26 are the Argand diagrams of the I=3/2 waves.
(i) The following resonances can be clearly seen
[ Although only the upper
S31(1600) in rA(SD31) and Npl(SSSI) part is observed (since

-l

D33(1670) in 7A(DS33) E, ,, > 1650 in our

| analysis)

F35(1890) in TA(FF35) and Np3(FP35) (see Fig. 27)

¥37(1930) in 7A(FF37) and NpS(FF37)

(ii) There is no evidence for the existence of a P33 resonant state
within the energy range of the analysis (see Fig. 28).

(iii) Again the Np couplings are not surprising as these resonances
are strongly excited in photoproduction.

(¢) Further Comments. There are some problems in the analysis which
can be used as a guide to the physics which may be present.

(i) The 7r+7r+n final state is badly fitted in the analysis. This is not
surprising as the only intermediate slates which may lead to this channel
are 7A states and from inspection of the 7r+n mass projections it is clear
that N* isobars (P11, D13, F15) may be present. The absence of these
states in the analysis probably also accounts for the inability to reach the

EPSA predictions for the P31 and D35 waves (n(F15) is an S-wave and
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w(D13) in a P-wave would be derived from D35 whereas m(P11) in an
S-wave would come from P31).

(ii) The deterioration of the fits at higher energies is generally
associated with being unable to fit the peripheral nucleon. This probably
indicates the necessity of including r-exchange in the production of the
Np final state, so that higher partial waves are generated.

2. Comparison with Théory

(@) Classifications. The observation of the D13 resonance at 1700 MeV
completes the [70, 1-] supermultiplet of baryon states. However the
abs-ence of any P33 states is embarassing. One such state is required to
complete the [56, L=2+] while another is required as a partner of the
Roper P11(1470) resonance if this is classified within a radial excitation
of the [56, L=0"] (Dalitz, 1969; Greenberg, 1969; Feynman et al., 1970).
(b) Decays. This area has seen most recent activity. In Fig. 291
have drawn the arrows which correspond to the sign of the couplings of
the resonances observed in solution A of the 77N analysis. Should solu-
tion B be satisfactory it would imply changes of sign  for the lower P11
and D13 states (as indicated by dashed arrows). To emphasize this
problem I have also separated the low and high energy parts of the
analysis., The predictions for these reactions have been derived from
two directions

— Phenomenological analysis of baryon decays assuming a broken
form of SU(G)W symmetry (Faiman, 1971; Daiman and Plane, 1972;

Rosner, 1972; Faiman and Rosner, 1973)
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— Application of results related to Melosh transformations (Melosh,
1973) assuming SU(6)W classification of the baryon states.

But both lead to essentially the same results. However the second
;a.pproach does give some indication of why the broken form of SU(6)W
appears.

These theories can be used to predict numerical results but one
expects these to be less satisfactory than the prediction of signs, since
they are more susceptible to the details rather than the overall structure.
Thus I will concentrate on the prediction and comparison of the signs.

-

(i) Phenomenological analysis. If one assumes SU(G)W invariance then
the decays of all members of one multiplet into the members of another

multiplet are related, i.e.,
1yt ~ _ . .
<H'A'|T[H >‘H’ M, )‘M > [SU(G)W Clebsch-Gordan coefflclent]

x [SU(3) Clebsch-Gordan coefficient]
x [SU(2) isospin Clebsch-Gordan coefficient]
% [SU(2) W spin Clebsch-Gordan coefficient]

X <ITgl > (159)

where < |} TRJI > is a reduced helicity matrix element. This is just the
Wigner-Eckart theorem. Unfortunately it is already clear that this
symmetry must be broken (e.g., for mesons it predicts that in B — mw
the w should have A=0 whereas in practice it clearly has A=1. In photo-
production of r's it predicts the helicity 3/2 couplings of the D13 to be

zero and these are the dominant couplings.)
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As we see Eq. (159) implies specific relations between different
helicity matrix elements. As we have seen in Sections III.A and III.C
this means specific relations must exist between the pair of waves
allowed in decays to wA. Thus the manner in which the symmetry is
broken is to recast (159) into LS partial wave amplitudes and then
assume that these are entirely decoupled, i.e., one uses all the Clebsch-
Gordan coefficients of (159) for each partial wave but does not apply the
relation between the two waves contained in (159) (Faiman and Plane,
1972; Faiman and Rosner, - 1973). This is known as L-broken SU(G)W.

Applying Eq (159) twice once for the coupling to the initial state
and once for the outgoing state allows a calculation of the sign of the
amplitude in e. g.,

N — 1A (160)

In Fig. 30 I give clock diagrams (coupling signs) corresponding to the
predictions (Faiman and Rosner, 1973) (for comparison with the SLAC/
LBL (Herndon g_‘c_z_t_i_. , 1972) results all I=3/2 predictions should be multi-
plied by (-1) (Cashmore et al., 1972)). One further point should be ex-
plained. SU(G)W sign means that the two orbital angular momentum states
have the sign predicted by SU(G)W whereas "anti SU(G)W” means that the
two amplitudes have exactly the opposite relative sign compared to the
SU(G)W prediction.

In certain cases where incoming and outgoing waves are the same
the sign of the amplitude is given just by Clebsch-Gordan coefficients.
This immediately indicates a suspicious point of solution A clocks. The

relative sign of the DD15 and PP11(1470) 7A decays implies that the
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P11 should belong to a [70] representation of SU(G)W whereas it is usually
assigned to a [56]. Furthermore the relative signs of the PP11(1470)
and DD13(1520) 7A decays would imply that the P11 belongs to a [56]
providing the D13(1520) belongs to an {8}2 of SU(3) X SU(Z)W. Thus there
Would appear to be a problem in assigning the P11. However if solution
B is valid these problems are immediately removed since the Pli(1470)
and D13(1520) amplitudes are changed in sign.v However if solution A is
the only tenable result we will immediately have to face the fact that
SU (6)W symmetry in any of its broken forms can only be saved by con-
figuration mixing. Not only is this unattractive it also implies the pres-
ence of other low lying multil-alets. It is important to note that one has to
consider 7A decays to test this symmetry as relations amongst nN, A,
Zr only have one possible matrix element and we are thus only testing
SU(3) symmetry. |

At the present moment it appears that the decays of the [70, 1_]
favour anti-SU(6)y, signs whereas the 56, L=2"] decays indicate the
SU(G)W sign. This is summarized in Table VII.
(ii) Melosh transformations. The whole phenomenological analysis
has received important support in recent months from the work of
Melosh (Melosh, 1973) and its developements (Gilman et al., 1973;
Gilman, 1973).

Many years ago Gell-Mann (Gell-Mann, 1962) proposed that the
16 vector and axial vector charges, Qa(t) and Q?(t) (integrals over space

of the weak and electromagnetic current densities) commute at equal
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times to form an algebra
Q%w, Pl =112 Q'

Q%w, 2o -1 7l (161)

Q20, Qfw] =1 Q"

From these charges one can define Qa (t) + Qg(t) and Qa(t) - Qg(t) and
these two charges commﬁte with each other to give chiral SU(3) x SU(3).
This group can be enlarged to form an SU(6)W algebra whose elements
commute like SU(3) and Dirac matrices: xo‘, kaﬁox, Aaﬁay, )\aaz

[Note BGX, Bcry and o, are the generators of SU(2)W (Lipkin and Meshkov,

1965).} This algebra is referred to as the SU @W of currents. To label

the various representations it is convenient to use the SU(3) X SU(3) sub-
group

(4, B), (162)
Z

where A is the representation of Qa +Q? , B the representationrof
Qa -Qg and s, is the value of the (current) quark spin component along
the z-axis.

From previous comments it appears that the baryon states [and the
meson states] lie in irreducible representations of SU(G)W x 0(3). This
SU(G)W algebra acts on constituent quarks, baryons being qqq and mesons

qq. Hadrons are simple in terms of this algebra, referred to as

SU@W strong.
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If these two algebras are identified as the same, Iﬁany undesirable
results follow, e.g., g AT 5/3, zero anomalous magnetic moment for
the nucleon, no magnetic N — A transition, etc.

It was proposed that there might be a unitary transformation be-
tween these two algebras

, _ -1
[SU(G)W, Strong] =V [SU(G)W’ Currents] \% (163)

The achievement of Melosh was to suggest a possible form for V motivated
by the free quark model.

Instead of applying this transformation to the operators we can
apply it to the states. Then

lhadron> = |I.R. constituents> = V|I.R. currents > (164)

i.e., the I.R. of constituents then becomes a complicated smﬁ of irre-
ducible representations of the SU(G)W of currents.

In order to apply these ideas to baryon decays we wish to consider
hadron' — hadron + 7 which is 1‘e1a1§ed through PCAC to

<hadron' ng’l hadron>, Thus
<hadron7|Q§lhadron> = <I.R.'constituents ng(I.R. constituents >

= <L.R.! cu1’rentslV_1Q§iI.R. currents >

(165)
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All we then have to know is V_ng V and thanks to Melosh we have a
possible form for it. As we have seen Q? itself transforms as

(8, 1)0 - (1, 8)0 and Melosh found in the free quark model that

V‘ng‘v = R[(S, 1),- (L, 8)0] + s[(:a, 3),- G, 3)_1] (166)
This algebraic property can now be extracted aﬁd exploited in calculating
tﬁe decays of (165). Fiqally in order to complete the calculation we
assume that the observed baryon resonances can be identified with I.R.
of constituent quarks, and the different quark spin states are related by
SU(G)W of strong interactibns. The two terms of (166) can then be
sandwiched between different states of the I.R. representations to give
any transition matrix element just as in (159). We can immediately note
the two parameters of this approach are then related to the different

partial wave couplings of the broken SU( predictions. Indeed the

G)W
second term corresponds to that breaking.
In Table VII I reproduce the comparison of signs from Gilman,
Kugler and Meshk;)v (Gilman et al., 1973) with the present solution A.
The [56, L=2+] — [56, L=O+] decays have consistent signs and indicate
the dominance of the (8, 1)O - (1, 8)0 term (in the language of Rosner
etal. — the SU), like sign). However the [70, 17] — [56, L=0"] decays
are inconsistent with both sets of relations. However if the D13(1520)
signs could be reversed there would be total agreement with the

(8, 3)1 - (3, 3)_ term (the anti SU(6)y; of Rosner et al.). This is just the

W
result that would occur should the solution B, at present under study,

prove to be tenable. (The changes are recorded in brackets in Table VIII,
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I can only stress that these comments would be unnecessary if data
in the 'gap' could'be analysed. This is just the region which links the
1500 MeV and 1700 MeV groups of resonances.

(iii) SU(3) comparisons. With improved analyses of the S=-1 states

it will eventually become important to relate

N* — 7wA(1235) Y* —7Z (1385)
_ } (167)
— KA(1235)
N* — Np Y* — Ap,Zp
(168)
— NK*

and test the SU(é) symmetry in these decays.

(iv) Quark model comparisons. At the present time quark model pfe—
dictions for the photoproduction of  mesons from nucleons agree quite
well with experiment (Moorhouse and Oberlack, 1973). The same
dynamical arguments can be used to predict the 7A decays of resonant
states (Moorhouse and Parsons, 1973) (an essentially parameter free
calculation).

Table VHI also contains the results of the comparison of these
calculations with the results of the present experimental solution A. The
same malady exists in that the D13(1520) signs are again wrong compared
to the others — of course this problem would be removed if the D13(1520)
signs could be reversed as we have noted before. However one further
discrepancy is present and that is in the sign of the FP15 7N — 7A
tfransition and this indicates a problem with the detail calculations of the

quark model interactions.
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(c) Multichannel analyses. The ability to account for .a.ll of the 7N
inelasticity in many partial waves means that we are in a position to
perform multichannel fits exploiting the constraints of unitarity to the
fullest extent in attempting to understand the #N interaction (Cashmore,
1973).

The K-matrix formalism (Dalitz, 1962) is a convenient way of
assuming unitarity in these analyses. However the K-matrix parameters
obtained often have ridiculous values, i.e., they correspond to reso-
nances having widths of ~500 MeV where one can see that this is not
the case from inspection of the Dalitz plot. This problem probably
results from the fact that one is not necessarily using the correct param-
etrizations for resonances and background. However the K-matrix
parametrization does give a'good' representation of the Argand diagram,
i.e., of the T-matrix elements. In order to identify resonances and
properties we now search the T~-matrix for poles in the complex energy
plane. The motivations for this procedure are

(i) pole positions and residues appear to be unique irrespective
of the parametrization of the T-matrix, providing it is good (Lasinski
and Barbaro-Galtieri, 1972; Ball et al., 1972; Longacre, 1972)

(ii) we expect the pole position and residues to be closely related
to the Breit-Wigner parameters. lHowever the pole position does not
equal (MO, i/2 T 0), the parameters of the Breit-Wigner in the physical

region, and the residues are not necessarily equivalent to the partial
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widths. We expect these equalities to become very poor when we have
either large backgrounds or wide resonances.

The results of these investigations are summarized in Table IX and
correspond to the present solution A for 7N — 77N. One can observe
that many resonance parameters are substantially different from the
results of naive estimations and indeed this whole problem of resonance
pérameter extraction is-a thorny one. However any detailed theory must
predict T-matrices which should contain this pole structure.

Finally I might add a note of warning — before using any resonance
parameters ah&ays review their origin. The estimates can be very
different.

(@) Dynamical calculations. Attempts to understand the importance of
local duality in the region 1500-1700 MeV for «N — 74 have been made
(Kernan and Shepherd, 1969) but unfortunately that analysis used pre-
liminary results of

w_p-*-ﬁ#A_
partial wave analysis which has been superceded. It is not clear that
these results will still hold. When a final partial wave set is available
that exercise will be repeated.

It will also be possible to attempt to correlate the predictions of
m-exchange (a real amplitude) with the present partial waves and also
study the relation of photoproduction amplitudes with the vector meson

decays.
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As one can see the results of such analyses are very rich in valu-
able data and clearly represent the next step in understanding strong

interactions, at least in this energy region.

B. Kp— A1

The only reliable results on this reaction have been obtained_in the
region.of the YE(ISZO) (D03) in an effort to make detailed measurements
of its branching ratios (Mast et al., 1972). This state is predominantly
an SU(3) singlet. If it were entirely such an object it would be forbidden
to decay into WYI(1385) since an 8 x 10 coupling does not containa 1.
This sfate is then a 'mixtur‘e _of singlet and octét (there is a close by

octet state, the D03(1690))

11520> = cos 6 |1>+sin 6 I8> (169)

[1690> =-sin 0 [1> + cos 6 |8> (170)

It

The value of this"mixing angle can be estimated from the Gell-Mann-

Okubo mass relation and from the two body decays KN and Zr. The

~result is that 6 = (21+5)° (Plane et al., 1970).

If we now consider the ﬂ”{(1385) decays we see that the decay rates
are simply related by

I'(1520) PS(1690)
T(1690) PS5(1520)

= tan® ¢ (171)

where PS represents the phase space in the decay. The value of 6 from
this relation should be the same as above but unfortunately the result
indicates 6 > 50°. We might expect this to be disastrous. However

inspection of the [7 0, 1’] supermultiplet indicates yet another D03 Yé
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state. If we now require mixing between all three states consistent
results can be obtained (Faiman and Plane, 1972). This result then

becomes an important factor in the description of the [7 0, 1_] decays,

which were mentioned in the previous section.

At present it is important to stress the value of this type of
analysis in K p reactions. Just as we are upderstanding the N* situa-
tion with the advent of this new data, the Y* region would be similarly
helped and indeed our whole view of the symmetries of strong interactions.
C. Kp— K7N

The obvious reason for studying this type 'of reaction is to identify
exotic Z*'s. The analyses so far performed have been of the 'selection

by cuts' type (sece Section II.A). The reaction studied primarily is
K'p — K°A™ - (172)

and the results have given no indication of such resonant states with
I=1 (Bland et al., 1969).

However at this point the elasﬁc phase shift analyses of the I=0 sys-
tem are much more indicative of a resonant state at E ~ 1800 MeV —
a Zg . Again it would be desirable to study this possible state in the
inelastic channels. Fortunately this is much simpler as the decay into
KA is forbidden. At present this looks the most promising candidate
for a Za .

As I mentioned briefly in the introduction to this section the existence

of such states can be predicted in certain dynamical models. These

consist of models in which there is strong = exchange in the t-channel
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leading to a strong K*N cross section. Under such circumstances this
state can be a major factor in the intermediate states in the KN - KN
amplitude (Aaron et al., 1969; Aaron et al., 1970) and the isospin
crossing matrix then leads to much greater effects in the I=0 KN system.
Thus the observation of such a resonance would not be entirvely
disastrous to the gquark model and moreover it would raise the question
of just how frequently this type of gituation ocours, Could many of the
resonances, we now assume are elementary particles, have such an

origin 7



V. THE RESULTS FROM PRODUCTION REACTIONS -

As we have already discussed these isobar methods can be applied
to the three body final states obtained in production reactions. The
efforts have been almost exclusively limited to the three meson systems
obtained in production reactions. These are grouped under the names
A1(1+), A2(2+), A3(2_),' Q(1+), L(27) and are central to the meson
classification schemes but confused by the presence of diffraction disso-
ciation. The analyses have been mainly of the type considering just
Dalitz plot populations or moments (<YM

L
particle plane. The truly complete isobar analysis has only been applied

>) of the normal to the three

by the group at Illinois (Ascoli et al., 1971; Ascoli, 1972; Illinois et al.,
1972) and more recently by the SLAC/LBL group (Lasinski et al., 1973).

The Ilinois group einalysed almost exclusively the reactions

TP —~ 7r-7r_7r+p (173)

where the 37 system is isolated by considering only events in which the
four momentum transfer from incident proton to outgoing proton is
comparatively small (t < 1.0) and none of the pions resonante with the
proton to give a A state. The questions that one would like to answer
in such an analysis arc

(@) What are the spin parity states present as a function of mass?

(b) What are the production density matrix elements?

(c) What are the t-dependences of the processes and the production

mechanisms of the states?
(dy What are the s-dependences of the production mechanisms of

the states?
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I will try to summarize the answers one has to these questions using
mainly the results of the Illinois group (Ascoli et al., 1971; Ascoli, 1972;
Llinois et al., 1972) (the SLAC/LBL results, although at an early stage
in general support their conclusions). I will first tackle the 37 system
and then comment briefly on the K77 and Nrrw situations.

A. THREE PION FINAL STATES mnw
‘ In order to have sufficient statistics to perform the analyses the
Illinois group and their collaborators have gafhered together essentially

three sets of data

@ 5,17, 7.5 GeV/c TPp— 1r_7r+7r_p ~30 000 events
() 11-25 GeV/c e ~15 000 events
(c) 40 GeV/c Ap— 1D ~13 000 events

(a) and (b) come from bubble chambers and (c) from the CERN boson
spectrometer during its stay at Serpukhov. In discussing the results I
will not always specify the exact source. An example of the 3= invariant
mass distribution is given in Fig. 31.

Unfortunately the data are not yet sufficient to allow analysis in both
mass and t bins so that the variable of least importance is usually inte-
grated over. Thus for spectroscopic studies one is mainly concerned
with the mass dependence and hence t is integrated over, while for
discussions of production mechanisms (dynamics) the most important

variable is t and larger slices of mass are usually considered.
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1, Spin Parity States

itoot o

In Fig. 32 I show the intensities associated with the 0~
and 37 waves. Three features are immediately obvious:

(a) the 1" enhancement around ~1100 MeV — the Al

() the 2" enhancement at ~1300 MeV — the A2

(c) the 27 enhancement at ~1700 MeV — the A,
Ciearly it is important to know the different isobar (two body) states
which contribute to this cross section. The 0, 1" and 2~ waves are
shown in Figs. 33, 34, 35 and have contributions from the np, me (07, 1+)
and mp, 7f (27) states. The 2" wave only has contributions from the mp
system. The 1* wave is dominated by (mp) in an s-wave whereas the 2~
is predominantly (nf) in an s-wave. This result has been known for

some time as has the fact that Deck diagrams of the type of Fig. 36 give
s-wave enhancements near threshold. One might hope to identify the

1+, 2" states as resonant by observing large rapid phase changes of
these waves with respect to other partial waves. Unfortunately no such
motion is apparent, e.g., in Fig. 37 we see the phase of the 2™ of wave
relative to other waves through the A3 region. No resonant phase vari-
ation is observed. TFigure 38 demonstrates the same result for the 1+

(mp) s wave in the region of the A,. These results thus give little

1
encouragement for the identification of these states as resonances.
However the presence of small resonant effects on a large background

are not ruled out (this could produce little phase variation).
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Of course it is always desirable to demonstrate when one can
observe a 'good' resonance. This is done for the A:2 in Fig. 39. There
one sees the Breit-Wigner shape in the 2+ (mp) d-wave together with
correct phase variation across the resonance.

Thus we can conclude that the only resonance positively identified

is the 2" (mp) state, the A_, and the 1" and 2~ waves although large and

2,

changing in intensity give little support for resonance interpretations.

2. Density Matrix Elements

In the last two years the question of s-channel helicity conservation
has received a éreat deal of attention. It appears to be essentially
conserved for reactions (Gilman et al., 1970)

7N — 7N (174)
YN — p°N (175)
However these reactions do not involve spin changes whereas

excitation of the A and Q enhancements does (0 — 1+). Thus attention

1
has been focussed in the density matrix elements of the 1+ state measured
both in the t-channel (Gottfried-Jackson) and s-channel helicity systems
(see Section HI. D for definition of these). In Fig. 40 one sees oo
evaluated in the t-channel where it is ~0,9-1.0. This indicates pre~
dominantly t-channel helicity conservation although the existence of

Re p 01 indicates that some M= +1 production occurs, However these
density matrix elements evaluated in the s-channel system would give
values of Poo ~ 0.4, Repgyq ~-.3 at the higher t value. Thus exact

helicity conservation does not occur in either system but it is closer

to being true in the t-channel.
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It should also be noted that the 2~ system is also produced pre-
dominantly in the M=0 substate .

In contrast the A2 is produced almost entirely in the M=z 1 states.
In fact P11 ~P1-1 indicating the production of a pure state [21>+ 2-1>,
The near equality of these two density matrix elements indicates that
natural spin parity exchange dominates (Ader et al., 1968) since

Thatural < P11 P11
(176)

Pimnatural P11 " P1-1
This result is expected if the reaction occurs through £ or po exchange.

3. Production Mechanisms and t-Dependence

The dominance of natural parity exchange in the production of A2
suggests the presence of £° and/or po exchange terms. However by com-
paring A2 production in the reactions

TP — Aép

(177)
+

o
T n —» A2p
it is apparent that i° exchange dominates. Further if the coupling is

spin non-flip at the proton vertex (as we guess from elastic scattering)

then there will be a net helicity flip leading to zero cross section in the

forward direction, i.e., att'~0. This is demonstrated in Fig. 41.

4, s-Dependence of Cross Sections

The ratio of A1 to A2 to A_ cross sections is surprisingly energy

3

independent even up to the 40 GeV/c data. If these cross sections are
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parametrized as

¢« pl-;b (~s™) (178)

then the value of the exponent is

Al: n~0.0+0.2
Az: n~0.57+0.08
A3:‘ n~0.8+0.3

Furthermore if one looks at the unnatural and natural parity ex-
change contribu/tions to the A2 cross section, Fig. 42, one sees that it
is fhe unnatural parity contribution that is falling extremely fast.

The fact that the A2 cross section does not appear to drop any more

rapidly than the A has caused speculation that it may be produced by

1

Pomeron exchange in violation of the empirical rule
AP = (-1)? (179)

At this time this can only be speculative and awaits more detailed
measurements.
Finally one can attempt to extract information from the relative

phases of the A2 and A1 waves. If we write

P
BBy 1 ; (180)
owe mi ~m2_-im, r, Aghy
171 2 : 2 2

then we might expect p ALA to be constant in phase and magnitude if the
271
A1 phase does not change (independent of m3ﬂ). This will then represent

the relative phase § of the A2 and A1 production amplitudes
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(5 =¢ Ay~ ¢ A = arg (p A, Al)). The results indicate a.slight variation
of § with c.m. energy, 6~-46° at 5 GeV/c and ~-75° at 40 GeV/c but
it does appear to be independént of t'. Now if one assumes the A1 is
produced through the Deck mechanism, Fig. 36, its production phase
is that of np diffraction scattering, i.e., pure imaginary, ¢ A"

This then implies

~ 44°  at5 GeV

¢
Ay

~ 15°  at40 GeV
These phases are clearly inconsistent with Regge model predictions
() pure f° exchange — ¢, ~ 145° (t'~ .15)
(b) pure P exchange — ¢Az~ 90°
(c) mixture of ° + Pomeron exchange with Im (fo exchange) > 0
—~ ¢, ~ 120°

2
However if we have

(d) © + Pomeron with Im (fo exchange) < 0
agreement is p0551b1e but the energy dependence of ¢ A onp;.u in this
latter case would be opposite to the observation,

We can summarize these resulis by the statement that we appear to

have problems with our interpretation of the A, production mechanism.

2

5. Summary

This will have given a feeling for the great quantity of information
that has been extracted from the analysis of these three pion production
reactions, both spectroscopic and dynamical (production mechanisms).

. However, Ithink itis true to say that the hoped for goals of proving a

-84 -



LYo .4:

resonance contribution in the A1 has not been reached.” Clearly at least
a large proportion of the 1 enhancement is dynamic in origin (Deck
mechanism) and it is below the sensitivity of these experiments {o detect
a resonant contribution in this environment. The only hope is to consider
'reactions in which diffraction dissociation is impossible for the identi-
fication of this state, e.g., |

Kn— 111 A

n— T p ten
Many of these comments apply equally well to the case of the 27 A3
enhancement.

These analyses have increased interest in the production mechanism
of the AZ’ the contribution of Pomeron exchange remaining a tantalizing
possibility. Measurements of the KK decay of the AZ’ if measured with
a good absolute normalization, should help resolve this problem.

However it does appear as thox_lgh further investigation of the 3«
system in these reactions will not be terribly rewarding and new informa-
tion on the resonﬁnt states will come from reactions such as (181).

B. Krr FINAL STATES

Here the sifuation is more complicated than for 3n's. We expect
(from the qq model) two 1+ mesons, the Q's, the K*(1400) and a similar
2~ enhancement, the L. At this time there are no published results
from an isobar model analysis. Analyses have concentrated around the

Dalitz plot populations, 7K* decays obtained by cuts, and general angular
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momentuxﬁ considerations (see Section II. B). The main results can be
summarized as follows
(@) 1" waves are dominant in the mass region 1,0 < M(K7r7m) <1.4
with decays into both 7K* and Kp. In fact the Kp decay is
strongest near threshold.
() In this reaction t-channel helicity conservation is ruled 6ut.
(c) Comparison of Q and @ states in

(o] (0]
p_’KS

+ -
L TTDP (182)

K

indicate the probable presence of other contributions to the
production mechanism besides Pomeron exchange (diffrac-
tion dissociation).

(d) Varying production mechanisms of two interfering 1 states
could explain éhe changes in Kzm spectrum that are observed.

The application of isobar model analyses to reactions of the type
Kip — Kiw+7r-p

o 183
K}:{:o ( )

—_—

_bmap
KO

will clearly result in advances similar to those in the 3n system.
However the problem is more complicated because of the increased
number of decay channels which must be considered.
C. Ngprm FINAL STATES

There is even less to say about these states, the work being little

and the results few. The nucleon having spin 1/2 makes the problem

- 86 -



73‘“»“ K e‘.‘

somewhat more complicated and yet again increases the number of
partial waves. Some Dalitz plot analyses have been performed and
result in the statements that JP =1/ 2¥  dominates in the region of
1200 - 1400 MeV, ¥ = 3/2” is present around 1500 MeV and 5/2+ large
at ~1700 MeV. As we have seen in the analysis of 7N — 77N these P11,
D13, F15 states are important at these masses and are the very states
we expect in diffraction excitation if the AP = (—1)AJ rule holds.
Application of the isobar model approach is clearly going to bring
about a dramatic improvement., Furthermore these would seem to be

the obvious states in which to study diffraction dissociation as the

formation reactions give us a clear bench mark.
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VI. SUMMARY AND CONCLUSIONS

The isobar model analysis gives an excellent phenomenological
description of the data on three body final states both in formation and
production reactions.

The major problems in the analysis of

TN — 7N (184)

is~ associated with the lack of results from the data that exists in the
energy range 1540 < E < 1650. The measurement of the m°7°n final state
together with experimental results on single pion production from polarized
targets will be sensitive tests of the present partial wave amplitudes.
However problems do already exist in the 1r+1r+n final state and at the
higher energies, and any future analysis will have to introduce both
I=1/2 isobar intermediate final states and w-exchange contributions. The
wealth of information one has already gained suggests that such an effort
will be fruitful. This initial information has already been valuable in
discussing higher symmetry schemes for the strong interaction in the
resonance region. The existence of the D13(1700) is vital to SU(6)W
schemes but the absence of the P33 states is a nagging embarassment.
This is just the beginning of the theoretical activity that should now occur
in an effort to reproduce the essenﬁally complete T-matrices that we
obtain,

In the future one might expect to see similar analyses of

KN — Anmn
(185)
— LT
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where the weak decay of the final baryon gives a good ciescription of its
polarization. The Y* situation needs new information to unravel the
exceedingly complicated set of states which should be present (for every
octet and decuplet there must be Y"l< states while Yg states are singlets
and members of octets). The advent of this information will then allow
tests of the SU(3) content of any theory we have for these three body
reactions.

The analyses of the positive strangeness KN induced reactions is
going to be absolutely vital in testing the validity of quark model schemes.
However the preliminary results from analyse; of reactions

K'p — k°aA™ | (186)
give little indication of I=1 resonant structure and I do not believe any
different conclusions will appear from the more sophisticated isobar
analysis. The more intriguing situation is in the I=0 state where there
is not only a candidate for a Z’S at ~1800 MeV but dynamical calculations,
considering w exchange in the t-channel, do give poles in the s-channel.
The Zé system is more likely to contain resonances from this type of
mechanism due primarily to the fact that s-t channel isospin crossing
matrix predicts the strongest effects in the 18:0 state from isospin 1
exchange in the t channel () to make the K*N intermediate state (Aaron
et al., 1969; Aaron et al., 1970). Thus the detailed comparison of
observed T-matrix elements with those predicted by theory will be a

sensitive test of the validity of such calculations. Indeed this whole

question is a somewhat sensitive one — every new resonant state that we
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find is automatically regarded as a new elementary particle and classified
as such., However resonances may occur through an accident of the size
of inter-particle forces and the proximity of thresholds, e.g., is the
Yi,':)(1405) a bound state of the KN system just as the deuteron is a bound
state of the 381 pn interaction? Such questions (if they have any meaning)
will only be resolved by detail analysis and careful thought.

Let me now turn to production reactions. The question of the
existence of the Al’ A3, Q's, L is still open‘and will eventually be
resolved by analysis of the hypercharge or charge exchange reactions

, Kp— AT T

(187)
TP — NS

There is still no reason to believe that they will be produced as pure
JP states (i.e., no other large partial waves present) in such reactions.
I expect the isobar model type of analysis will still be required to deter-
mine the JPM states present and their decay channels. As we have seen
one automatically obtains an enormous amount of information on the
production mechanism of such states and this has already led to a number

of surprises, e.g., the energy dependence of the A In attempts to

9°
understand the phenomenoen of diffraction excitation both at meson and at
nucleon vertices the reactions
+ + -
Kp— Kiw TP
(188)
+ + + -
TPpP—~T7TTP
will continue to receive a lot of attention. Perhaps most results will

emerge from the nucleon vertex studies (i.e., diffractive excitation
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of N*'s) where one already has information on the spec:,trum of states
from the analyses of the formation reactions. Finally the increase in

the use of polarized targets will lead to an increased understanding of

the production mechanisms of these states,

It is clear that we have only begun to extract all of the latent infor-
mation in these three body states. The indications we have so far are
that this information can be very rich indeed and will be a valuable

tool in unravelling the mysteries of the strong interaction.
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APPENDIX
In this appendix I gather together the definition of states, the

angular momentum projections, normalizations, phase spaces, cross

‘section formulae, etc. The conventions are those of Cashmore et al,

(1972) and are essentially taken from Jacob and Wick (JW) (1959).
A. PARTICLE STATES, NORMALIZATIONS, CROSS SECTIONS AND

ANGULAR MOMENTUM DECOMPOSITION

We use the phase convention of JW but the normalization is different
If z'[)p?\ represents a state with momentum p al?ng the Z axis and helicity
A, then the general state is defined by

IpOdA>=R(6,0,-0) ¥, (189)

and

<p'0" "\ PO dA> = 2E 5°(P'- D) 5 (190)

we also define states XpA by

-irJ
8 Ty 8
pr - (' 1) € z)l'p;\ - (_ 1) d)_px (19 1)
The general y state is then given by
1-p0 x> = R(9,0-9) X, (192)
These states are denoted by a minus sign on p. Thus
B S-A
f-p8 oA> = (-1) Ipm-0,p+m,A> (193)

We also need to know how the states |pf ¢A> transform under

Lorentz transformations. Let the Lorentz transformation be £ where

p' =fp and let U(2) be the unitary operator corresponding to £. Wick
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(1962) has shown that

U@ IpogA> = 2 @5 (f) Ip'6’ ¢ v> (194)
14

where n is a vector along _ﬁ A_ﬁ', We will require this result to trans-

form from an isobar j rest frame to the overall c.m. system (see Fig.

43) Q is then an angle of rotation about the normal to the three pafticle

plane and is given (for particle k) by

cos Q = (cosh p - cosh oy cosh ai{)/sinhok sinho*l'{ (195)
where

tanh p = v]. = velocity of j in the c.m.s.

tanh o = velocity of k in the c.m.s.

kK 'k

tanh Gi{ =V

1

k= velocity of k in the isobar rest frame .
Q can also be calculated as
=0 -0 - w (196)
where  is the Stapp angle and is given by
B.v: B Y [1+'y Yy +v(i)]
i1k 'k i 'k 'k
(i))

k

sin ¢ =sin @ (187)

(Lry) (1) (L+y
where
B. - B for the isobar in the c.m. system
i

Bk - B for particle k in the c. m. system

Y

- B for particle k in the isobar rest frame .
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Multiparticle final states are defined as the direct product of one

particle states. Thus

|p17\1> lp27\2> cee !pnAn> = lp191¢lxl> ce Ipnen¢n?\n> (198)

and
1 3
SSIATBIA . BT DAL D DA S>S= I 2FENSDI0)
\Pll\lyzl\-z. . .ynl\nlyll\.lyzl\.z .ynl\n/ i::] \u.l_ail 5 \IJ]". yi’ 5}\_1A’]!.
(199)
For two body states it is sometimes more convenient to use
P=p;*+py
. — o (200)
Letting (p, 8, ¢) be the polar co-ordinates of p, we have
| P pb ¢>\17\2> = |p17\1>|p27\2> (201)

where the states on the right-hand side are either y or y states. It
can then be shown (Cashmore et al., 1972) that in the c.m.s., P=0, the

normalization is

<P'=0,p'6" ¢ ML [P=0,D6 $1 N> = H5(W'-W) 6°'-F) 67( -w) _{1_le

(202)
where w = (6,¢) and W = E1+E2 .
For the normalizations of (190) the numb.er of particles of type i in
a volume V is 2EiV / (27r)3. In a volume V the total number of states

available is Vd3pi/ (27r)3, so that the density of final states per particle is

dspi/ZEi. Thus the number of three-particle final states available,
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dp.. is given by

F
3 3 3
d'py; d'p, d'pg

doy = PE, ZE, 2%, (203)

With the normalization of (190) the incident flux is

2E 2E P .
By ) b
2n" (2m a b

The transition probability/unit volume/unit time is

4

6 (P, -P; )
ot MI%dpy (205)
(2m)

where M corresponds to the transition matrix element with our normali-
zation of states. Now Berman and Jacob (1965) have shown that

4
dp = 6" (Poyt = Pyy) dop

1
3 dE1 clE2 dcos® dd d o (206)

il

where ® , & and « are the Euler angles specifying the orientation of the
final three-particle state with respect to the incident system. Equation

(206) may also be rewriiten in many forms using the kinematical relations

that exist

q.Q

_1 7171 2

dp_8 “—Z'le dwldcos eldcos@) déda
= 1 ﬁdw dcos 6, dcos® ddda (207)
8 W 1 1 ’

=él--—-1-§ dwidwg dcos®@d dde

4W
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We can summarize by writing .

2 2
do = % IMI% dp (208)

where F = pW,

We now turn to the decomposition of the two-particle states into
angular momentum states. We work in the two-particle c. m. system and
assume particle 2 is ina x state, i.e.,

IP=0 p6 pA Ay > = B A, > |-DyA,> = R($,0,-9) %17‘1 Xpl’*z (209)
We now define the following state of total angular momentum J and

z-component M by

~ _ J _ 2
IP=0 pIMA A, > = NJ/@MR@, 0,-¢) IP=0, pOP AN, > dw (210)

where dzw =dcos 6 d¢p and A = 7\1—%2 . Choosing
1/2 1/2

cag . [2d+1 B

Ny= (5 () ©@11)
ensures that

.’ | ' . 3
1— tTITVIIA T At = = . ' 1_

<P=0,p JM)\llzlP O,pJMA1A2> 6511 6MM‘67\1A'1 67\27\}26 (Pt-P) §(W'-W)

(212)
and we then have

= = t Tt
<P 0,p6¢7\17\2IP' 0,p JM}\17\2>

- (@) (s

4

/2 g 3
QM)\((P’ 6 ’ "(P) G(VV"'W) o (P""P) 6}\17\3 67\27\12

(213)
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In terms of the orbital and spin angular momenta, L and S, we have

1/2
_ 2L+1 ~
|P=0 pJMLS> = Z (2J+1> C(LSJI0 “1““2) C(SlsZSIul—uz) [ P=0, pJMul,u2>
Hiko
(214)
>with the normalization
<pJ'M'LS' [pJMLS > = 6JJ., GMM' 6LL' Gggr (215)
B. @ FUNCTIONS
We use the following definition of the rotation operator
-iaJ_ -ipd_  -iyd
R(a,g,M)=e ‘e e ° (216)

Since the product of two rotations is again a rotation, we have that
R(a,B,7) = R(@",8",7") R(@,B) (217)
The elements of the matrix corresponding to R are given by

J . . '
@mlmz(R) = <]m1IR|]m2> , (218)

and in the terms of matrices (217) becomes

J J v g J
T @B = D Dy (@B Dy (@B

1™y o ‘m lm )
(219)
The matrix elements can be simplified to
. . . -im vy
J _ -imLo ] 2
i m (0B = o, ) © (220)
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(8) are real. These functions satisfy the general

j
where the dm mz

1
relations

m.-m
j _ 172 3 _ 1772
dmlmz(ﬁ) = (-1) d ml(B) = (-1) d_ml_mz(ﬁ)

2

j J-m
U m, (7 = (1)

--1m .
2 Ld @ e

; 3
J =
d_mlmz(ﬁ) =(-1) m,-m,

& _(p=d , o o) = (-1 &
toym, = Gy o, G120 = (V7 @

The matrix elements have the following normalizations

-

. 2
j 3T _ 87
7} (@,8,"D (a,B,v)ydadcosBdy =g 5..,0 ¢ O '
f mymy mymy, 2yl 7jjt Tmymy Tmom,
(222)
and
d @) d . (9)dcos 0 =zr 5 (223)
m,m, m,m, 251 it

C. THE REACTION a+bh — ctd
It can be shown (Cashmore et al., 1972) that the cross section for

this reaction, with these normalizations of states, is

T (2J+1) | — 9
7= 3 Z (20 -i~1)(2crb+1) < QJIML'S' [T [pJMLS>|
Py e LSL'S'
(224)
For "N — N this becomes
o@®) = m2@+1/2) 1<aT ITIE > 12 (225)
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Table I

The Isospin Decomposition in 7N — 77N Reactions

1=3/2

(M Ng2 | Vg | MNe1/s | (Miyye | Mg | M= | (M7=

+0 3 -2 1 1
Ty TP —_ - 0 - /: 0 1 - /:-
12 m \/—1—5 3 5
4+ 4 -1 -1 . fl f1 ji
MM R — —_— = = 0 0 2
1i'1 JTS «/—1_5 3 3 5
@ % = |- | 2| &Rk

135 135 37 :
-0 -1 4 -2 -1 /T j?z
T, — — — — 0 -l - ==
1"2? J13B J13 JZ7 37 9 5
ﬂiﬂ;h =L —=L L L 0 0 2
J135 J135 JZi JF Ji5
1=1/2
M Ng/p | MNeg/e | MmNy | Nieys | Mg | M= | (MTi=2
-+ - - -
e =3 = 0 =242 -2 _Js_‘a 0
J27 N J27
. 2 o2 =2 22 0 -2 0
J27 J27 J27 J27
g G
22190 L2 A2 2L k2l J3 . .
NEx J27 J 27 J27 3

- 104 -



Table I

Isospin Decomposition of I=0 and I=1 Decays to Three Pions

I=1

(mymo)y | (Mam3)y | (Mampy | (MMl | (Mamgde | (M3

p
W;’IT;TT; 0 - —;— + -;— 0 L L
J3 J3
Wiﬂ;ﬂ; 0 - % + % L 0 0
) V3
Ty 0 +L ] -2 j% 0 0
J2 J2
000 1 1 1
T1TgTg 0 0 0 -3 -3 -3
1=0
(mym)y | (Mama)y | (mgm), | (M) | (M) | (M3,
ﬂ;ﬂréﬂg - 1 - 1 _ L 0 0 0
J3 J3 J3

- 105 -



Table I

Isospin Decomposition of I=1/2 Decays to Knr

(mKp1/n | 810 | M7 (“1“2)1=o
7r+7roKo + —\/g- - —"/:3:2— + f%- 0 |
1r-'1-7r_K+ 0 + % - \/—% f%
T I

3J2 32
oK 2 0 j%— /g—
w(zw(z)Ko R - 1 0 - j%
3J2 3J2
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Table IV

The Observable Quantities in MB — BMM

_1 2 2 2 2
=3{ia, P s, Pria P e a7
_ ia io

IOAX—Re [AHA_";_ e ]+Re [A_+Af_ e ]

: - x i * ioz]
IOAy Im'[A_H_A_*_e ]+ Im [A_+A__e

1 2 2 2 2
18, =5 {1a, P+ 1A 1 ia, 12 1a 12

0) _
IOPX = Re A_HA:_ + Re A_{__Af__
0°Y

(0)
Pz

1 p© - [AHAfJ - Im [A+_ Af_}

il

1 2 2 2 2
Flia Peia, 12oia o 1a 17

it

« L -la io
IODXX Re [A+_A_+e ]+Re {A_H_A’:_e ]
o . « o] oo
1D, o Irn[A+_A_+e ]-m{a, 8 e ]
- ia io
1Dz =Re |4, A% e |- me 4 ax_e?]

- _ ¥ -l x o
IODyX Im[A_’__A__’_e\ ]+Im A_H_A“e }

- x ol x -lo
IODyY Re[AH_A_+e ] Re[A_X__A~+e :|

= y ¥ i - ES ia
IODyZ Im [A_!‘_:_A‘{“_ e ] Im [A_+ A¥* e J

= Re _ *
I,D, . = Re [A LAY +] Re [A . A__]

- ' - _ *
e IODZY Im [A-H- A__!_] + Im [A+_ A’f _:}

1 2 2 > 2\
IODZz—-g{lAHI s1a 12 1a %o 1A, }

The amplitudes A“ N are written with Bis be = 1/2. Also
i
note that the order of the subscripts of A has been reversed,
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Table V

The Partial Waves Used in 1N — 77N

Isospin Ir{;;‘i,eent TA Npg Npy No
S11 SD11 sp11 | ssi1 SpP11
P11 pp11 | PP11 | PP11 PSil
DS13 DS13
D13 D8 | Dows | DPI3 DP13
1=1/2 P13 1131;%3 g? }g PP13 PD13
D15 DD15 | DD15 | DDI5 DF15
FP15 | FPI5
Fi5 PP | PR | FEI FD15
F17 FF17 | FF17 | FFLT
s31 SD31 spa1 | sssi
P31 PP31 | PP3l | PP31
DS33 DS33
D33 pD33 | Dpss | PP
_ ' ' PP33 PP33 N
1=3/2 P33 b3S | pros | pras
D35 pD35 | DD3s | DD35
FP35 | TP35
F35 FF35 | FF3s | TL90
F37 FF37 | FF37 | FF37

The 60 waves with angular momenta L, L', £ cach ¢ 3. There are two
nucleon-rho terms in the isobar model, indicated by p, and py, where
the subscript indicates the coupling between the spin of the p (¢=1) and

the spin of the outgoing nucleon.
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Table VI

Partial Waves in Decay to Three Pscudoscalar

Mesons for £< 2 (€, p, f) and L < 3

o

£ oo L }leber of
mperes
0" 1 0 1
1
2 2 1
1 3 1
2 2
1t 3 1 0 3
0 1 3
2 1 3
1 2 3
3 2 3
ot 5 2 1 5
5
3 5
2" 5 2 0 5
11 5
3 1 5
0 2 5
2 9 5
3~ 7 3 1 7
2 2
3t 7 3 0 7
2 1 7
1 2 7
3 2 7
Total (J <2, £<1) 29
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Table VI

Number of Events for the Energy Bins Used in the Fits

C.M. Energy ﬁ&g%‘;’ fp—Tan TPp-—11p rp—710p

1310 1300-1330 1069 151
1340 1330-1360 1664 11
1370 1360-1380 2471 2
1400 1380-1410 5049 964 78
1440  1430-1460 4918 1802 359
1470 1460-1480 3252 1629 175
1490 1480-1510 5555 3197 1523
1520 1510-1530 3241 2588 795
1540 1530-1560 3905 3285 1114
1650 1630-1670 6061 3757 2467
1690 1670~1710 5901 3689 1139
1730 1710-1750 3455 2630 4061
1770 1750-1790 3214 2352 2853
1810 1790-1830 2447 1541 3855
1850 13801870 3931 3183 6372
1890 1870-1910 5072 3170 12690
. 1930 1910-1950 5817 4080 4298
9 1970 1950-1990 5277 3544 7744
Total 1300-1990 72299 41575 49523
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Table VII
Signs of the Amplitudes for 7N — N* — 1A

for N*'s in the [70, L=1] and [56, L=2]

Theory SU(G)W Sign Anti-SU (6)W Sign
\ _ _ Quark Model
'Respnance (8’ 1)0—(1, 8)0 (3! 3)1"(3:3)_1

([ DD13(1520) « + * (-) + ¥ (=) + % (=)

DS13(1520) - ) + (-) + (-)

[70, L=1] ] sDs1(640)  + -

[56.1=0] | psa3i1690)  + -

DS13(1700) + -
_ DD15(1670) - % - * - ¥
[ FP15(1688) - + B

[66, L=2]
FF35(1880) - * - * - *

A,

[56, L=0]

| FF37(1950) - * - * - *

Products of the experimental and theoretical signs (in various models) are
presented. Signs which are independent of the model are denoted by '*!.
Exponent and theory agree within the [7 0, L=1] or within the [56, L=2] if all

the signs in any column are the same.
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Table IX

Pole Parameters and I . ; from Pole Residues
partial
r |r r r r r Other |[, ==T.
Wave Pole N T wlAy | mAL Np, | " Np,y | Ne Channel tot
. 66
11498 %2 | 11 11 | 34 14 (0N) 70
s11 .
. 103
2 1648 -i 302 | 46 12 4 32 (N) 94
1 1383 -i -2-(2& 80 | 40 5 125
P11
2 1724 -i z_gg 120 | 37 - | 75 232
P13 | 1 1728 -i -1—3—9 25 84 109
1 1515 4%—3 90 | 38 | 15 34 3 180
D13
2 1646 -i%‘i 16 | 22 3 3 62 108
D15 1666 i 1‘;’9 69 | 92 161
F15 1672 -i -1%‘3 101 | 12 1 4 21 182
59
31 1605 122 | 17 | 11 35 63
D33 1650 -i 130 13 | 56 56 125
F35 1824 -i 2—523—2- 44 26 107 177
255 I
F37 1866 -1 222 | 111 | 76 57 132 (unk)| 380
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FIGURE CAPTIONS

1.
2.

3.

10.
11.
12.

13.
| 14.

15.

16.

17.

The three body final states: (a) formation reactions;(b) production reactions.
Dalitz plot for m p — 7.

Diffraction excitation.

Hypercharge and charge exchange reactions.

Diffractive excitation of the nucleon.

The moments W 1, 28 2 function of energy in the final state 7r—1r+n

0

normalizéd such that WO

=1. The x axis is defined as —ﬁN and the
z-axisas P__~ P 4 - ‘

a r n Dalitz plot M2(7r+1r_l) vs M2(7r+7r;) for events having 37
masses in the interval 1.0~ 1.4 GeV. The curves define the Dalitz

plot boundaries for M, = 1.20 and 1.40 GeV. The data is from

3w
5and 7.5 GeV/c 7 p collisions.

The isobar model.

Definitions in the three particle decay.

Definitions in the incident two particle state in formation reactions.
Definitions in production reactions,

The co-ordinate system S.

The isobar model.

The decay angles of the isobar.

The helicity frame axes 0x'y'z! for particle j. Oxyz are the axes of

frame S.

" Production reactions.

The Gottfried-Jackson system.
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18.

19.

20,

21.

22.

Production angles of x in S;', a system defined by a polarized target.
Relative signs of Y* couplings. The arrow is the prediction from
SU(3) and the X represents the experimentally observed coupling.
Fits to the reaction 7 p — T natac.m. energy of 1690 MeV,

The figure contains cos 8 vs ¢ plots for individual regions of the
Dalitz plot where cos 8 and ¢ are the polar angles of the incident
pion in a co-ordinate system defined by the final state. The z axis
lies along FN and the y axis lies along 3,; xp + » The plots outside

the Dalitz plot are the sums of the corresponding plots within the

" boundary. ~

Single pion production cross sections. Data points are indicated by

| and the predictions from our partial wave amplitudes by X.

I=1/2 partial wave amplitudes. Arrows are spaced every 20 MeV,
with wide arrows every 100 MeV: base of wide arrows mark integral
hundreds of MeV. Lower-{ waves are plotted starting at s=1400 MeV;
higher-{ waves only where they were first needed. Last arrowhead
is always at 1940 MeV.

Partial waves derived from the incident P11 wave.

Partial waves derived from the incident D13 wave.

The F15 partial wave,

I=3/2 partial wave amplitudes. Arrows are spaced every 20 MeV,

with wide arrows every 100 MeV: base of wide arrows mark integral

. hundreds of MeV. Lower-£ waves are plotted starting at s=1400 MeV;

higher-{ waves only where they were first needed. Last arrowhead

is always at 1940 MeV.
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27,
28.

29.

30.

31,

32.
33,
34,
35.
36,

317.

38.°

Partial waves derived from the incident F35 wave.’

Partial waves derived from the incident P33 wave.

Relative coupling signs of the resonances in all inelastic channels.
The vertical double line separates the two regions, since the con-
tinuity is not unambiguously ascertained. The heavy arrows corre-
spond to the present solution A. The dashed arrows will be the
orientation if the second solution, B, is satisfactory.

Prediction of resonant phases in 7N — N*¥ — 1A corresponding to

a choice of the 'anti SU(G)W' relative sign for the two partial waves
in the decay. To obtain SU(G)W results, réverse all double handed
clocks. Finally to compare with experimental results all 1=3/2
waves must be multiplied by (-1) to give the same phase conventions.
The 7 7 n mass spectrum for the data at 5.0-7.5 GeV/c. The
shaded histogram is for t' < 0.7 GéVz, Mp7r+ < 1.4 out, A

1,16 < Mpﬂ_ < 1.32 out. |

Contributions of various JP states to the M31r distribution.

Individual partial wave contributions to the 0 state.

Individual partial wave contributions to the 1+ state.

Individual partial wave contributions to the 2~ state.

The Deck mechanism for the Al and A3.

Phase of 2~ 7f (s-wave) production amplitude relative to other partial
waves as a function of 37 mass.

The 1+ TP (s—wavej. Its intensity and phase relative to other partial.

waves as a function of 37 mass.
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39.

40.

41,

42.

43.

The 2+ mp (d-wave). Its intensity and phase variation relative to the
1* waves as a function of 37 mass.

The density matrix of the 1 state.

Production angular distribution of spin parity 2+ events. Curves

- \
Bt' with B=6.41 and B=9. 04 for low

are fits of the form t' e
(5 - 7.5) and high (11 -25) incident m momenta.
Cross sections as a‘function of incident momentum for production

of 2+ by 'matural parity exchange' and 'unnatural parity exchange'.

Wigner angle — the rotations due to Lorentz transformations.
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