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ABSTRACT 

In the context of various models for production processes, we 

examine what can be learned from data on the number of charged 

particles per event in the left and right c.m. hemispheres, left- 

right multiplicity distributions. The appropriate generating functional 

formalism is developed. We make explicit calculations of the gener- 

ating function in both the multiperipheral and Mueller Regge approaches. 

We explain how left-right multiplicity distributions are used to separate 

the components of a hybrid, diffraction plus short-range-order, model. 

Questions concerning the factorization of the leading Regge singularity 

are also discussed. 
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I. INTRODUCTION 

Recent data from the National Accelerator Laboratory (NAL), from the 

CERN intersecting storage ring (ISR), and from the Serpukhov machine have 

stimulated an active interest in building models for charged particle multiplicity 

distributions as well as for one and two particle inclusive distributions. l-3 

The inclusive distributions are of interest theoretically because, as shown by 

Mueller, 4 they give direct information about Regge singularities through a 

generalized optical theorem. Moreover, Mueller’s constraints 

<n> = 
/ 

p&p, s) d3p’E (r. la) 

<n(n-l)> - <n>2 = s d3pl d3g2 
C2Q1,p2, s) - - 

El E2 ’ 

etc., relate the moments of the multiplicity distribution to the inclusive dis- 

tributions and correlation functions. 

Multiplicity distributions have proved useful in testing general theoretical 

pictures of hadron scattering but since several different shapes of correlation 

function can have the same integral it is important to move toward more finely 

grained distributions. At the same time, for data of limited statistics there is 

an obvious advantage to studying integrated quantities. An interesting compro- 

mise between completely integrated and completely differential measurements 

consists of determining the number of particles (which in practice are charged) 

going left (llbackward’f) and going right (“forward”) in the center-of-mass 

system. Data of this type will be referred to as left-right multiplicity (LRM) 

distributions, o (nL, nR) . From this data, more refined information about 

inclusive distributions is obtained than in Eq. (I. 1): 
n 

/I d”p 
<n >= L -/P~<~ E- ol@ ‘) (I. 2a) 

-2- 



<nLn R> - <nL> % ‘=[ 

Ll<O 

$[2,0$f c,b’,,p,,s) (I.2b) 

etc. 

Left-right multiplicity distributions are extremely easy to obtain in bubble 

chamber experiments and many types of counter experiments. What we would 

like to show here is that LRM already contain enough information to answer 

some crucial questions about the dynamics of production processes. 5y6 In 

particular, they provide a series of quantitative tests for the factorization of 

the leading Regge singularity. ‘7 These tests will be reviewed in Section II of 

this paper along with a discussion of the meaning and content of factorization, 

For completeness, an introduction to the generating function formalism is 

included. 8 This formalism is convenient for the discussion of these multiplicity 

distributions, as well as to the closely related question of charge transfer 

across c. m. hemispheres. Differences between charged multiplicities and 

total multiplicities are discussed in this section as well. 

To supply concrete examples of what can be learned from LRM, we turn 

in Section III to model calculations. Two main classes of models are distinguished: 

those constructed directly for inclusive distributions and those constructed 

directly for exclusive distributions. Inclusive models use the Mueller-Regge 

ideas; exclusive models are constructed, for the most part, using the multi- 

peripheral picture, although adaptations of the multiperipheral picture to include 

diffraction are discussed as well. In addition, the Bjorken-Feynman-Wilson 

fluid analogy is here considered as a simple reformulation and extension of the 

multiperipheral picture. In discussions we shall loosely include all three of 

these exclusive classes of models in the “multiperipheral picture”. Separate 
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from this multiperipheral picture is the fragmentation picture. We discuss 

some simple predictions of this approach, but since recent data seems to dis- 

credit it as an explanation for data in the central region, 9 we will not present 

detailed calculations. 
.s 

The model of Frazer, Peccei, Pinsky and Tan 3f (FPPT) is chosen as a 

representative example of a model formulated directly in terms of inclusive 

multiplicity moments. The one dimensional version of the multiperipheral 

model due to DeTar, lo the “nearest neighbor multiperipheral model” (NNMM) 

gives a simply understandable introduction to the multiperipheral picture. We 

give a summary of the relevant details of this model, as well as generalizations. 

These generalizations include (1) the extension to two pole multiperipheral 

models which give, in certain approximations, a nonfactorizing hybrid, or 

%vo component” 11 model; and (2) an exactly calculable model of Kac, Uhlenbeck 

and Hemmer l2 (KUH) which may have some relevance to the problem of under- 

standing the effects of final state interactions in high energy data. This latter 

model is only one of a large class of fluid models which can be treated in a 

“mean field approximation”. The consequences of such an approximation are 

also presented. 13 

In Section IV, we apply what we have learned to the available data on left- 

right multiplicities and to the related quantity charge transfer. The claim7 that 

data on a(n,, tot) at 205 GeV/c provide direct evidence for a diffractive, or 

fragmentation mechanism is examined in more detail, and the possibility of 

separating out the fraction of events which correspond to diffractive fragmenta- 

tion is discussed. Data on <nL>R vs nH at current energies is shown to favor 

a situation in which the left-right cross sections do not factorize, although the 

situation is not clear cut, Finally, we show data on charge transfer in pp 

collisions can give some information on the size of the corrections to factorization. 
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II. GENERAL CONSIDERATIONS AND 

GENERATING FUNCTION TECHMQUES 

The generating function formalism has proved to be an exceptionally 

valuable tool for dealing with multiplicity distributions in hadronic production 

processes. 8 In this section we introduce the notation that we will use for the 

generating function, and define in terms of this function what we mean by 

inclusive, exclusive, or ‘1mixed11 quantities. Many of the results in this section 

are contained in a previous paper. 7 The treatment here is made more general 

so that in addition to left-right multiplicities, the related question of charge 

transfer can be discussed. The various experimental quantities we discuss are 

indicated in Table I. 

A. Notation 

It may make our later definitions clearer if we give first a simple example 

of a generating function in terms of the cross section o(n, s) for producing n 

particles. Given the complete set {a(n, s)} at a given c. m. energy &, the 

function of the parameter z, 

Q(z, s) = c +,s) zn , 
n 

is formed. Clearly all the information contained in {g(n, s)} is contained in the 

function Q(z) s) . In fact, o(n, s) can be recovered using 

cr(n, s) = $ Q@b, s) (II. lb) . 

where Q(n) (z, s) = ($/azn) Q(z) s). The advantage of the generating function is 

that inclusive moments can also be simply obtained 

f,(s) = m, 1 (am/dzm) Qn Q(z, s) 1 . z=l 
@. lc) 
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where it is easy to check that 

f&s) = <ID 

f2(s) = <n(n-l)> - <Ii>2 , @I. 14 

etc. The definition we will use for exclusive quantities will correspond to the 

situation (II. lb), where Q and its derivatives are evaluated at z=O; inclusive 

quantities arise from (II. lc), where Q and its derivatives are evaluated at z=l. 

If we distinguish between particles either by quantum number or by binning 

events in different kinematic regions so that more than one type of z will be 

present in Q, then the possibility of llmixedl’ quantities exists, where some z’s 

are unity and the remainder are zero. 

A typical example of a mixed quantity is the cross section o(n,, s) where 

nch represents the number of charged particles and a sum is taken over the 

unseen neutrals. Such mixed quantities are also frequently called “semi-inclusive”. 

These expressions for the integrated quantities o(n, s) and f,(s), correspond 

to the usual definitions. The o(n, s) are integrals over the exclusive differential 

cross section dgn/(d3El/El . . . d3pn/En) for producing exactly n particles 

(treated here as identical). The fm(s) are integrals over the inclusive corre- 

lation functions Cm{ pl, . . . , pm), where 

Q3 = C a@, s) 
n 

1 
c 

*n 
Pl@Y s, = a(s) n d3p ,E 

-1 1 
(n[. W 

1 
P2(Py’lz9 s, = (T(s) c d”n 

n d3pl d3p2 ’ 
-q-E, 
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(II. If) 

etc. 

It is an interesting exercize to take one step from completely integrated 

quantities toward differential cross sections by imagining an experiment with 

exactly two momentum bins. In this case we will assume that each bin consists 

of an entire hemisphere in the c. m. system centered around the beam or target 

directions. To discuss the production of charged particles in the left and right 

c. m. hemispheres, we form the generating function 

Q(z+L~~-I,~~+R~~-L~ s) = 

c 

%-L %L “+R n-R = Ob+L’ n-L’ n+R+L’ ‘) ‘+L ‘-L ‘+R ‘-R (II. 2) 

where the summation here, and in what follows, goes over all values of those 
, 

n’s appearing in the summand. The notation is self-evident; zL is the number 

of I1 f I1 particles in the left (llbackwardll) and nhR are in the right (“forward”) 

hemisphere. We assume a sum over the unseen neutral particles: They can 
nOL nOR be explicitly included, if needed, by introducing the extra factors zoL zOR 

with the completely exclusive cross sections c(n+L, nmL, noL; n+R, nwR, noL) 

inside the summation (II. 2). 

Because of charge conservation, the four n’s in (II. 2) are not independent. 

A smaller set is 

“L = n+L t-n -L 

“R = “+R + n-R 

- $ (4,-qb) 

@. W 
(II.3b) 

(11.3c) 
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where n L is the number of charged particles in the left hemisphere, nR the 

number in the right hemisphere, and u is the net charge transfer from the right 

to the left. Here qa and qb are the charges of the initial particles. Charge 

conservation eliminates one ni from the original set through the constraint 

qa+qb = tn+L + n+R> - tnmL+ n-R) - OI. 34 

Thus (II. 3c) can be written equivalently as 

u = n+R - n-R - qa 

=n -L - n+L + qb - (II. 3c’) 

The set (II. 3) suggests introducing a new set of variables into the generating 

@.4) 

function 

‘R = tz+R ‘-R) l/2 

Note that xx’ = z+~/z-~ depends only on “right” quantities and x1/x = z+~/z-~ 

depends only on lrleftlt quantities. In terms of Eq. (II. 4)) (II. 2) becomes 

Q(z+L9~-L,~+R,~-L9~) f CW l/2 qa l/2 qb W/x) Qt~,,z~,x)= 
112 CTa = (xx') l/2 qb (x1/x) 

@. 5) 

where u ranges over both positive and negative values. The charge constraint 

implicit here has been discussed by B. Webber. 8 Certain simple symmetry 
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/j 
/ 
i 

properties of Q follow immediately. If the incident charge qa+ qb is even (odd) 

then nL+ s is even (odd), and hence 

&t-z,, -z,,x) = 
qa’qb 

(-1 Q(zL,zR9x) . tn. 6) 

We will return later to this symmetry and its implications for the factorization 

of the generating function. Another simple property is obtained if 

o@,, s, -u) = O,, yp) , w. 7) 

as would be the case, for example, in pp reactions. Consequently the generating 

function would then satisfy 

In what follows we will often specialize to the case where a summation has been 

made over charge transfer 

Qtz,, ‘R) = Qtz L”R’ l) (n[. 9) 
We want to now examine the consequences for the generating function (II. 5) 

of certain general theoretical notions. In particular, we will assume that the 

cross sections are power bounded and that there exists exclusive cluster 

decomposition in the rapidities of the produced particles. 
14 When we adopt 

these assumptions, it becomes convenient to consider explicitly the power of s 

with which the generating function (II. 2) grows for zils not unity: 

Q(z+L~Z-L~Z+R~ '-R$ s) = expbtz+L, z-Lt '+R' '-R' ')'I (IL 10a) - 

Y = In s/so (II. lob) 

where p will in general be a function of s. Asymptotically in s, we expect p to 

have a limiting value for each choice of its arguments zi. The expansion 
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coefficients of p for zhL,za around unity, p.. 
1JH 

defined in 

P’C P.. 
tz+L qi (z_,-qj (Z+R-l)k (z-R-l)1 

1Jkl i! 'I I* k! l! (rr. 11) 
are related directly to integrals of inclusive correlation functions (recall Eqs. 

(II. 1) and the associated discussion). A few simple examples are as follows: 

J 0 
y PlOOO = -T-L (s)> = 

-Y/2 
dy P,(Y) 

y ??10 10 = <n+~ n+R’ - <n+L’ <n+R’ 

= j-o2 dy1 dy/z dy2 C;oT,~Y21 

(11-w 

(H. 13) 

etc. Within the context of the short range order correlation picture, in which 

for e=mple, C,(Y,, Y,) - e - IYl-Y2 I/L as ly,-y, I - m , a sharp distinction 

exists between the coefficients p.. 
1Jkl 

which involve particles all in one hemi- 

sphere, and those involving particles in both hemispheres. If the correlation 

functions become integrable in the rapidity differences at high energy, then it 

is true that for nL f 0, s # 0,7 

s 

0 y/2 

-Y/2 
dy1. - - dYn 

I- L 0 
dy’l.. . dy’ s ‘nL+s tyl’ ’ “nL’ yi.* ’ “LR) 

N constant (11.14 

as s (or equivalently Y) - 03. The implication is that whenever i+ j > 1 and 

k-t-1 >l, then 

‘ijkl -0 

ass-m. In contrast 

pijOO and Pookl 
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in general are nonzero, and finite as s - 00. Therefore, if the short range 

order hypothesis is correct, we can obtain a meaningful separation of p , 

+ pR(Z+R, Z-R’s) + P,@+L~ Z-~~Z+R~Z-R~ ‘) ’ 

(II.15) 

and we are guaranteed that p, -0 asymptotically. Charge conservation implies 

further that as s -to, 

exp YP~(z+~,z-~)) - (xVx) ( 

112 q 
exp Y pR (Z+R 9 Z -RI) - Nx’) a fn(z,) 

(read It fn I1 as “function of”), and so asymptotically 

PL(z+L’ Z-L’s) - PL(ZL) 

PR(Z+R,Z-R’s) 4 pR(ZR) = 
(rr. 16) 

The separation (II. 15) can also be written, therefore, as 

P(~+L*Z-L,Z+RSZ-R, S) = a -I- PL(ZI,) + PR(ZR) + P,(Z~~ZR~x~x’) (II. 15’) 

(suppressing the s dependence), where again pc= 0(1/Y) asymptotically. 

To see that (II. 15’) is indeed what we would have expected for short range 

models, but is not expected in general, we remind the reader of the energy 

behavior, for pp reactions, of the mean square fluctuation of the net charge 

transfer, 

2 a2 <<u >>=Y- 
8X2 

P l 

x=1 
(rr. 17) 

(This notation and the results below come from Ref. 6. ) In models with short 

range order <<u2,> is expected to be constant, as implied by (II. 15’), whereas 
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in fragmentation models <<u2>, - 4. This can be interpreted as implying that 

fragmentation models have nonfactorizable singularities which will show up as 

strong energy dependence of moments of left going particles as a function of 

right going particles. We will discuss this point further in Section IV. D where 

data on mean squared charge transfer is presented. 

To help understand the way in which (II. 15’) depends on the short range 

order hypothesis, a useful exercise is to compare the predictions for the two 

particle correlation function C2(yl, y,) in short range order, fragmentation and 

hybrid models. In the c. m. system there are four regions of interest to us: 

(1) Quadrant I, where both particles are in the right hemisphere (y,> 0, y2 > 0) - 

the integral over this region is po2 Y (we are here suppressing information 

concerning charges); (2) Quadrant II (y, > 0, y2 < 0) whose integral is plIY; 

(3) Quadrant III (y, < 0, y2 < 0) whose integral is p20 Y; and (4) Quadrant IV 

(y, < 0, y2 > 0) whose integral is pllY (Y = In s/so). 

Short range order. In short range order models, C,(y,, y,) depends only 

on yl-y2. The maximum height of C2 becomes constant asymptotically, with 

the growing part of the integral coming mainly from regions I and II. Ignoring 

energy momentum conservation, as these effects don’t change the logarithmic 

term, we obtain for Quadrant II (or IV) 

PllY = ig2 dy1 ly’2 dy2 C2oT1yy2) 

= constant 

and for Quadrant I (or III) 

(II. 19) 
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These results coincide with (II. 14) which lead to factorization of the generating 

function. 

Fragmentation. Contrast this with the fragmentation model 15 predictions 

for C2: the only nonzero contributions to C2 are in Quadrants I and III; and 

the maximum height (which is at y1 = y2 = 0) increases like 4 as + co . The 

behavior in regions II and IV is less dramatic, and results primarily from 

fragmentation events created in one hemisphere yielding products which end up 

in the opposite hemisphere. As noted by Chou and Yang, 
6 these events can 

account for a l:onzero amount of charge transfer which grows like & asymp- 

totically. If the size (area) of this region is denoted by E 2, we expect 

PllY a l 2& (II. 20) 

and so we predict pc(zL, zR, x) (Eq. (II. 159 to be extremely large asymptotically, 

contrary to the short range order prediction. In fragmentation models we 

definitely do not expect factorization of the generating function. 

The hybrid model. A hybridization of the above two models is that there 

remains a small fraction of events in o inel which are due to diffractive frag- 

mentation, the exact fraction depending upon the energy. 
16 If these events 

could be removed by subtraction, then the remainder would be of short range 

order . The correlation function, as usually defined 

1 
c2%*y2) = q 

d2c 1 da do -- 
dyldy2 - x dyl dy2 

(II. 21) 

will behave differently then in short range order models due to g in having two 

components 

cr. =u +u m D M’ << u OD M’ (II. 22) 

. 

- 13 - 



In the central region, we assume tiD/dyl, and d2GD/dyldy2 = 0 so that 

(II. 23) 

to first order in aD/cM . For large values of IyI-y2 I, the first bracket tends 

to zero whereas the second bracket is constant (in the plateau region). The 

integrals over this plateau region then give asymptotically the results 

The violation of factorization is determined by the (expected) small value of 

uD/gM. This can be made more reasonable by noting that this model could 

result from two terms, each of which factorizes 

+ a”(n,) aM (nR) . (II. 25) 

The factorization property (II. 157 is therefore seen to test the form of 

correlation functions. What is needed to obtain factorization is the integrability 

of correlation functions (both exclusive and inclusive) in rapidity differences. 

This type of integrability is not found in all models. The resolution of whether 

it exists or not will ultimately come from experiment so we now turn to the 

problem of experimental tests for factorization in left-right multiplicities. 
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B. Factorization and Factorization Tests 

From the above results we recall that a short range order picture implies 

certain asymptotic properties (II. 15’) for the generating function. These can 

be written in the form 

Q(zL,zR,x) - gtzL, ‘R’ Xl expbL(ZL)Y) exp(p,tzR)yl l (11.26) 

Specifically, this means that 

anL 1 anR 
WL,pt)=$ - 7 - 

L’ 0 0 anL “R* anR 
Q(zL,zRs 1) 

zL ZR 
ZL’ZR”O 

- aL(nL) a+Q Cl +W/Y)l y 

the left-right cross section factorizes to leading order in Y = ln s/so. This 

factorization property can be tested experimentally by studying the energy 

dependence of ratios of left-right multiplicity cross sections and comparing 

with the SRO prediction 

NM KL 
&I L; &: Mj = l + Otlly) ’ (II. 28) 

Another set of tests of (II. 26) involves the set of averages 

<Il.& vs .n-L (n[. 29) <~(‘k-lPL vs nL , 
etc. Some discussion of the tests (II. 29) and recent NAL and ISR data has been 

presented recently. 7 The lack of correlation expected in (II. 27) implies 

<nR>L - CY as Y--m t= 36) 

where c is independent of nL. As we will discuss in more detail in Section IV 

the data on this test are not conclusive. In particular, the important question 

m. 27) 

of whether (II. 30) is true for nL =l has not yet been answered with current data. 
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The energy behavior of the cross sections provides yet another test of the 

factorization (II. 26). In particular, the following cross sections, in pp colli- 

sions are related if p, - 0 in (II. 15’): 

a+r)L to) + pR (l) 

(r@,,~) = (s/so) ‘+PL lo) + PR to) 
(II. 31) 

u(tot) = (s/so) ‘+pL tl) + pR tl) 
ignoring logarithmic factors. As an example, if the exclusive and total cross 

sections behave asymptotically like (s/s,)-’ and (s/s,)’ respectively, then 

o(nL, tot) N (s/so)-1’2: i. e. , the mixed quantity has an energy exponent half 

way between the exclusive and inclusive quantity exponents. The vanishing of 

PJZL = 0, zR = 0) in (II. 159 asymptotically can be tested by looking at the 

energy behavior of the quantities (for a general reaction now) 

R(N1 M, = 
In a(N, tot) -I- In o(tot, M) 

In a(N, M) + In a(tot) 0-I. 32) 
which are expected to approach 1 + 0(1/Y) as Y -+ co. 

It is important to note that these tests (II. 27), (II. 30) and (II. 32) are to be 

made at several energies so we can study the Y dependence of the correction 

terms. 

At finite energy, the effect of charge conservation is to destroy the factori- 

zation expected asymptotically. In terms of the generating function for pp scat- 

tering as an example, charge conservation imposes that the number of charges 

in the final state is even and greater than two. This means, for example, that 
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the generating function has the symmetry (II. 6) 

Q(-z,, -‘R) = Q(z I,“,$ ’ (II. 33) 

From this it is easy to illustrate that even if the cross sections factorize, 

o(n,,y-$ = a@,) a@,) , (II. 34) 

the generating function Q(z,, R z ) does not, except asymptotically. A particularly 

instructive case is 

mnL 
a@,) = -r 

nL’ 
(II. 35) 

which leads to the generating function 

nRfnL even, > 2 
a(nL) “(%I zL ZR nL, nR#O 

= sinh (m zL) sinh (m zR) + cash (m zL) cash (m zR) - J. 

- 1 (II. 36) 

which obviously satisfies the symmetry property (II. 33), but does not factorize. 

At high energies with m - c In s/so, the behavior of In Q(zL,zR) has the 

expected (factorized) form q.v. (II. 15’) 

In Q(zL,ZR) - c(~~4-z~) Y + const. + 0(1/Y) l (II. 37) 

C. What has to Factorize 

In a short range order picture it appears well known that the leading 

J-plane singularity is an isolated pole and that the above factorization constraints 

involving left-right multiplicities are among the consequences of the existence of 

this leading pole. It is important to keep in mind that several currently popular 

models for production processes do not possess short range order. In particular 
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we have seen that the hybrid diffraction plus multiperipheral model which has 

been the subject of much current theoretical speculation 16 has the feature that 

the correlation functions C$vl,. . . , y,) approach nonzero constants in the limit 

that I yi-yj I e 00 for any pair of rapidities yi, yj in the central, or plateau 

region. It is then possible for the integrated correlations in (II. 14) to grow 

like (Y/Z) nL+nR , both in the case that either nL or nR = 0, and for nL, nR # 0. 

There is no a priori reason to expect factorization from these models. It is 

also clear that fragmentation models need not factorize, as discussed in 

Section II, A, due to the long range correlations which can occur in them. Thus, 

the questions discussed here are not trivial and deserve experimental investi- 

gation. Indeed there are important theoretical reasons to believe that the leading 

J-plane singularity, even if it is not a simple pole, may factorize anyway. If 

this is true, we then have (for example) powerful restrictions on the type of 

hybrid models that are possible. The vanishing of pc(zL, zR,x) which is auto- 

matic in the short range order picture may occur in complicated ways in other 

pictures. 

One of the early results of Regge pole theory was the observation that Regge 

pole residues must factorize. 17 The impression has been gained apparently by 

a sizeable segment of the physics community that factorization is a property of 

poles only. .18 In fact it has been shown by Kawai that partial wave unitarity 

implies that any infinity in the partial wave amplitude must reflect certain 

factorization properties. Since this result bears on our investigations here, 

we briefly review Kawai’s argument. 

Suppose we have m coupled channels of scalar particles with the signatured, 

reduced partial wave amplitude Bij(J, t) in the VY channel. Time reversal 
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invariance makes Bij symmetric 

Bij(J, t) = Bij(J, t) . (II. 38) 

If the amplitude is analytic and properly bounded so the unitarity relation can 

be continued to complex J, we can write t channel elastic unitarity as 

Bij(J,t) - gij(J, t) = 2 ip Bia(J, t) “Bja(J, t) (II. 39) 

where channel “a” is the elastic channel and gij is obtained from Bij by a con- 

tinuation around the elastic cut. Using (II. 38) and (II. 39) it is easy to verify 

that Baagja = B. “B la aa ; substituting B ja%aa/Baa for gja in (II. 39) we obtain 

B (B.. 
l aa 11 - gij) = 2ip B. B. fii ia Ia aa (rr. 40) 

If the partial wave amplitude Baa is singular, 

lim IBaa(J, t) I = ~0 , 
J-o 

we see that (II. 39) implies 

(II. 41) 

lim gaa(J, t) = (2 ip) -1 . (II. 42) 
J-o 

Thus, the partial wave amplitude Bij has from (II. 40) the approximate behavior 

as J-01 

Bij c! + 
aa 

since gij is not expected to be singular, whereas B. and B. are. It is then la Ia 
easy to see that the singular behavior (II. 41) as J- 01, leads to 

BijtJ>t) Bkl(J,‘) -Bik(J,t) Bjl(J,t) l (u. 43) 

We thus have factorization, and are allowed to write 

Bij(J,t) = Yi(t) Yj(t) ftJ,t) + ‘ij(J,t) (n* 44) 

.A 
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where 

lim If(J,t)I = m 
J- 01 

b..(J, t) 
lim 13 = 0 . 

Jea f(J,t) 

(II. 45) 

P-46) 

This factorization property depends upon unitarity and on the fact that the partial 

wave amplitude is infinite at J = o. It does not depend on this singularity being 

a simple pole. The most singular part of a hard branch point must factorize 

as well; a soft branch point such as (J-o) l/2 where the partial wave amplitude 

vanishes need not factorize. 

The factorization of reduced partial wave amplitude in coupled two-body 

channels does not, of course, lead directly to the factorization of left-right 

multiplicity distributions. It is possible to construct a chain of inference which 

would lead to this result, however. If (II. 43) could be extended to a situation 

where the indices i, j ranged over quasi-two-body as well as two-body channels 

we could make contact with production processes. Such an extension is plausible 

but has not been proved. Such a proof would require considerable theoretical 

effort because of technical complications involving many-particle-partial wave 

amplitudes such as complex helicity. lg 

If we assume the extension can be made and allow the indices i, j to repre- 

sent the internal quantum numbers of a many-body-final state, then we can 

obtain a constraint on production cross sections when the leading J-plane singu- 

larity obeys (II. 44) - (II. 46). The constraint is that the production cross section 

factorizes whenever any rapidity gap becomes large. That is, if we order the 
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rapidities yi < yi+l < yi+2 

+ o(Wi-Yi+l)- ‘) . (11.47) 

This is still not sufficient to guarantee the factorization of integrated cross 

sections (IL 28) unless the correction term is integrable in (yi - Y~+~), that is 

E>l . (II. 48) 

It is therefore interesting to look at differential cross sections directly and test 

this exclusive cluster decomposition l3 (II. 47) as well as the simpler constraints 

on the integrated cross section (II. 28). 

Using the same assumption of a factorizable hard singularity in the dis- 

continuity of a Mueller graph we can conclude that inclusive cross sections 

satisfy (II. 47) as well as exclusive ones. 
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III. MODEL CALCULATIONS 

Some of the underlying dynamical features of production processes which 

can be learned by studying left-right multiplicities will be illustrated here by 

means of some explicit calculations in simple models. Two pictures of hadron 

dynamics will be stressed; an inclusive one as best represented by Mueller- 

Regge models (MRM), and an exclusive picture, as best represented by 

multiperipheral models (MPM). It appears well known to some that the multi- 

peripheral picture always leads to, or is expected to always lead to an equivalent 

Mueller-Regge inclusive description. Recent work has taken the first step in 

establishing an explicit connection between these two pictures. 20 Although we 

believe the physics of MRM and MPM to be the same, it is nevertheless 

instructive to treat them separately in that certain aspects of data can be more 

conveniently described from one picture than the other. 

A. Multiperipheral Picture 

The essence of the MPM can be obtained by making some crude simplifying 

approximations . The approximations consist of neglecting the transverse 

momentum dependence of the matrix element and assuming all invariant mo- 

mentum transfers along the multiperipheral chain to be small so that we can 

reformulate the model in one (longitudinal) dimension. 10 In this reformulation, 

the strong ordering limit is taken so that the only energy-momentum constraints 

are those fixing the total allowed interval of rapidity. If the matrix element 

depends only on momentum transfers, we shall call such a model the nearest 

neighbor multiperipheral model (NNMM) . 21 For n secondary particles produced, 

the differential cross section in the NNMM has the form 

d% n (2ac-2)Y 
dyl. . . dyn = gagbg e q-Y,) fOT2-Yl) * ’ * f t&-Y,- 1) f o’b-Y,) (III. 1) 
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where g is the Reggeon-Reggeon-particle coupling squared; y, and yb are the 

initial rapidities of the beam and target (Y = y,-y,), e * [ 2oy f(yJ is the multi- 

peripheral kernel; and o is the leading trajectory in the kernel. In the Chew- 

Pignotti model, 16 the kernel is (s ii+l/sO~~ - e 
2atYi+l-Yi) 

so that f(y) = 1. 

The function f(y) will in general not be unity due to the existence of daughter 

trajectories, and may be replaced by a matrix if more than one input trajectory 

is considered, or if isospin or charge is to be included explicitly. 22 

With the particles and rapidities labelled as in Fig. 1, the cross section 

for nR particles in the region 
[1 
y,, YR + y, and nL particles in the region 1 

- YL, yb 1 (where YL+YR = Y) is in this approximation 

nL+l 

a@L, %) = gagbg 
n (2cr-2)Y 

e J II dx; s(zx; - YL) 
i=l 

J 
nR+ 1 nL nR 

II dxj6(ZX 
j=l 

j - YR) rI f(xj) l-l f(Xj’ f “A 
i=l j=l ( 

*I 
L 

+ x%+1) (III. 2) 

Y Here xl and xj are rapidity differences, and YL, R will be treated as arbitrary. 

The generating function which determines the left-right multiplicities, 

Q(z,, zR) = c u(nL,%) ZnL ZnR 3 
nLnR 

m 3) 

will here refer to total rather than charged multiplicities for convenience. It is 

straightforward to include charge in the NNMM but the equations become cumber- 

some. To evaluate (III. 3), we first take a double Laplace transform of 

Q ty , Y I= OL, r+$/ 
nL+nR 

nLnR L R I 
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which is defined as 

J 03 Q nL,$’ OR) = o dYL e-oLyL /” dYR e-*RyR QnLiR(YL,YR) 
0 

nL = F((YL) Ttol ;R ‘@I,) - b,) 
R aR-oL 

(m. 5) 

where T(a) is the Laplace transform of f(y). Summing Q nL 3% 
nLnRtzLg) (z,g) 

we obtain 

QbL, (+ = 2 Q nL nR 

nLnR 
tz Lg) tz,g) 

1 ‘tcr,) - ‘@,) 1 = 
oR-oL 

(me 6) 
’ - ‘J$ f(a,) 

In the usual case where f(ol) is analytic for Re c1! > 0 and has the behavior 

f(o) N l/o as 01 --, 0, the vanishing of 1 - zgr(ol) determines the leading asyrnp- 

totic behavior of the inverse transform of (III. 6). Denoting this solution by p(z) 

1 = zg f [p(z)] , (III. 7) 

we obtain for (III. 3) 

&tzL9 ‘RI - gagb e (2cr-2)Y ‘Lg - ‘Rg pt’,) Ptz,)y, p(‘R) ep(zR)yR 

Pt’,) - Pt’,) w e ZRg 

where 

p(z) =zp’tz) = - zg &) l 

We note that the asymptotic behavior of oinel is 

u inel = gagb e 
PQJ-2)Y JpJ ,P(Z)Y 

zg 

@I-9) 

m. 10) 

- 24 - 



which can be obtained directly from (III. 1) or from (III. 8) with zL = zR = z. 

The correlation between left and right depends upon the factor 

(z,-z,)/ p(z,)-p(zR) , and we can compute explicitly the function pc(zL,zR) 
[I 1 

which appears in (II. 15). With the constraint pc(zL, 1) = 0 used in defining p,, 

we obtain 

PctzL’ZR) = + 

( IWFL 
- ln ,P(l) -P(Z,) ) 1 + In -ii- . 

p(l) 
(III. 11) 

To proceed further we would need a specific model for the kernel f(y). Two 

simple examples may serve to illustrate what can result. 

The first example is the well known Chew Pignotti model whose kernel is 

f(y) = 1 and a! = l/2. For this model f(a) = l/or, p(z) = zg and 

tz,g - z,fd/,+zL) -PO] = 1. Therefore there are no left-right correlations, 

and pc(zL,zR) = 0. 24 

The second example is the “hard core” model of Chew and Snider. 23 In 

this model f(y) = 8 (y-b), and F(o) = e -ob /a. The correlation can be noted 

directly by computing the Laplace inverse of (III.5) 

-a-b -a,b J% lJ e 

Q nLnR(QL’ oR) = 

e-oLnLb e-oRnRb F - 
e 

aL 
* 

3 -5 
aL - aR tJ= 12) 
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By standard techniques, we invert to obtain 

tyR - % t%+l)b) YL Q nLnR’yL’ yR) = 
CYL - “Lb) 

nL! 

pL - @,+l)b~ 
k? 

nL+nR-k 
WL - nLWk 

(n,+n,-k)! k! (III. 13) 

It can be checked that for YL = YR = l/2 Y, Q 
nLnR 

is symmetric in nL and nR, 

and further that 

c 

n 
Q 

nL+nR nLnR 
= fl- (;;l)b) , m. 14) 

the result for the total multiplicity distribution in the “hard core” NNMM. There 

are clearly left-right correlations in (III. 13) which result from the sum of com- 

ponents. To compute pc(zL, R , z ) we return to the asymptotic expression (III. 11). 

The power exponent p(z) is obtained by solving (III. 7) 

1 = zg 
e-ptz)b 

p(z) 
(III. 15) 

which will clearly result in a nonzero expression for pc(zL, zR). We leave this 

hard core NNMM for the time being since without additional input, it is incapable 

of describing existing multiplicity data. The basic problem is that it predicts a 

distribution narrower than Poisson whereas data favor a distribution (ignoring 

diffraction effects) slightly broader than Poisson. 
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B. The KUH Model 

The fact that there exists a mathematical isomorphism between the multi- 

peripheral model as formulated by DeTar 10 and the nearest neighbor 

dimensional fluid has led to a great deal of speculation that the fluid analogy 

might be a way of extending our understanding of production processes. 13 

Kac, Uhlenbeck and Hemmer12 (KUH) have discussed in detail a one 

dimension fluid where the pair interaction consists of a hard core repulsion 

(as in the Chew-Snider model) plus an exponential attraction 

V pair&) = “/a eBnT 0 (y-b) l (ru[. 16) 

The KUH fluid is of particular interest for hadronic processes because the 

corresponding generating function Q can be evaluated explicitly, and because 

the potential (III. 16) contains a weak interaction which is not of the nearest 

neighbor, or multiperipheral type but might represent long range interactions. 

There is some evidence that this type of physical mechanism does play a role 

in data and so the KUH model will be taken as an example of a model with 

complicated final state interactions. 

KUH show that in the limit of y 4 0 and *a’ fixed (i.e., I= dy V 0 pair OT) fixed) 
the resultant energy exponent of atot = s P(Z) satisfies 

P(Z) = * - ap(zJ2 (III. 17) 

where p(z) = zp’(z) as before. This equation, known as the ‘*Van der Waals 

equation of state” has been applied to NAL and Serpukhov multiplicity data with 
3e some success. Even if the KUH model were to have no physical connection 

to high energy data, the formal isomorphism still makes calculations in this 

model instructive. 
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The technique which makes the interaction (III. 16) soluble is an identity 

which reduces the calculation of the cross section involving non-nearest 

neighbor interactions to that of a nearest neighbor cross section. The price 

one pays is the introduction of n auxiliary integrations (for calculating on). 

The essential point (the reader should refer to Ref. 12 for details) is that instead 

of (III. l), the KUH model has the form 

I3 OTi+l - Yi - b) 1 ‘e(Zn) l (ma 18) 

The explicit form of the kernel, K, in (III. 18) is known, but is not important to 

us here. Once (III. 18) is Laplace transformed, the important quantities are the 

eigenvalues and eigenfunctions of the integral equation 

I 

co 

dz’ K(a! Iz,z’) +(z’) = h+(z) . (HI. 19) 
-ce 

It is known12 that Ko is a symmetric, positive definite Hilbert Schmidt kernel 

which has a discrete set of positive eigenvalues hi(o) whose maximum is ho(o) 

and which go to zero as i 400. The kernel therefore has a uniformly and abso- 

lutely convergent expansion in terms of its complete orthonormal set of eigen- 

functions. 

K&Z’) = c hi(a) q(z, Q) !P~(z’, a) A 
These facts allow the evaluation of Q,(a): 

Q,(a) = i$o Aita12 ‘Y+‘(Q) 

J 

co 
Ai@) = dZ *it’) *,(‘I a 

-co 
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The calculation now proceeds as with the NNMM. The total cross section is 

~0 Ai L(a) 
Q(@ = go 1-zg h (ac) i 

(ILL 23) 

and the behavior of Q(Y) is determined by the leading singularities of (III. 23). 

If the interaction (III. 16) has a nonzero y, the asymptotic behavior is deter- 

mined by the vanishing of 

1 - zg ho(a) = 0 (III. 24) 

where ho(a) is analytic for Re Q! > 0 and has the behavior e -ah/a. as a--w. In 

the limit as y - 0, however, we have a feature not present in the simple NNMM 

in that an infinite number of terms in (III. 23) contribute because the eigenvalues 

begin bunching around the function ~(a), the maximum eigenvalue. It is shown 

in Ref. 12 that in this case hi(o) N O(Q) and from the completeness of the eigen- 

functions 

QW = t ) 
1 - ;goLw(cr) 

The vanishing of this denominator leads to the behavior 

Qcy) = &) ePtz)y 
zg 

(III. 25) 

(III. 26) 

for the total cross section, where p(z) and o(z) satisfy (III. 17). 

The steps leading to &(a,, R a! ) for the left-right multiplicities are analogous 

to those leading to (III. 6)) but for the subtleties involving the eigenvalues and 

eigenfunctions. No new complications arise which did not occur in obtaining 

(III. 23)) and so we quote the result 

Q(Q,, QR) = 2 
Aj,taL) A. faR) 

i, j=O ‘-‘Lg ‘itaL) ‘-‘Rg ‘itaR) 

(III. 27) 
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where 

J cc 
<i,aLIj,(uR>= dx ~i(x, AL) ~j(xI OR) . (III. 28) 

-co 

In the limit that y - 0, (III. 27) simplifies due to the orthogonality of the eigen- 

functions: 

&(a,, “,I$ N ’ 
&R> - da,) 1 

1 - ZLg WbL) aL-aR 1 - ‘Rg da,) cm. 29) 

The result for the inverse is thus formally the same as (III. 8) except now p(z) 

satisfies a different type of equation not derivable in a MPM. 

To investigate what might happen in such a model in more detail, we shall 

make use in Section IV of a simplifying approximation, known in statistical 

mechanics as the mean field approximation (MFA). The approximation consists 

of replacing the long range part of the non-nearest neighbor interactions by its 
. 

average value. In the KUH model, the limit y -. 0 is meant to simulate a long 

range potential. For n produced particles, the mean field approximation 

replaces (III. 18) by 

dnQ n-l 

dyl. .“dy, = II 8 (yi+l - yi - b) e an2/Y 

i=l 
(III. 30) 

1 Y 
since the average potential is the number of pairs times T Jo dy V(y), or 

an2/Y. But (III. 30) is almost in the form of the Chew-Snider model, the “hard 

core” NNMM. The result is that the cross section Q 

(III. 13) times the extra weight ean21y. 

nLnR FL, yR) is given by 

In the next section, this model is 

compared with certain aspects of the data. For completeness we give here the 

parameter values used, and the prescription used for including charged and 

neutral particles. A fit to data 3e with this model favors 

27 
a==, b=;, g = 4 es714; 2a-2 = -1 (III. 31) 
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which corresponds to a Van der Waals fluid at the critical point. The distinc- 

tion between neutral and charged particles is accomplished by introducing a 

binomial weight factor [as in Ref. 3e] 

for right movers, and a corresponding weight factor for left movers, into the 

expression (III. 13). Calling Q 
nR”L 

in (III. 13)) Qh’ ” 
nRnL’ 

the present model is 

u nc&;hnO$L = e-’ 

8nch 

($f (9) L ean21Y Qh,cG(Y,,Y,) (III. 32) 

with (III. 31) giving the parameter values. 

C. Pomeron plus Regge Model 

In applications of the types of model discussed in Sections III. A - III. B, it 

is usually assumed that diffractive effects are small. For this reason the 

elastic process is excluded in these analyses. To include diffraction explicitly 

in the multiperipheral picture, two exchanges have to be included in the input; 

a Pomeranchuk pole and a secondary meson pole representing an average of 

all lower lying trajectories. 16 If a matrix formalism is adopted, the formulas 

are similar in form to those in the NNMM of Section 1II.A. In place of (III. 1) 
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we have 

dnon T 
dyl.. .dy = Ga WY~-Y,) WY~-Y~) G. - JYY~-Y,-~ ) GF(Yh-Yn)Gb (HI. 33) 

n 

where the kernel is now an n x n diagonal matrix if there are n poles exchanged. 

(We do not take out the leading behavior in the definition of F as was done in 

(III. 1). Also we include in F the flux and phase space factor e -2y.) G is an 

n x n matrix giving the couplings between the ith Regge pole and the jth Regge 

pole; Ga and Gb are column vectors of dimension n which give the coupling of the 

external lines to the exchanged Regge poles. Analogous to (III. 5) we have the 

double transform of Q (Y , Y 
nLnR L R 

) [here o,(Y) = l] 

Q 01 nLnR(oL’ R ) = Gz(F(crR)G) % ‘@,I -‘(oR) (GF(a! 

crR-crL 

,;L Gb 
L l 

(HI. 34) 

Summing over all nL, nR, the analog to (III. 6) is 

QWLs aR) = Gz (T - zL FWL)G) 
-1 F@,) - ‘tOLR) -1 

oR-oL 
(I - z~G&~~)) Gb- 

(III. 35) 

For comparison, we note that the Laplace transform of the total cross section 

is 

Q(a) = Gz P(a) [I - z G&ajj-1 Gb . (HI. 36) 

We see that the leading behavior of the cross sections are governed by the 

zeroes of 

det (I - z Gi?@)) = 0 
L 

. (III. 37) 

In the general case, the leading behavior of the generating function Q(Y,, YR) 

will again be factorizable. 
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As mentioned in III. A, the above formalism is general and can be used to 

treat the exchange of several secondary trajectories, or the effects of isospin 

conservation. 22 Our interest here is in the two-pole exchange model, Pomeron 

plus Reggeon. The treatment has to be somewhat roundabout since an input 

pole at Q! = 1, treated in the multiperipheral formalism, is well known to 

generate an output pole larger than unity. 25 The difficulty remains in the 

inclusive picture and is connected with the vanishing of the triple Pomeron 

coupling or the decoupling of the Pomeron from physical processes. 26 The 

standard treatment of these problems for phenomenology is to allow the 

Pomeron to be exchanged only once on the argument that the Pomeron coupling 

is very small.. For the coupling and kernel matrix we have 

(III. 38) 

assuming the Pomeron to be at unity and the secondary exchange to be at one- 

half. These intercepts are taken to be only approximations and might be varied. 

For calculating multiplicities, the relevant quantity is 

i 

6 nO ’ 8 (n- 1) 

(F(cY)G)~ r (III. 39) 
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After some algebra, and neglecting terms 

(III. 34) has the form 

of order y2 and higher, we find 

“L+“R 

“L “R 
(OLL+l) @R+l) 

6 Q ab nL” 
nLnR(oL’ oR) = ?eYe x 

The significance of these terms and a comparison of this type of model with 

data has been done by Snider. 27 We summarize briefly the physics of (III. 40). 

The first two terms are the elastic scattering given by Pomeron exchange 

(~~~~) and the multiperipheral contribution to cr(n,, nR) (gagb) . The latter is 

here given by the product of two Poisson distributions. The last two terms 

represent low and high mass diffraction. For example the terms proportional 

to yb,g, consist of (1) Pomeron exchange extending across the left hemisphere 

to a low mass state in the right hemisphere - low mass diffraction; (2) Pomeron 

exchange which remains in the left hemisphere to a high mass state - high mass 

diffraction. We note that the inverse transform of these diffraction parts 

which is an incomplete gamma function, has been discussed previously with 

regard to multiplicity data. 28 
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The factorization properties of (III. 40) are most easily seen by writing 

the equation in the form 

Q (Y nLnR(oL’ R ) = Aa (01 ) Ab (cYL) + B” (a! ) Bb (a,) 
5% R nL 53 R “L 

. 6 
A;(o) = y; + 

n-l 
+ giY g 

0 (n-1) 

a(o!+l)n 

(III. 42a) 

.’ 
-_ 

(EL 42b) 

gign Y& n-l 

B;(cu) = 
e (n-l) 

tQ+l) 
n+l + . 

or(o!+l)n 
(III. 42~) 

Both terms in (III. 42a) give leading behavior in the approximation that (YY)~ is 

negligible, and so the generating function Q(z,, zR), which will have the form 

Q(z,, zR) = Aa Ab(zL) + Ba(zR) Bb(ZL) w. 43) 

will not factorize. This lack of consistency with the starting assumptions is 

clearly related to our being forced for other reasons to keep only one Pomeron 

exchange in the approximation. To compare the basic features of this picture 

with data we simplify (III. 40) somewhat while retaining the basic form (III. 42). 

This will be explained in more detail in Section IV. 

D. Inclusive Picture 

It is interesting to counterbalance the above microscopic, or exclusive, 

models for left-right multiplicities with a simple Mueller-Regge model for the 

inclusive multiplicity moments f 
nLnR l 

We choose for this purpose the model 

of Frazer, Peccei, Pinsky and Tan (FPPT) . 
3f It is assumed that the inclusive 

correlation functions are dominated by their values in the central region and 

further that these values can be well approximated by the Regge form even 

down to small rapidity differences. The diagrams considered are shown in 

Fig. 2. Formally the contributions of Fig. 2 have the MPM form (III. 33) for 
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Qn and (III. 34) for Q 
nLnR 

with G and F 2 x 2 matrices 

(III. 44) 

and the external couplings two dimensional column vectors 

Ga = Gb = (rn. 45) 

We assume the meson trajectory is at cx = i, the Pomeron is a! = 1, and the 

particles are in the central region so that the external meson coupling can be 

ignored. To compute the integrated correlation functions fn, we use the 

identities 

co 

L 

I+ 

n=O 
Q,(z-~)~ = exp - .co 

L zl 
fn $ . 

2 Q nL % 
nL, s=O nLnR 

(‘L-l) (zR-l) 

= exp 

[ 

co 
c 
nL, nL=l 

f 
nLnR 

nL (zL-4 
nL! 1 

(III. 46) 

(III. 47) 

so that the results for &(a! L, aR), &(a,) and det (I - zG F(o)) = 0 are the same 

as (III. 35) - (III. 37) with all z’s replaced by z-l. The zeroes of 

det (I - (z-l)G i?;(a)) 

(CY +$ tz-%MM)- (,d g;M 1 
tJ= 48) 
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determine the leading behavior of the generating function Q(O) and Q(o, , a,,). 

For Q(Y) the result is 

where2’ 

QtW = 
P+(z) + y - ’ tz-l) gMM 

P+(z) - P-(z) exp @+<W) 

u IL 

(III. 49) 

P*(z) = 
- + + (z-1) [g&f&I+gppJ 

2 

1 z!c- 2 ; + (z-1) [gpp - gn/rM] + 4 (‘-lj2 & 
I 

w. 50) 

are the solutions for (III. 48). The result for Q (z,, zR) is 

Qtz L, zR) = 
(P+(zL) + + - (ZL -l) gMMj(P+t’R) + $ - tzR- ‘) gMJJ)+ tzL-l)tzR-l) g;M 

LP+t’L) - P-(zL)] [P+(zR) - P-(z,)] 

yL + p+ tzR) yR 1 - 
We see now explicitly that the left-right correlations pc(zL,zR) go to zero 

like l/Y as Y-,m, which further illustrates the points made in Section II. 

Additionally we see the formalism of the Mueller-Regge picture closely parallels 

that of the MPM, justifying our including them in the same general picture. 

Finally, we note that it is a simple generalization to include isospin constraints 

explicitly in the above formalism. The coupling and kernel matrices then have 

a larger dimension. 
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IV. IMPLICATIONS FOR THE DATA 

With the continuing analysis of bubble chamber 30 and two arm spectrometer31 

data on high energy pp collisions, we are beginning to obtain the experimental 

values for the left-right charged cross sections o(n,, nR), the average multi- 

plicities <nL> vs nR, the mean-squared charge transfer ( <u2,) and the other 

coarse-grained quantities we have been discussing. The available current amount 

of data on these quantities is not large and there is still a lot of important infor- 

mation which can be obtained from analyses of experiments below NAL energies. 

For example, the question of the energy dependence of the experimental quantities 

R(N, M) in Eq. (II. 32) requires measurements of left-right multiplicities in the 

AGS-ZGS energy range. 

One thing which can be done with the data currently available is to examine 

the problem of separating that portion of the inelastic cross section which might 

be labelled diffractive fragmentation in a hybrid or 2-component theory. This 

problem is important because it strikes at the viability of the two component 

concept. If the diffractive and short-range components cannot be separated then 

it’s not clear whether we can attach much significance to the two-component 

models currently being discussed, 

A. The Two-Component Concept and a(n,,toJ 

The idea that a certain fraction of inelastic events in asymptotic proton- 

proton collisions contain a quasi-elastically scattered proton in one hemisphere 

and an excited Yireballf’ which decays into two or more particles in the other 

hemisphere has received a good deal of attention, 15 Only recently has it 

become apparent that these types of events do not dominate production processes 

at current energies. 9 The experimental observation of a low-mass enhancement 

in the inclusive cross section pp -, p -I- MM at NAL and ISR, 32 however, provides 

sufficient evidence that there are some of these events. 
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Currently, the most frequently discussed possibility is a hybrid model for 

production processes containing both a fragmentation component and a short- 

range order component. There remain several important unanswered questions 

in the two-component approach such as whether the dominant excitation of the 

“fireball” at current energies is due to Pomeron exchange. These questions 

can only be answered cleanly if there is some way of looking at the data which 

separates the two components so that each can be discussed separately. 

In some versions of the two-component model, the charged prong multi- 

plicity distribution would, at infinite energy develop a dip structure, the 

diffractive component contributing only to low multiplicity. If this characteristic 

were present in the data, it would be possible to make the separation into two 

components comparatively easily. The dip structure is certainly not present 

in the data at NAL energies and so a separation on the basis of total charged 

multiplicities is not possible. In addition there is certain theoretical uncertainty 

about whether any dip in the multiplicity distribution is really expected. A 

“self-consistent” model due to Ball and Zachariesen, 28 for example, has several 

features in common with the other versions of the two-component approach 

except that the “diffractivefl component contributes to cross sections out to the 

mean multiplicity. In this version of the two-component model no dip would 

develop but only a broad plateau. A related approach due to Frazer, Snider 

and Tan16 also predicts no dip. 

We have to look at slightly more complicated objects than the total charged 

prong distribution in order to isolate the diffractive component. Since the 

Pomeron has isospin zero, it will contribute asymptotically only to those cross 

sections where the charge transfer between hemispheres is zero. In proton- 

proton collisions, this means for example that the total charge in the forward 
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hemisphere due to a diffractive event must be +l. If we look at the distribution 

o(n,, tot) vs nL then diffractive processes will contribute only to those cross 

sections with nL odd. It is not hard to convince one self that the most plausible 

situation is for a substantial portion of the diffractive cross section to be in 

o(1, tot). This is the cross section which contains those events in which there 

is a quasielastic proton in the left hemisphere. By symmetry, there are an 

equal number of events containing a quasielastic proton in the right hemisphere. 

In the plot of o(n,, tot) these show up in a(1, tot), ~(3, tot), ~(5, tot), etc. The 

graph in Fig. 3 shows preliminary experimental data on a(n,, tot) at 

plab = 205 GeV/c. 3o The theoretical curves represent parametrizations based 

on models discussed in Section III and are explained more fully in the figure 

caption. The data completely support the qualitative expectations of the two 

component picture. The presence of the expected large surplus of events in 

~(1, tot) followed by a dip in ~(2, tot) is reinforced by the sawtooth behavior of 

the rest of the distribution showing the tendency to prefer odd multiplicities 

(and, presumably, AQ = 0) over even multiplicities. The presence of the dip 

allows us to extrapolate roughly the nondiffractive component and estimate 

o(l, tot)tif 2 3.5 mb w. 1) 

It might be noted parenthetically that this distribution is the first inelastic 

multiplicity distribution to show any sort of dip structure. 

B. Estimates of the Diffractive Component from o(n.,,nRL 

To get more information about the amount of fragmentation or diffraction 

we can look at the distribution of o(k,nB) directly. As pointed out by Nussinov, 

Quigg and Wang, ’ it is possible to distinguish between the extremes of pure 

fragmentation models and pure short-range order models in a single experiment 
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at a fixed energy by looking at the shape of c(nI,, N-nL) as a function of nLO 

It is easy to see how this can be if we assume exact factorization 

a(n,, N-nL) = a@,) a(N-nL) . (Iv.2) 

Recall now that the short-range order concept discussed in Section II would 

require that both a(n,) and a(N-nI,) be peaked around some central value 

<n> cc In s and that they fall off rapidly for values of n larger or smaller than 

<n>. We can see that in a short-range order picture o(n,, N-nL) will be maxi- 

mum near the symmetric distribution n L= N-n,/ The most popular 

Yragmentationl’ models would favor either nL or N-nL small so that the anti- 

symmetric distribution is preferred. The specific examples of a(nL) being 

Poisson or l/n: are discussed by Nussinov, Quigg and Wong. 

The general feature of short-range order contributing mainly near <nL> 

and %agmentationll or “diffraction” contributing to small nL should be true 

as well in two component models so that looking at a(nL, N-nL) should aid in 

the separation of fragmentation and short-range order. Preliminary data at 

205 GeV/c are shown in Fig. 4 compared with a critical point fluid model and 

a two-component model based on the discussion in Section III. A model inde- 

pendent statement can also be made. Except for the four-prong events, the 

data favor the symmetric distribution of left-right multiplicities implied by 

the short-range order concept. The apparent surplus of events in (r(3,l) can 

be understood if the ‘Yragmentationl’ component is entirely y’diffractivell in that 

I=0 Pomeron exchange dominates. In the same experiment a more detailed 

analysis of the four-prong events has been performed. Figure 5 shows the 

missing mass spectrum of pp - pX in the different four-prong charge con- 

figurations. 32 Not surprisingly, we see a low mass enhancement in tr(l,3) 

not present in either a(2,2) or o(3,l). If we identify the experimental cross 
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section for producing this enhancement 

oD(1,3) = 0.82 * 0.07 mb (1v.3) 

with the diffractive component we then conclude that the diffraction and short- 

range order components in cr(l,3) are about equal at this energy. 

Snider27 has done an analysis of the same data based on an assumption of 

a factorizable Pomeron. He obtains a larger diffractive component 

aD(1,3) = 1.35 mb (Iv* 4) 

than the experimental low mass enhancement. In his approach, however, it is 

quite reasonable to expect a large component of diffraction in the high missing 

mass as well as a diffractive component in pp - (n?)X which are difficult to 

separate from the short range order . 

Equations (TV. 1) and (IV. 3) are consistent if we assume that 41, 1) is pre- 

dominantly diffractive and that the amount of diffraction in o&5), etc. is small. 

The obvious test for the presence of diffraction is, of course, the energy 

dependence of the cross sections. Figure 6 shows what data there is on the 

energy dependence of the four-prong data. In this plot 0(1,3) is compared with 

cr(O,4) + 0(2,2). Since Pomeron exchange should not contribute asymptotically 

to AQ=l the latter cross section should be free of diffraction. The experimental 

errors are certainly large but there is not much indication for a different 

dependence. The energy dependence alone is consistent with the diffractive 

component in 0(1,3) being zero but it can be as large as that given by (TV. 3). 

A related test for the presence of diffraction involves plotting the data as 

a function of the maximum rapidity gap in the event and the charge transferred 

across that gap. Data on this is available at plab = 12 and 24 GeV. Since this 

quantity can in principle separate diffractive events with large missing mass 

data at higher energies would provide a check on the considerations presented 

here. 
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C. Average Multiplicities and Factorization 

As indicated in the discussion of Section 1II.B concerning the two-pole- 

nearest-neighbor-multiperipheral model, the standard formulation of the 

hybrid or two-component model is explicitly not factorizable in left-right 

multiplicities. We can define the hybrid model by writing the total cross 

section in the form 

where oD is a diffractive piece and as a short-range order piece. A large 

fraction of the elastic cross section is usually grouped with the diffractive 

portion. The arguments presented in Section II. C concerning the short-range 

order component indicate that it separately should asymptotically factorize 

with respect to left-right multiplicities. If the Pomeranchuk is a hard singu- 

larity as discussed in Section II. D then the diffractive piece associated with 

single Pomeranchuk exchange should also factorize. At high energy, it may 

therefore make sense to write 

L9 %) = aD@L) aDtnR) + aStnL) “‘ty$ l (IV- 6) 

where we have to keep track of the fact that the diffractive piece contributes 

only to those distributions where no charge is exchanged between left and right 

hemispheres. In terms of the two-pole-nearest-neighbor-multiperipheral 

model discussed in Section III, it is interesting to note that we recover the 

factorization properties (IV. 6) if we group “high-mass diffractioV with the 

short-range component. 
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The consequences of the factorization properties of (IV. 6) are most clearly 

seen in the dependence with energy of the quantities 

I: 
nL 

nL aD(nL) aD(Q + a?n,) A+$ 
[ 1 

aL’nR r Z 
aD(nL) aD(s) + aS@L) “‘tnR) 

(TV. 7) 

nL 1 
with the usual assumption that at high energy as(s) is peaked at <nK> =ln s 

while aD(nR) is energy independent and peaked at small nK (nK=l in pp collisions). 

We therefore get 

2 
nL 

nL aD@,) 
<n > L nR=lr -L const 

2 
nL 

aD +,I 

For charge configurations in which diffraction cannot contribute such as nK=2 

in pp collisions which must have charge transfer, or for right multiplicities 

large we obtain 

2 nL as@,) 
< nL’nR=2 g < nL’nRc+ < s> 5% 

2 as@,) 
E In s (TV.91 

There is some evidence for this distinction between <nL7nR=I and other values 

OfYEt in the ANL-NAL data 30 at 205 GeV/c. The fact that data from ISR does 

not show this distinction can perhaps be understood from the fact that the 

spectrometers in the ISR experiment do not detect events in a cone of about 2’ 

around the forward direction. They therefore miss most of the diffractive 

events and are insensitive to the possibility of two production mechanisms. 

Data from the NAL experiment are shown in Fig. 7. The theoretical curves are 

again the KUH fluid model and a version of the hybrid model. 

.+ 
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Note that if we write asymptotically an explicitly factorized form for 

o(nL,nK) = Y bD(nL) + bs(nL) I[ Y bD(nK) + bS(nI$ 1 (Iv. 10) 

we can still incorporate the idea of two types of production mechanisms. It is -1 

not easy to disentangle the various terms of this kind of ad hoc factorizing -- 

hybrid model to each o(n,, s) 0 If we neglect terms of O(Y2) the structure is 

quite similar to the usual hybrid model. In the factorized form we have 

explicitly the result 

=<n>cclns . <nL’IIK=l L (rv. 11) 

Since many current approaches to the two-component model present it as 

consisting of the first two terms in a power series expansion in something like 

gppp In s where gppp is a triple-Pomeron-coupling, it is perhaps premature 

to rule out the possibility that at superasymptotic energies we recover factori- 

zation in left-right multiplicities. It is not clear, therefore, that the prediction 

(IV. 8) is an absolute test of these ideas. However, it is clear that measure- 

ments Of inL%R 
at several energies through the AGS-ISR range can supply 

a great deal of information with little fuss. 

The factorization test (II. 28) can also be used to investigate the possibility 

of a two-component structure such as (IV. 6). Keeping in mind the fact that 

aD(nL) will only contribute to odd n (u=O) we would predict that ratios of cross 

sections involving only even multiplicities would be much closer to one than 

those involving odd multiplicities. In the 205 GeV/c data we have, for example, 

o(2,2) c(4,4) = 1 3* 3 
0(2,4) (r(2,4) ’ ’ (Iv. 12) 
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o(3,3) (r(5,5) 
(r(3,5) 0(3,5) = lo8 * l 6 (Iv. 13) 

If this tendency is observed at other energies it would be an important confir- 

mation of these ideas. 

D. Data on Charge Transfer 

The energy behavior of the mean-squared charge transfer between hemi- 

sphere has been proposed as a feature of the data which will distinguish short- 

range order and fragmentation models. 6 We define the charge transfer 

2 <a >>=u Lo\ z: 
nLd-$,u 

u2 QL,yp) . w. 14) 

In models with short-range order it is well known that 

2 <<u >>S.R.O. - const . (Iv. 15) 

The simple arguments given in Section II in terms of the generating functional 

formalism confirm this result. See, for example, Eqs. (II. 15’) and (II. 17). 

The arguments for the behavior of << u2 >> in the diffractive fragmentation 

picture are slightly more complicated. In these models we have for large s 

u(nL,nL,u) --c 0 , uf 0 

but the summation over nL, % in (IV. 14) diverges at large n to give 

W. 16) 

2 
e u ‘>Chou-Yang cc s1’2 . (rv. 17) 

This is another example of the general feature of diffractive fragmentation 

models of large correlations in the central region from high multiplicity events. 

The hybrid model in this case does not predict a behavior for the charge transfer 

intermediate between the short-range order and fragmentation pictures. To 
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see this we write 

o@,, %, u) = uD(nL, s, u) + 4n,, yp) 

and input the usual assumptions about the diffractive component 

(J-V. 18) 

ufo w. 1% 

uD(nL+p) = 0 nL+nR > N (Iv. 20) 

where N is some (approximate) energy independent integer. In the hybrid picture 

no energy dependent divergence of the sum (IV. 1 ) takes place and 

2 -1 <<u >> H N 90t c u2crs(n,,k,u) - const , w. 21) 
nL+,u 

the mean squared charge transfer behaves asymptotically just as it does in a 

short-range order model. 

The available data on charge transfer is shown in Fig. 7. The fact that 

we see little experimental evidence for the approach to a constant asymptotically 

indicates that the correction terms omit to factorization of the generating function 

P,(‘L”R s) discussed in Section H, may be large at available energies. This 

does not mean that the ideas presented in Section II should not be investigated 

experimentally. The suggestion is that the correction terms are large and 

this means that the energy dependence of quantities such as R(N, M), Eq. (II. 32) 

will provide nontrivial information. _- 
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V. SUMMARY AND CONCLUSIONS 

The analysis of data on hadronic production processes is becoming more 

sophisticated as some of the simple early questions have been answered. We 

are still at a primitive stage in our understanding, however, so that it is 

important to be flexible in our approach. In this paper we have considered 

what can be learned from left-right multiplicities. Data on left-right 

multiplicities are easy to obtain and can provide important dynamical infor- 

mation both at intermediate and high energies. Along with other coarse- 

grained or integrated quantities left-right multiplicities illustrate the advantages 

of dealing with exclusive and inclusive data on an equivalent footing. 

As an example of the dynamic questions which left-right multiplicities can 

provide we have seen how the short-range order concept leads to factorization. 

This left-right factorization can be interpreted as a consequence of the presence 

of a leading Regge pole in the short-range order framework. Left-right 

factorization is not a universal property of models for the production process 

but, due to the fact that unitarity 18 and other constraints 33 favor approximately 

factorizable J-plane singularities, we discuss a series of tests for this property. 

Data at low energies is needed to see if there is an approach to factorization. 

The indication from the behavior of charge transfer is that correction terms 

may be large. 

Another feature of left-right multiplicities is that they are sensitive to the 

presence of a diffractive component in the production mechanism. Preliminary 

data at 205 GeV/c give a good measure of the amount of diffraction in ~(1,3) 

and ~(1, tot). 
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Inclusive 
Quantities 

Mixed 
Semi-inclusive 
Quantities 

Exclusive 
Quantities 

TABLE I 

Table of Measurable Experimental Quantities 

If Coar se Grained” 
Integrated 
Quantities 

Increasing Momentum Resolution - 

Qot 

<n >,<n ch (n ch ch -l)> 

<%‘n ) ‘“k>n_ 

2 
<u > 

nR 

‘nL’IIR 

T tn L, tot) 

W +L+ -L’ y)L; 

%R’ n -R’ %R) 

for example, 
3 momentum bins 

1 momentum bin 2 momentum bins . . . 

“Fine Grained” 
Differential ‘. 
Quanti tie s :; 

Ptq dQ/dy 
m7,, Y,) 

PCYl)ln 
Ch 

#b ins >> n max 

“Coarse Grained” quantities are integrals (“sunn9) over fine grained quantities, averages over 
kinematic variables. 

%mlusive’* quantities are sums over exclusive quantities, averages over (unseen particles) 
channels. 

Everything tied together by generating functional. 
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FIGURE CAPTIONS 

1. The multiperipheral ladder diagram for the production process ab e 8b’ 

nL(7r1s) + nR(7r’S). The phase space is assumed to be one-dimensional and 

the xi shown are rapidity differences. 

2. The multiperipheral Mueller diagram which contributes to the nL + nR 

particle inclusive correlation function. 

3. Preliminary experimental data on o(n,, tot) from the ANL-NAL collaboration 

at plab = 205 GeV/c. 3o The two theoretical curves are motivated from 

models discussed in Section III. The smooth curve is the prediction of a 

critical point fluid model given by Eq. (III. 32) with the parameters (III. 31). 

The dashed curve is a two component model with 

*L 4 nR 
utnL+$ = 

i 

1 1 e- (4) ew4(4) 
-y 2+4.8 nL! 
nL “R “a! 

This parametrization retains the basic features of (III. 43). 

4. Data on a(nL, nR) at 205 GeV/c from the ANL-NAL collaboration 30 presented 

at fixed prong number N= n L nR as a function of n + L. The theoretical curves 

are from the same models as in Fig. 3. 

5. The missing mass spectrum off the slow proton in the four-prong events at 

205 GeV/c for different left-right charge configurations. 32 

6. The energy dependence of the cross sections 0(1,3) = aQbo and 

a(o,4) + (~(2,2) = oaQZ1 as a function of energy. The data at 12 and 24 

GeV/c is from the Bonn-Hamburg -Munchen collaboration. The 205 GeV/c 

data is from the ANL-NAL collaboration. 30 

7. 
Data On ‘nL ‘R 

from a bubble chamber experiment at NAL. 3o 

8. Data on <<u2>> vs ,k . 30 
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