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1. INTRODUCTION 

Recently, it has been shown that it is possible to construct a renormaliz- 

able field theory to unify the weak and electromagnetic interactions. ’ In this 

class of theories, one starts from the usual renormalizable Yang-Mills 

Lagrangian based on certain symmetry groups, where all the vector gauge 

bosons are massless and then breaks the symmetry spontaneously to give 

masses to the gauge bosons in such a way as to preserve the renormalizability 

of the theory. This solves the long-standing problem in the high-order weak 

interactions. In the conventional theory of weak interaction, the high-order 

effects have no meaning due to the uncontrollable divergences present in the 

non-renormalizable field theory. 2 If a cutoff A is introduced in the theory to 

define these divergent quantities, it turns out that this cutoff A is embarrass- 

ingly small (- 5 GeV) in order to be consistent with the known facts in the weak 

interactions. The renormalizability of this new type of theory guarantees that 

the higher order contributions are finite and calculable and presumably small. 

This opens the possibilities of constructing more realistic models to describe 

the weak interactions of the leptons and hadrons. Here one has to choose an 

appropriate gauge group and assigns leptons and hadrons to some representa- 

tions of the group in such a way that the known facts of the weak interactions 

are not violated. 3 However due to the limitation of the present available experi- 

mental data, there is a large degree of freedom as regards the choice of the 

group in constructing models. In this paper we attempt to examine systemati- 

cally the pattern of the symmetry breaking in the general rotation group O(n) 

and unitary groups SU(n), and various aspects concerning the group structure 

of the theory. We hope that this approach will provide some useful information 

as to what to expect in various situations. 
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First we give a simple example to set up the framework to study this 

problem. Take the most familiar isospin O(3) group and choose a triplet of 

scalar bosons, interacting with Yang-Mills fields z . P 
The Lagrangian is given 

by 

where 

F 
CLV 

= aPAv - avAP + gAPx Av 

and 

(ti)jk = i e ijk 

This Lagrangian is invariant under the gauge transformation 

F 4 +2x? 

The spontaneous symmetry breaking is realized by letting the third component 

of the scalar field have non-zero vacuum expectation value, 

<o I $Ji 1 o.> = 6i3v (1.2) 

Redefine the fields such that new fields have zero vacuum expectation values 

go = - i (apTv - avYQ2 - f gv2(A$ +A$ 

+ L &P2 -A v”)($ o -$) - Av2 $b2 I + (p2-Av2) I@$ 

$f zi qi - <@i> = Gi - h3v 

The Lagrangian then becomes 

Liz?= Lzo +Lzht 

and 

(1.3) 
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where Zmt contains all the cubic and quartic terms in the Lagrangian. In the 

tree approximations, we have to eliminate the linear term in F in order to 

ensure the condition <$f > = 0. Hence we can choose 

From the free Lagrangian in (1.3)) we see that the gauge bosons A pl’ A/.J2 get 

masses gv2 and A 
3P 

remains massless. Hence gauge symmetry of the Lagran- 

gian has been reduced from SU(2) to U(1) with corresponding gauge boson A 
3/-O 

With the value (1.4) for v, the quadratic term in (1.3) becomes 

Hence @i and $i are the massless Goldstone bosons. Notice that the number of 

the Goldstone bosons is the same as the massive gauge bosons. This is due to 

the fact that these massless Goldstone bosons play the role of providing the 

extra degrees of freedom needed for the gauge boson to go from massless state 

with two degrees of freedom to the massive state with three degrees of freedom. 

So the general feature of this type of symmetry breaking is to have as many 

zero mass scalar bosons as the massive gauge bosons. 

This kind of symmetry breaking has a very simple classical interpretation. 

We can consider the meson self-interaction and their mass terms as classical 

potential 

If p2 < 0, the minimum of V(T), the state of the lowest energy, is at the origin 

g=O. Howe ver for p2 > 0, the minimum is at 

TOT =$ (1.6) 

as shown in Fig. 1. Equation (1.6) contains an infinite number of solutions, 
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related to each other by rotation in O(3) space. Without lose of generality, we 
2 

can choose Cp G 
3=j/h , +I = I$ 2 = 0, which is invariant under the rotation in 

(@I, Cp,) space. The symmetry is broken fromO(3) to O(2) MU, Since the 

minimum is not at the origin we have to shift the origin to the position of the 

minimum by defining $; E Gi - 6i3 
r 

F such that the perturbation expansion 

corresponds to Taylor expansion around the ground state. 

It is perfectly clear that the symmetry breaking is completely determined 

by the scalar boson potentials. Therefore to find out the symmetry breaking 

pattern in any given group, we can follow the procedures; 

(a) Choose a particular representation for the scalar boson and write down the 

most general group invariant potential V( $), which is a fourth order poly- 

nomial of the scalar fields. 

(b) Find the minimum of V( #) by solving the equation 8V/3 Q, = 0. 

(c) Calculate the number of the massless gauge bosons which determine the 

unbroken symmetry. 

In section (II) and (III), we discuss the symmetry breaking in the general 

O(n) and SU(n) groups. For simplicity we consider all the representations up 
I 

to the second rank tensors. In section (IV) we discuss briefly the situation with 

products of groups likeO(n) X O(m) or SU(n) x SU(m). 

There are several very interesting phenomena which comes out as a by- 

product in this class of the renormalizable theories, e.g., zero order fermion 

mass relations, 4 pseudo-Goldstone bosons. 5 These two kinds of phenomena 

are purely group theoretical in nature. We discuss them in the section (V) in 

the context of the groups we are interested in, 

Section (VI) summarizes the results obtained and discuss the implications. 
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II. SYMMETRY BREAKING INO GROUP 

As is well known, 6 inO there are n(n-1)/2 generators which can be 

represented by 

a 
Lij = xi &- - x. - 

j J axi 
i,j=l... n (2-l) 

The commutation relation among the generators, the Lie algebra, can be worked out 

by using the representation (2.1) with the obvious rule [ 1 &- , X. 
i J 

= “ij ; 

(20 2) 

Hence we have n(n-1)/2 vector gauge bosons, denoted by W! , with the trans- 9 
formation law 

W{ --w;+e.W~+e.W! and Ik kj Jk lk 
wp zz -WC1 

ij ji (2.3) 

where E.. = -e.. 
13 Jl 

are the infinitesimal parameters which characterized the 

infinitesimal rotations in O(n). Under the gauge transformation of second kind, 

The Yang-Mills Lagrangian is then 

9 = _ 1 Fij Fpv 
W 4 pv ij 

with 

FpV = a’.Lw” 
ij ij 

- avwG +g(w? WV.- WV Wp.) 
lk k3 lk kJ 

(2.4) 

(2.5) 

(2.6) 

The irreducible representations in o(n) can be classified into two categories; 

single-valued and double-valued representations (except O(2)) D The single-valued 

representations have the same transformation properties as the ordinary vectors 

in the real n-dimensional space and their symmetrized or antisymmetrized 
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tensor products. The double-valued representations, sometime called spinor 

representations, 7 transform like spinors in n-dimensional coordinate space. 

These spinors have the property that it returns to its original position under 

the rotation of angle 4n instead of 2~. They can be constructed along the same 

line as the familiar Dirac spinors in the Lorentz group. For completeness, we 

give a very brief descriptions of these spinors in Appendix A. In this section, 

we discuss the choice of the scalar bosons as vector, second rank tensor, or 

spinor representations D 

First we list their transformation laws and their covariant derivatives, 

which couple the scalars to the gauge bosons (see Table 1) ; 

(a) Vector Representation 

From the transformation law of this representation, it is easy to see that 

the most general fourth order invariant potential is of the form 

where h > 0 such that V(e) is bounded below. To get the minimum of this 

potential, we calculate its first derivative, 

av -= 
w. t -~2 + A ~j~j) pi = O 

i = 1. D .n 
1 

(2.8) 

The spontaneously broken symmetry solution is then given by 

(2.9) 

2 
orGi= 6m -$-0 J- 

All the other solutions are related to this one by anO rotation. It is easy to 

see that this solution is invariant under those rotations which leave the n th -axis 
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unchanged, which is the subgroup O(n-1). The symmetry is broken from O(n) 

to O(n-1). The gauge boson mass term is given by 

(2.10) 

So there are (n-l) massive vector bosons Wni, i=l l 0 l n-l, and (n-l)(n-2)/2 

massless gauge bosons W ij, i, j=l, l l l , n -1, corresponding to the gauge bosons 

of the unbroken O(n-1) symmetry. The mass matrix of the scalar bosons can 

be calculated from the formula, 

2 
Pfj= f aiav+ 

i j r$=<$> 
= [-ji2 + A<q2>l dij + 2h<qi><$j> 

= p2GinBjn 
, 

(2.11) 

There are (n-l) zero mass Goldstone bosons, the same number as the massive 

vector bosons as expected. 

The pattern of the symmetry breaking in this simple case can be under- 

stood as follows. Since the invariant potential (2.7) only depends on the vector 

through its length 1; I, the minimum must be a condition on the length 61 as 

in (2.9). Therefore by choosing the solution with all components zero except 

one, we get theO(n-1) unbroken symmetry. It is then very easy to deduce the 

results in the case where we have two sets of vector representations, 1 and 

z2* The invariant potential can depend on the length of each vector and the 

angle between them, I F1 I, I F2 I, and I Fl 0 T2 I. The solutions for the mini- 

mum must be conditions on these three variables. We can choose first vector 

with only first component non-zero, and the second vector with first two 
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components non-zero in order to satisfy these conditions. The symmetry is 

then reduced from O(n) to O(n-2) D We can generalize this argument to any num- 

ber of vector representations with the result that for m sets of vector repre- 

sentations the symmetry is broken from O(n) to O(n-m), where m < n. 

In the case of unifying the weak and electromagnetic interactions, we need 

(n-2) sets of vectors to reduce U(1) symmetry of electromagnetic interaction. 

If one wants to construct a strong interaction theory from this type of gauge 

theories, one needs (n-l) set of vectors in order to get rid of all the infrared 

singularities. 

(b) Antisymmetric Second Rank Tensor 

For this representation, the most general fourth order invariant potential 

is of the form 

(2.12) 

By introducing matrix notation ($J’),~ = $ij with @IT = -@I, we can write the 

potential as 

2 
V@) = 

A1 -$- Tr@r2 + 4 h2 (Tr$‘2)2 + 4 Trer4 (2.13) 

Notice that the absence of the cubic term TrGf3 is due to the antisymmetric 

nature of $I’. Since r#~’ is real and antisymmetric, it can be transformed into 

following standard form by a rotation, 

A1 

i A2 O \ 
$1 = 

\ 

. . 
ifn=21 

0 ‘Al / 
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with 

Ai = ai 

The potential can then be written as 

(20 14) 

The minimum of this potential is then 

e = 2ai [-p2+2Al(i ay)-I-A2a$ =O i=l,ODoJ. (2015) 

From these ecjdations, we look for solutions where not all airs are zero. 

Suppose that ai # 0, for i=l, 0 l 0 , k, then from Eq. (2.15)) we must have 

[-p2+2~l (ia;) +A,,:] =O i=L**O 

which give 

a2 = 
i i = l,OO*,k 

With this solution, the potential at minimum is given by 

kp4 
’ = - 2hlk + h2 

(2.16) 

(2.17) 
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As a function of k, the number of non-zero ai’s, this potential is monotonically 

increasing when h2 > 0 and monotonically decreasing when h2 > 0, with hlk+ h2>00 

Hence for h2 > 0, the solution for c$ is of the form 

$I’ =a for n = 28 

=a 

with 

‘0 
1 

-1 0 I 1 0 

( -1 0 0. 1 1 . 
0 1 

0 i -1 0 1 
0 

a = ‘--’ - 
v 32-x- 1 2 

for n = 2P+ 1 

From the coupling of scalar bosons to the gauge bosons, it can be shown that 

there are I2 massless gauge bosons for n = 28 or n = 2P+ 1. Therefore the 

symmetry breaking pattern is 

WQ) - U(Q) 

o(21 + 1) - U(1) 

For the case h2 < 0, the solution for $ is given by 

$’ =b for both even and odd n 
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with 

b= 

By calculating the masses of the vector gauge bosons, one can see that 

o(n) - U(1) X O(n-2) 

(c) Symmetric Second Rank Tensor 

The invariant potential in this case has the same structure as the anti- 

symmetric tensor; 

with 

, c $Li = 0 

i 

(2.18) 

Here we could have the cubic term Tr $30 But to make the discussion 

simpler, we leave it out by imposing a discrete symmetry R: $ - - $J~ We will 

discuss the case with the cubic term in the Appendix B. Again we introduce the 

matrix notation ($)ij = oij, with (PT = C$ and Tr @ = 0. We can diagonalize this 

real and symmetric rj~ by an orthogonal transformation to write (c$)~~ = $ij = GijQiO 

However, these components are not all independent because of the trace condi- 

tion Tr C#I = 0. We can use the Lagrange multiplier to take this condition into 

account by writing 

(2.19) 
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The condition for the minimum is then 
n 

8V 
- 112~i + ‘1 

2 -= 
a+. 

1 t 1 

c 
j=l 

~j 

3 
~i+h2~i -g=O i=l,ooo,n (2020) 

with 

We leave the detailed calculation of the solutions to this set of equations in 

Appendix B. Without solving these equations, we can still get some general 

features. Because of all the $i’s satisfy the same cubic equation (2.20) these 

$J~*s can take at most three different values, say @,, c$,, c$,~ The solution 

for 4 can be written in the form 

rp= 

0 

with n +n +n = n 1 2 3 

The most general symmetry breaking in this case is 

o(n) - o(y) X o(n,) X O@,) 

. I.e,, at most O(n) reduces to products of three smaller rotation groups,, How- 

ever, the detailed calculation shows that it only breaks into two pieces; 

W-0 -o(y) X W-n,) for hl > 0, AZ> 0 

where 

nl = 5 if n is even 

=n+l 
2 if n is odd 

O(n) -O(n-1) if hp0, A2 <o. 
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(d) Spinor Representation 

As explained in Appendix A, this class of representations has dimension 

2” for n=2Q and n=2Q+l. However due to the existence of ‘the 2’ X $ generalized 

Dirac matrices, the number of the independent quartic invariants increases 

with 8. The problem of minimization of the invariant potential becomes very 

hard to do in a general way because the number of terms in the potential in- 

creases with the dimension of the space. 
8 So far, we have not been able to 

overcome this difficulty. However, we can still work out the solutions for the 

rotation group with given dimension. Here we give an example in the case of 

spinor representation inO(5) D It turns out that the invariant potential is of the 

form 

2 5 
g1 g2 v = - +- x+x -I- 4 (x+x)2+ 4 c 

i=l 
(X +YiX ) (X +YiX ) (2.21) 

where x is a column vector with 4 components x 1, x 2, x 3, x 4 and yi, i=l,* D a 5, 

are the generalized Dirac matrices which 

1 = Yi’ Yj I 

The minimum is given by 

satisfy the Clifford algebra; 

26.. 
13 

EL= _ 
2 

+ Xi+ 
gl 
2 tX+X)Xif 

g2 

ax; 
2 (X +YjX 1 (YjX )i = O 

and 

(2022) 

(2.23) 

aV 2 
5 XT+ 

gl g2 -= - 
aXi 2 (X+X)X ~ + 2 (X+YjX) tXtj)i= O (2.24) 

Ifwedefinez Z x+x, y 
j 

Z x’yjx, we can rewrite Eq. (2.23) and (2,24) as 

[-~2+(g1+g2)Z lYj=O (2.25) 

- fJ2z + g1z2 + g2 c y.y. = 0 
j JJ 

(2.26) 
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The solution for z and yj are 

z= -EL 

g1+ g2 

5 
y2 = c yy= -EL 

j=l j j tg, + g2J2 

From the representations of the yirs given in the Appendix A, it can be shown that 

the symmetry breaking is of the form 

o(5) - U(1) x U(1) x U(1). 

III. SYMMETRY BREAKING IN SU(n) GROUP 

This class of groups have (n2-1) generators, Ui, i* j=l,‘*O,n, with 

uf = (df, 

(3.1) 

There are n2-1 vector gauge bosons denoted by W ? 
PI ’ 

i,j=l,**“,n with 

w i= ~ j (W,3 * and W,: = 0. The transformation law for these vector gauge 

bosons is given by 

with 

Under the gauge transformation of second kind, we have 

(3.2) 

(3.3) 
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The Yang-Mills Lagrangian is of the form 

W g =- 
0 

L F j FPv; 
4 p.vi 

(3.4) 

where 

(3.5) 

Unlike the case of O(n), all the irreducible representations in SU(n) are 

single-valued representations and can be obtained by taking appropriate tensor 

products of the basic vectors in the n-dimensional complex spaces, In this 

section we consider the vector representations and all the second rank tensor 

representations. First we list their transformation laws and their couplings 

to the vector gauge bosons (see Table 2); 

(a) Vector Representation , 

From the transformation law of this representation, it is easy to construct 
\ 

the invariant potential, 

V($) = - J$ zQ+ % (Iiii~i)2 with f~, A real 

The minimum is given by 

av -= 
a +i 

L-/J2 + A($j$j)l $i= O i = l,ooo,n 

(3.6) 

(30 7) 

with the spontaneous broken symmetry solution 

(3-B) 

This solution gives rise to (2n-1) massive and [ (n-l)2-l] massless gauge 

bosons, The symmetry is then reduced from SU(n) to SU(n-1). This is very 

similar to the case of the vector representation in the O(n) group. By analogy, 

we can see that the case with two sets of the vector representations will reduce 
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the symmetry from SU(n) - SU(n-2). To break the SU(n) symmetry completely 

we need (n-l) set of vector representations. 

(b) Symmetric 2nd Rank Tensor Representation 

The invariant potential in this case can be easily written down 

V(l)) = - J$ l/lij p + 5 A2 4 wij Jlij)2 + 4 wij liijk $,ci, 

with 

iliij= qji = (@)* 

To calculate the minimum, we have 

av 12ij ‘1 
-=-2p q 

h2 
a+.. + 2 (I/, 7)Qm) $j + 2 (?+bjk “@ $Qi) = 0 

11 
i, j = l,ooo,n 

It is very convenient to introduce a hermitian,matrix X defined by 

Eq. (3.10) can then be written as 

-p2 p + hl(X$ $j + h2 (Xi) ,lpi = 0 

(30% 

(3.10) 

(30 11) 

(3.12) 

Since the matrix X is hermitian, it can be diagonalized by a unitary trans- 

formation, which corresponds to a change of basis vector in the space. There- 

fore without lose of generality, we can take X to be diagonal to rewrite Eq. (3.12) 

[-p2+A;(g xk) +A2Xi] eij =O j=l,oDo,n (3,13) 
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Hence if some element zjij # 0, then 

This equation has the same structure as Eq. (2.15)) the tensor representation 

in theO(n) group. Following the same argument, it is not hard to see that for 
2 

h2 > 0, the minimum is at X = c2 ll where c2 = h and ll is thenxn 
1 2 

identity matrix, It is shown in Appendix C that for this solution z/ can be chosen 

to be 

eij = c tjij 

1 1 O 

or $J=cn=c 1 

1 \ 

-* 

. 

. 

0 lL 
1 /’ i 

(3.15) 

This form for + exhibits o(n) symmetry, because the group transformation 

z,L - UT$U = UTU Q = $ if U is orthogonal, This can also be checked by calculating 

the masses of the vector gauge bosons. Therefore the symmetry is broken from 

SU(n) to O(n) o 

For the case h2 < 0, the minimum is at 

I 2 

‘0 I 
with d2 = k 

1 2 
?L1+h2 > 0 

0 
I 

and 

i 

1 
0. 

\ 
+=d . . 

\ ‘0 

the symmetry is reduced from SU(n) - SU(n-1). 
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(c) Antisymmetric 2nd Rank Tensor Representations 

The invariant potential in this representation has the same form as the 

symmetric representation, 

V( $J) = -g A1 h2 (qLj zp) + 4 (eij +q2 + 4 (~ij~jk$koipi) (3.16) 

. . 
with $.. = -eji = ($13)*0 

1J 
Therefore we get the same solution for X Z &,P. How- 

ever the solutions for $ are different due to the antisymmetric property of & 

It is shown in the Appendix that for h2 > 0, we can choose $ of the form 

ICI =C 

the symmetric breaking is 

0 \ 

‘ 

( -1 0 0 1 )I , I 

0 

for n = 28 c2= L 
2hlQ+A2 

I for n = 2Q+ 1 
I 

I 
Ol 

U(2Q) - O(2Q + 1) 

SU(2Q+ 1) -0(2Q+ 1) 

For A2 -C 0, we can choose $ to be of the form 

$=d for both even and odd n 
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with the symmetry breaking 

SW) - SU(n-2) 

(d) Adjoint Representation 

For simplicity, we impose the extra symmetry $ - - GO With this restric- 

tion, the invariant potential is given by 

with 

We can take it to be in the diagonal form 

with c$~ real 

(3.17) 

because # is hermitian and can be diagonalized by unitary matrix, The potential 

(3.17) can be written as 

(3.18) 

where g is the Lagrange multiplier. This potential has exactly the same struc- 

ture as the symmetric tensor in the O(n) group. Therefore we can take over 

what we have learned there, with some obvious substitution. The results are 

as follows; 

if AZ>0 U(n) - U(n,) X U(n - nl) 

nl= : if n is even 

n+l 
nl= -3-- 

if n is odd 

if AZ<0 U(n) - U(n-1). 
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IV. PRODUCTS OF SIMPLE GROUPS 

The gauge theories based on products of simple groups are very important 

in constructing models, because of the necessity of including both lepton and 

hadron symmetries in the theory. 

For the product of the simple groups, the generators and irreducible repre- 

sentations can be constructed very easily from those of the groups in the product. 

If we have G = Gl X G2, then the generators in G are simply the direct sum of 

those generators in Gl and G2, and the irreducible representations in G are just 

the product of the irreducible representations in Gl and G2’ In this section we 

study the groups O(N) X O(M) and SU( N) X O(M). 

(a) O(N) X O(M) 

From the properties of the generators, we need two sets of gauge vector 

mesons, W (‘) pij ’ i, j=l, 0 0 l , N, and Wji\, o!, p=l, 0 l 0, M with the transformation 

law 

wt1) 
i-4 

- wji + qik wzj + pljjk w$ + (apcljij 
(4.1) 

For those irreducible representations which transform like a vector or 

tensor with respect to one group but like a scalar with respect to the other 

group, the symmetry breaking pattern is the same as those considered in pre- 

vious sections, e.g, , for the representation (N, l), O(N) X O(M) - O(N-1) X0(M). 

The simplest new representation to consider is the representation (N, M) which 

transforms like N-dimensional vector with respect to O(N) and like M-dimensional 

vector with respect to o(M), i.e., 

(4.2) 
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with 

i,j = l,oo*, N 

a,p= l,oao,M 

Their coupling to the vector gauge bosons is of the form 

(4.3) 

The invariant potential can be easily seen to be 

The minimum is then given by 

It is convenient to introduce the matrix X, Y defined by 

M 

xij= C ~ip9jp=~~T 

p=1 

(4.5) 

(4.6) 

The matrix X defined this way is real and symmetric, which can be diagonalized 

by an orthogonal transformation. We can choose Xij = dij Xj to rewrite Eq, (4.5) 

as 

N 
2 

-P + Al _ c 
j-l 

Xj+h2Xi 1 @ 0 ia = (4.7) 
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This equation has the same structure as Eq, (2.19) for the O(n) group. Follow- 

ing the satne argument, we get 

x=&z- i i = l,*oo,k , 
1 2 

xi=0 i =k+l o*o,N , 

and 
kp4 

’ = hlk + A2 (4.9) 

For A2 < 0, the potential is a monotonically increasing function of k, The mini- 

mum is at k=l, the X takes the form 

b=& 
1 2 

(4.9) 

For A2 > 0, the potential is a monotonically decreasing function of k. Hence 

the minimum is at largest value of k allowed, which should be N. However this 

would imply that X is a multiple of N X N identity matrix 

1 
x=c lLN=C -y 

i i 
1 

But X is constructed from N X M matrix (N 2 M) by 

(4.10) 

Equation (4.10) implies that if we consider each row as M-component vector, 

all these N vectors are orthogonal to each other, which is impossible for N > M. 

Therefore the largest value of k allowed is M not N, and the solution for X and 
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x=c2 

Cp=c 

\ 
‘M ’ ’ . ‘MN] 

By calculating the masses of the vector gauge bosons, we can see that the 

symmetry is reduced fromO(N) x O(M) - O(M) XO(N-M) for A2 > 0. For the case 

A2 < 0, it is easy to see that 

the symmetry is reduced from O(N) X O(M) - O(N-1) XO(M-1). 

W SW-) X SU(NI) 

There are also two sets of vector gauge bosons with the transformation laws 

,(l)j 
Pi 

k (l)j ’ (El)i wok + (~~)kws)~+ (apqi’ i, j=l, O ’ ’ , N 

w (2)P 
PQf 

oQ=l/**,M 

Here we consider the representation (N, M) which has the transformation property 

i,j=l oo*,N , 

-- 
and their complex conjugate transform like (N, M) representation 
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Their coupling to the vector gauge bosons is of the form 

The invariant potential can be written down as 

with the minimum given by 

The detailed analysis runs parallel to the case of O(N) X O(M). The results are 

A2 > 0 

h2 <O 

SU(N) x SU(M.) - SU(M) for N > M 

SU(N) x sutw - SU(N-1) x SU(M - 1). 

V. OTHER RELATED TOPICS 

It was pointed out by Weinberg’ that in some cases the restriction of the 

invariant potential to the fourth order polynomials forces the potential to have 

symmetry which is higher than the rest of the Lagrangian. Under that circum- 

stance, there are more zero mass Goldstone bosons than the massive vector 

gauge bosons, because the number of Goldstone bosons are determined by the 

potential. These extra Goldstone bosons, called pseudo-Goldstone bosons by 

Weinberg, have vanishing masses in zeroth order and will pick up masses in 

the higher order correction because the other interactions don’t respect the 

accidental high symmetry. These masses, coming solely from the higher order 

interaction should be finite and calculable if the theory is renormalizable. This 

is due to the fact that there is no mass term in the zero order Lagrangian to 
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absorb the divergent masses coming from the higher order corrections. These 

finite masses are presumably small if the coupling constants are weak. Hope- 

fully these pseudo-Goldstone bosons can be identified as the pions or the whole 

pseudo-scalar octets. This phenomena provides a very interesting mechanism 

to explain the approximate symmetries like SU(2) X SU(2), or SU(3) X SU(3), seen 

in the strong interactions. Hence it is very useful to find all the cases where this 

phenomena can take place. 

For all the representations we have considered in the previous sections, it 

turns out that only in a very special case can we have pseudo-Goldstone bosons. 

For the case where there is only one irreducible representation, we have found 

that the symmetric second rank tensor inO(3) and the adjoint representation in 

SU(3) can serve the purpose. 

Let us illustrate this in the case of O(3), As we have seen in Section II, the 

most general invariant potential of the second rank symmetric tensor is of the 

form 
2 

V(O) = - 
5 -$- TrG2 + 4 h2 (Tr$2)2 f 4 Tr$4 (5.1) 

However in o(3), it happens that 

(Tr$2)2 = 2 Tr$4 when Tr# = 0 

The potential is then simplified to 

V(ql)= -; tTW2) + -$ (Tr$2)2 

with A’ = hI + 4 h2 

(5.2) 

(5-3) 

This form has the same structure as the vector representation in O(n) with the 

feature that the quartic term is proportional to the square of the quadratic term. 
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Since there are five independent components in $I, the potential in (5.3) has 

the O(5) symmetry which is higher than O(3). As we know for the vector repre- 

sentation in O(5) the symmetry is broken to O(4) and there are 4 zero mass 

Goldstone bosons. But the O(3) symmetry can break into either U(l), or no 

symmetry, which requires 2 or 3 Goldstone bosons. Therefore there are one or 

two pseudo-Goldstone bosons. The coupling of q’s to the vector gauge bosons 

is of the form 

(5.4) 

which has onlyO(3) symmetry. The higher order will then break the O(5) sym- 

metry of V(e) to give these pseudo-Goldstone bosons masses. Notice that it is 

the relation (5.2) which is responsible for the appearance of the pseudo-Goldstone 

bosons. It is easy to see that the reation can not hold for values of n, other than 

3. 

For the unitarity group SU(n), relation (5.2) also holds in the case n=3 for 

the adjoint representation, octet representation. In this case the higher sym- 

metry is O(8), and the number of pseudo-Gold&one bosons is either 3 or 1. 

These are the only cases we have found so far if one uses only one irreducible 

representations. Suppose we have two representations $l and q2 of some group 

G, such that the potential V( $,, $,) is invariant under G transformations on $1 

or q2 separately. Then V necessarily has higher symmetry G X G, consisting 

of independent transformation on +I and $20 This is called unlocking of repre- 

sentations. We have found that in case of O(N) group, if we have spinor repre- 

sentation c$~ and vector representation x i and if we impose a discrete symmetry 

X - - x then the only coupling between x and $ is of the form ($+4)(x ix i) 0 This 
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is invariant under rotation on $ or x separately. We then have unlocking of the 

spinor representation and the vector representation. 

So far we talk only about scalar and vector bosons. The fermions can be 

included very easily, The most general Lagrangian of the fermion is of the 

form 

where the last term is the Yukawa coupling between fermion and the scalars. 

This term is the one which is responsible for splitting up the fermion multiplet 

when the system undergos spontaneous symmetry breaking. If the representation 

content of $ and + are such that this term is not present, the fermion multi- 

plet would not know the symmetry breaking in the zero order, and their masses 

will have higher s$mmetries. Since this higher symmetry is only special to the 

fermions, it will be broken by higher order corrections. Again the renormaliz- 

ability face the mass difference generated from the higher order effect to be 

finite and calculable. 

In the O(n) and SU(n) group, this term is absent if both fermions and the 

scalars belong to the vector representation except in O(3). 

VI. DISCUSSIONS 

We have studied all the symmetry breaking patterns in the general O(n) and 

SU(n) group for all the representations up to the second rank tensors, The 

results are summerized in Table 3. 

Among these results we have obtained so far, the familiar groups o(3) and 

SU(3) seem to have the special feature in the appearance of the pseudo-Goldstone 

bosons. For this reason, it seems to be very promising to construct models 

based on groups which are products of O(3) or SU(3) with some other groups. 
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This paper which deals with the most general group structure of the gauge 

theories, can be looked upon as the first step toward building the models., To go 

further, one has to assign the fermions, both leptons and quarks, to some repre- 

sentations of the groups and study their selection rules. Of course, there must 

be a large degree of freedom in the choices within the present data. Before the 

future experiments can nail down the correct group to use, the sensible criterion 

would be whether the models offer any insight into those mysteries in the weak 

interactions, like the origin of the Cabbibo angle, the ratio of the muon mass to 

the electron mass, etc. 

In nature, only the U(1) gauge symmetry, corresponding to the electro- 

magnetic interactions, is exact. So one would like to break the symmetry down 

to U(1). As seen in the table, this situation does not happen very often. How- 

ever from the work of S, Coleman and E. Weinberg, 9 the symmetry can also 

be broken spontaneously by the higher order radiative corrections. This gives 

the possibility of breaking the symmetry in two stages; one starts from a big 

group G1 and breaks down to a smaller group G2 through Higgs mechanism and 

then breaks further down to the final U(1) symmetry a la Coleman and E, Weinberg. 

This kind of scheme is very attractive because in first stage, the symmetry 

breaking effect is usually very large and the second stage symmetry breaking due 

to the radiative correction, is usually small so that the G2 group can be used to 

explain the approximate symmetries, like SU(2) or SU( 3) seen in nature. It 

would be very interesting to see how this scheme can be carried out. 
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APPENDIX A 

In this appendix, we discuss some general aspects of the spinor repre- 

sentation. This class of representations can be understood most easily in 

terms of Dirac spinors. 

The rotation group o(n) can be considered as those linear transformations 

on the coordinate x 1’ X2’ l ’ xn, such that the quadratic form, xq+ xi+ ‘“‘-I- xi 

is invariant. Now if we want to write this quadratic form as square of a linear 

form of xi’s 

2 2 
x1 + x2 + l .’ + xn 2 = (YIX1 + y2x2 + l l ’ fynXn)2 

we have to require 

yiyj + yjyi = 26.. 
11 (A- 1) 

Clearly these yi’s have to be matrices in order to anticommute with each other. 

These are the generalized Dirac matrices. The algebra of (A. 1) is known as 

Clifford algebra, First we discuss the case where n is even n=2Q. One parti- 

cular representation is of the form 

i 

Y. l+Q = czxcr Z 

000 uzx uyx 1x 1000 x 1 

where 

(A. 2) 

It is easy to check that these expressions for the yi’s satisfy the anticommuta- 

tion relations (A. 1) by using the rule (AIX B1) . (A2 x B2) = (AlA2) x (BlB2) .” 

It can be shown that these y’s form a complete matrix algebra in the space of 
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2’ dimension. Now consider a rotation in the coordinate space 

X; = ‘&xk where 0 is an orthogonal matrix, i. e, , OOT= 1 

This rotation induces a transformation on the yi matrix, 

Yf = Oil& (A. 3) 

It is easy to see that the anticommutation relations remain unchanged, i. e. , 

Y; Y; + Y; Yf = 0 ik]Q 1~ 0. (y.y. + YjYi) = 26.. 
1J (A.4) 

However the original set of y-matrices form a complete matrix algebra, the 

new set of y-matrices must be related to the original set by a similarity trans- 

formation, 

Yf = s(O) yi s-l(o) 

or 

Oik Yk = S(O) Yi S 
-1 

(0) (A. 5) 

The correspondence 0 - S(0) serves as a representation of the rotation group. 

This is called the spinor representation of O(n). The quantities qi, which trans- 

form like 

pi - ~I = s(O)ij ~j (A. 6) 

are called covariant spinors. Their complex conjugate +T has the transforma- 

tion property 

I* 
‘i (A. 7) 

are called contravariant spinors. From Eqs. (A, 5-77, we can construct the 

following bilinears just like the Dirac spinors, 
10 which have the same 
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transformation properties as the tensors seen in Table 4. For an infinitesimal 

rotation we can parametrize Oik and S(0) by 

oik= CT.&+ E.& 

. . 
S(0)=l+iSijelJ 

Then Eq. (A. 5) implies that 

with E .&= - eki 

It is not hard to see that 

s& = a a~ = $ [yk, yQ1 

(A. 8) 

(A. 9) 

and 

S(E) = 1 - + [Yk’YQ] Eke 

If one expresses the parameter E ik in terms of rotation angle, one can see that 

S(47r) = 1, i.e., S(0) is a double-valued representation of O(n) D From these 

transformation properties, we can work out the covariant derivative as 

For the construction of the fourth order invariant potential, we can contract 

the vector with vector, or second rank tensor with second rank tensor, etc, , 

just like the case of 4-fermion weak interaction Lagrangian, In general we 

would have (n + 1) quartic terms in the potential. However because all the 4 

spinors all identical, not all these (n f 1) terms are independent in contrast 

to the case of weak interactions. It turns out the number of independent quartic 

terms increases with the dimension of the spacee8 
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APPENDIX B 

In this appendix we give the details of the solutions of the minimum in the 

case of second rank symmetric tensor in theO(n) group and also consider the 

case with the cubic term Tre3. 

The minimum for the case without the cubic term is given by 

av - -- 
‘@i - p2+i + A1 $ifh2+f -g=o i=l*““n tB. 1) 

with 

As we mentioned in the text these @Is, which satisfy (B, l), can take at most 

three different values. This can be seen as follows. Suppose there are three 

different e’s say $,, #,, c$,, they have to satisfy Eq, (A. 1) 

n 

-P2@J2 -+ Al ( 1 c 
j=l 

qf gJ2 + h2C3, - g = 0 
n 

-P243 + Al ( ) c 4; $3 + A24 -g=o 
j=l 

By subtracting one equation from the others, we get 

tB.2) 

tB.3) 



where we have used the fact that Gl# e3. Substracting again one equation from 

the other, we get 

9, + $2 + $3 = 0 tB.4) 

If we have another solution $I,, which is different from @,, q2 and $,, by using 

the same subtraction procedure among $,, e3 and $,, we get 

92 + $3 + e4 = 0 (B. 5) 

This implies $I~ = $,, contradicting the assumption that Q,# c$~. So there can 

be only three different c#J~‘s which sum to zero. Let us write $ matrix in the 

form 

e= 

with 

l\ @l. 5 
‘$1 0 

I 

$2. n2 
\ 

‘$2 

I $3. 
1 

n3 

\ 

0 \ 
‘@3 

I 

n +n +n3=n 
1 2 

$J1+ $2 + 93 = 0 P. 6) 

nl+l+n2@2+n3@3=0 (Be 7) 

The last equation is due to the trace condition Tr$ = 0. From (B. 6) and (B. 7) 

we can solve e2 and e3 in terms of $, 

q2 = n3 - nl @1 
n2 - “3 

(Be 8) 
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n2 - 5 
$3 = n3 - n2 ‘1 (B. 9) 

Now we can go back to the potential V(4) to express every term in terms of $, 

and minimize with respect to $1; 

V= -a$B+b@T 

with 

a= 2 1 

2 tn2-n3j2 [ 
qn2 - n3j2 + n2tn1 - n3j2 + n3tnl - n2j2 1 

1 - n3J2 + n2tn1 
2 

b= 
4(n2 - n3j4 I [ 

A1 nl(n2 - n3) + n3tnl - n2) 
2 2 1 

+ A2 + n2tnl - n3) 
4 

+ n3(nl - n214 11 
It is very easy to see that the potential at the minimum is 

4 
V,=-F 

1 

3 hl+h2f(nlr n2, n3) 

with 

f(y n2, n3) = 
nl(n2-n3)4 f n2(nl-n3)4 + n3(nl-n2)4 

[nl(n2-n3)2 + n2(nl-n3)2 
22 

+ n3tn1-n2) 1 

(B. 10) 

(B. 11) 

(B. 12) 

(B. 13) 

(B. 14) 

Now we look for the values of nl, n2, n3, which give the smallest minimum, 

corresponding to the ground state of the system. From the expression (B. 12), 

we see that if Al > 0, A2 > 0, the smallest Vm corresponds to the minimum of 

f(nl,n2,n3), and if Al > 0, A2 < 0, the smallest Vm corresponds to the maximum 
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of fty, n2, n3) o By using the identity 

nl(n2-n3)4 + n2(nl-n3)4 + n3(nl-n2)4 = + 
[ 
nl(n2-n3)2 + n2(nl-n3)2 + n3(nl-n2)2 1 
c (n2-n3)2 + (n -n )2 + (n ) 2 

1 3 -n 1 2 I 

we can reduce f(n n n ) to a simpler form 1’ 2’ 3 

(n 2 -n 3 )2 + (n -n ) 2 f0-y 1 2 + n3) tn1-n3J2 n2, = 

2 
C 
nl(n2-n3)2 + n2(nl-n3)2 + n3(nl-n2)2 1 

(B. 15) 

We introduce the variables x E nl + n2, y Z nl-n2 to rewrite f(nl, n2, n3) as 

3g2 2 
f(x, Y) = f0-y n2, n3) = 

I- (3x-2n) 

(8n - 9x)y2 + x(3x-2n)2 
(B. 16) 

This is an even function of y, we can consider positive y only. The allowed 

domain for x, y, are 

O<xL n O<yLn O<x-yL n 

the derivative with respect to y is as shown in Fig. 2. 

af -= 
aY 

8y(3x-2n) 3 

y2 + x(3x-2n)2 1 2 

Hence for x # in, f is monotonically increasing or decreasing function of y, 

the extremum must be the boundaries, y=O or y=x. Since f$ has the same 

sign as (3x-2n), the minimum must be on the lines y=x for X-C in andy=O 

for& <x <n 3 l 

Along the line y=x f is given by 

f(%X) = 
2-3nx+n2 

3x xn(n-x) 

and has a minimum at x = t with value f = $ . Along the other line y=O, we have 
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with minimum at x=n with same value f= $ o Actually these two points 

n 
x =y= 2 and x=n,y = 0, which correspond to nl = %, n2 = 0, n3 = 5 

andnI= E, n2= t, n3 = 0 respectively, are equivalent because 

function f(nl,n2,n3) is symmetric in nI, n2 and n3. Therefore for the case n 

n is even the minimum for f(nl,n2, n3) is at nl = n2 = 5 D For the case n is odd 

sincen n It turns 
1 2 =n = 2 is not allowed, we have to look at the nearby points, 

out that the minimum is at n = 1 i(n+l), n2 = i(n-1) andn3 = 0. To get the 

maximum of f(nI, n2, n3), the analysis is very similar. We get the results that 

for nl = n - 1, n2 = 1, n3 = 0, f is the maximum, hence V is at minimum. 

Now let us consider the invariant potential with the cubic term 

The condition for the minimum is then 

We still have only three values for Gi’s, 4,s $2, $3’ which satisfy the condition, 

/ 

-g=o (B. 18) 

(B. 17) 

(B. 19) 

instead of the simple relation (B. 4) 0 Combining this equation with the trace 

condition (B. 7), we solve for e2 and e3 in terms of c$,, 

‘2 = (n3L2) [An3 + by,) G1 1 

‘3 = (n2tn3) [An2 + tnl-n2)911 

(B. 20) 

(B, 21) 

with 
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Because these relations are not homogeneous, the calculation becomes very 

complicated. Instead of a simple form like (B. lo), we have 

(B. 22) 

where a, b, c, d and e are functions of nit s and hiIs. Its derivative is of the 

form 

aV 
w1 

= 4a$~+3b@~+2c@l+d=0 (B. 23) 

We have to solve this cubic equation for 4, and substitute it in the potential 

V(+,) to find the value of nl, n2, n3, where V(#) is the smallest. This com- 

putation is straightforward but very tedious. We only give the results here. 

(a) For hl > 0, h2 > 0, we consider the variation with respect to A3. At 

A3 = 0, we know that O(n) splits into two “almost” even pieces, i,e., . 

O(n) -O(n,) X O(n-n,) 

n nI= 5 n even 

n+l 
nl= 2 n odd. 

As we increase A3, either in positive or negative direction, the minimum starts 

to shift toward the pattern where O(n) splits into two most uneven pieces, i.e., 

O(n) --c O(n-1). 

(b) For h > 0, h2 < 0, the minimum is very stable against the variation 1 

of hg, i.e., 

O(n) -O(n-1) for all h3. 
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APPENDIX C 

In this appendix, we show how to get the solution for the second rank tensor 

$3 either symmetric or antisymmetric, if we know that X = $$* = c1, where I 

is the n x n matrix. 

(a) Symmetric Tensor 

We have + T = $ and @* = c1. Since the matrix $ is in general complex, 

we express $ in terms of its real and imaginary part, Z/J = A + iB, where A and 

B are real matrices. Because $ is symmetric $ = $ 
T . A and B are also 

symmetric, A T = A, BT = B. In terms of A and B, the condition that z,kj* = c1 

becomes 

A2 + B2 = c1 tc* 1) 

AB=BA (Co 2) 

So A and B commute with each other, we can diagonalize these two real and 

symmetric matrices by a real orthogonal transformation, which is automatically 

unitary in the complex space. Therefore A and B can be chosen to be of the 

form 

A= 

with 

i 

al 0 

“2 . . 
0 'an 

Then the matrix $ is of the form 

a1 + ib 

i 

1 
0 

$=A+iB= a2 + ib2 
. . 

0 ‘an + ib r 

Jc 

eial 
r 0 

eia:! 
0 

-. icr, 
e 

(C.3) 

i 

(C-4) 
n 



where we have defined aj + ib j = &-e 
h . 

I. Remember that under the group 

transformation of U(n), # - U$vT. We can use this property to write 

with 

and U= kQ2/2 
- . - . 

0 

e1an/2 

Hence $’ = c I is the most general solution. 

(b) Antisymmetric Tensor 

For even n, n=2Q, we have $ T = - zj and J1$* = c1. Again we define two real 

matrix A and B by zc) E A + iB, and A, B are antisymmetric, A = -AT, B = -BTO 

They satisfy the same conditions as before 

A2 + B2 = c1 (C.5) 

AB=BA (C.6) 

We want to transform A and B to the stand form for the real antisymmetric 

matrix. Since A and B are antisymmetric, (iA) and (iB) are hermitian and 

commute with each other because of (C. 6). We can diagonalize them simul- 

taneously by unitary transformation, 

with 
I 

-a 1 

ts)d = 

iA = U(iAd) U’, 

0 

“1 
-a 2 

“2.. 
. 

0 

iB = U(iA,)U+ 

(iB)d = 

(C.7) 

Lb, 

bQ 

for n=2Q 



The eigenvalues, which are real, have to occur in pairs, because det 1 h1 - iA = 0 

implies det 1 -AI - iA ( = 0 if A = -AT and n even. To get to the standard anti- 

symmetric form, we can use the matrix k = which has the property 

that 

So we can write A and B in the form 

A = (UK) A&UK)+ B = (UK) B,(UK)+ (C. 10) 

with 

K= 

al . 
AS= 

,i’ 0 i -1 
1 
0 1 0 

. --- 0 

i -1 

1 

Q- ‘a P 0 1 

. 

BS = 

( bl ( -lo- 0 0 1 . L . bQ i O -1 0 0. 1 j \ 
7 

(C, 11) 

But we know that any real antisymmetric matrix can be brought into the 

standard form (C 0 11) by a real orthogonal transformation. This means that 

the combination (UK) must be real, i.e., (UK)+ = (UK) 
T and the matrix Z/J can 

be written as 
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where 

(al + ibl) 

0 ( 1 0 1’ (C. 12) 

-1 0 I 

Just like the previous case, this matrix $’ can be written as 

where 

i 
0 1 ( 1 -1 0 

qJ”E c 

\ 
0 

0 

0 1’ 

j i i 

u' = 

-1 0 

10 

i i 
0 1 

. . 
1 

, ei5/2 1 O ( ii 0 1 

(CD 13) 

So the $ can be written as the standard form up to a group rotation, 

For the case n is odd, n = 2P + 1, we can use the same analysis with the 

obvious modification of adding a zero in the diagonal. 
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TABLE 3 

Summary of the pattern of symmetry breaking 

Representation O(n) SW-4 

k vectors o( n-k) SU(n-k) 

2nd rank symmetry 
tensor 

O(n-1) [I SU(n-1) 
or O(Q) X O(n-Q) II= % or W-9 

2nd rank anti- 
symmetric tensor 

ad joint 
representation 

U(Q) 
or U( 1) X O(n-2) 

o(zQ+l) 
or SU(n-2) 

SU(Q) X SU(n-Q) X U( 1) Q= 
or SU(n-1) 
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Fig. 1 

The classical potential for the spontaneously broken symmetry. 
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Fig. 2 

The domain for the function f(x, y) in Eq. B. 16). 


