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ALTERNATLNG EULER PATHS FOR PACKINGS AND COVERS 

C. T. ZAHN, JR., Stanford University 

1. Introduction. An interesting combinatorial problem known as the "school- 
girls' walk" asks if the girls in an all-girl school can take a walk in two-by-two 
fashion so that each pair walking side by side are on friendly terms, it being known 
which pairs are friendly among all possible pairings. If such a utopian arrangement 
is not possible, then what is the largest number of friendly pairings that can be 
achieved simultaneously and how can such an optimal set of pairings be found? 
This problem is qbstractly equivalent to a problem in graph theory which is as 
follows: Let G be a finite graph with vertex set Y and edge set E ;  a matching M of 
graph G is a subset of E such that no two edges in M have a vertex in common. A 
matching M* is maximum if no other matching has more edges than M". A matching 
P is perfect if each vertex in Y belongs to an edge of P. In this abstract version the 
vertices represent girls and edges represent pairs of friendly girls. A matching is a 
pairing of friendly girls with no girl appearing twice, an obviously necessary require- 
ment. A perfect matching represents the utopian arrangement and a maximum 
matching achieves the largest number of friendly pairings. 

A related problem concerns a minimum cover for a graph G where a cover C is a 
subset of E such that every vertex belongs to at  least one edge in C. A perfect 
matching is then a matching which is also a cover and it is easy to see that any subset 
of edges which is both a matching and a cover is necessarily a maximum matching 
and a minimum cover. 

A good algorithm for finding a maximum matching requires a reasonably simple 
condition which, when true, assures that a matching M is maximum and, when false, 
implies M is not maximum, and further indicates how to modify M to obtain a 
larger matching M ' .  Such a condition is afforded by augmenting paths. A path in G 
is a sequence of edges such that two edges adjacent in the sequence share a vertex 
in G. For our purposes, no edge can appear more than once in a path. If S is a subset 
of edges in G, an S-alternating path is a path whose edges are alternately in S and in 
3 = E - S. A vertex Y is S-exposed if v belongs to no edge in S .  An M-augmenting 
path for matching M is an M-alternating path whose end vertices are M-exposed. 
Notice this implies the end edges are in fi and the path has odd length. Such a path 
is called augmenting because by interchanging the M and fi status of the edges of 
the path, a new matching M'  results with I M' I = I M I + 1. Hence, the existence 
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of an M-augmenting path implies M is not maximum. What is not so obvious is I 

that the non-existence of an M-augmenting path implies M is maximum. This 
result, first obtained by Berge [l] means that the non-existence of an augmenting 
path is a condition which can be used to find a maximum matching. Interest in an 
efficient algorithm stems from several interesting practical problems which can be 
formulated as optimum matching or cover problems (see [2], [3], [4, p. 1771 for 
details). 

An analogous situation holds for minimum covers. A vertex v is S-doubled 
for a subset S of edges if v belongs to  at least two edges of S .  A C-reducing path for 
a cover C is a C-alternating path whose end edges are in C and whose end vertices 
are C-doubled. Once again a C-reducing path leads to a new cover C’ with 1 C’ 1 = 
1 C :  - 1 .  Furthermore, Norman and Rabin [2] have shown that the non-existence 
of a C-reducing path implies C is minimum, leading to an algorithm for finding a 
minimum cover. They also show that a maximum matching M* can be obtained 
from a minimum covcr C* by d:leting all but one C*-edge from each C*-doubled 
vertex. Adding an edge to M” to cover each M*-exposed vertex of a maximum 
matching M* produces a minimum cover C”. Edmonds [3] has generalized the 
theorems of Berge [l] and Normin-Rabin [2] by replacing edges (2-e1zm:nt 
subsets) with more general subsets of vertices whereupon the appropriate im- 
provement structures become trees in a certain graph. 

I 

2. Packings and covers. Here we are concerned with a different generalization 
of the matching and cover problems. Let 6 be a function which assigns a non- 
negative integer to each vertex v of G. If d(v), the local degree of v, is the number 
of edges to which v belongs and 6(v) 5 d(r) for all v in V then 6 is called a local 
degree constraint on G. A &packing in G is a subset P of edges such that each vertex 
v in V belongs to, at most, 6(v) edges in P. A b-cover C is a subset of edges, such that 
each vertex v belongs to at least 6(v) edges in C. In this terminology, a matching 
is a I-packing (i.e., a &packing with 6~ I )  and a cover is a l-cover. Optimum 
6-packings and b-covers are defined in the obvious way. 

There is a strong duality between 6-packings and 6-covers which does not 
exist between matchings and covers. If 6 is a local degree constraint on G, then 
8 = d - 6 is also a local degree constraint on G and we say 6 and 5 are complemen- 
tary. It is not hard to see that a subset S of edges of G is a &packing if and only if 
S is a 6-c iver. Let v be a vertex and S be a subset of edges; then v is (S ,  6)-deficient; 
if v belongs to less than b(v) edges in S and is (S, 6)-surfeited if v belongs to 
more than 6(v) edges in S. A (P,  8)-augmenting path for &packing P is a P-alter- 
nating path whcse end edges are in P and whose end vertices are (P, 6)-deficient 
a (C, 6)- reducing path for &cover C is a C-alternating path whose end edges are 
in C and whose end vertices are (C, 6)-surfeited. In case the end vertices of an aug- 
menting (reducing) path are identical, the deficiency (surfeit) is required to be at 
least two. Now the duality means that path 7t in G is (P ,  6)-augmenting for &packing 
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P if and only if is ( P ,  @-reducing for &cover P .  It is also clear that P is a maxi- 
mum &packing if and only if C = P is a minimum 8-cover. 

The theorem of Berge-Norman-Rabin proved by Berge [4, p. 1751 asserts that 
the non-existence of a (P,  @-augmenting path for &packing P implies P is maxi- 
mum. Using duality, we see immediately that non-existence of a (C, @-reducing 
path for &cover C insures C is minimum. Goldman [5] has proved the B-N-R 
theorem on augmentable 6-packings by a direct reduction to the theorem of Berge 
[l] on augmentable matchings (I-packings). The main result of this paper is ;I 
simple direct proof of the B-N-R theorem using ideas from Edmonds’ simplc 
proof [6] of the original augmenting path theorem of Berge [l] and the notion 
of Euler path [7] which dates back to 1736. 

As regards design of algorithms, Edmonds [6] has found an exceptionally effi- 
cient algorithm for determining a maximum matching by growing alternating-path 
trees and occasionally shrinking odd-length cyclic paths until  an augmenting path 
is discovered or the edges of the graph have been depleted. Witzgall and Zahn [SI 
have devised a modified version of the Edmonds algorithm which does not shrink 
and Edmonds [9] has extended his algorithm to the case where edges have real- 
valued weights and maximum is defined accordingly. 

The reader is referred to Berge [4] and Ore [lo] for more leisurely discussions 
of matchings and coverings in graphs. Alternating paths were invented by Petersen 
Ill] in the last century and augmenting paths for 6-packings occur in Tutte’s [12] 
paper on f-factors (perfect f-packings) in a graph. 

3. Euler paths. One of the earliest problems in graph theory was posed and 
solved by Euler [7] in the year 1736. The problem is known as the“Konigsberg 
bridge problem” and intrigued the inhabitants of this Prussian t: wn until solved 
by Euler. We quote Euler’s [7] statement of the prdblem: 

In the town of Konigsberg in Prussia there is an island A, called “Kneiphof”, 
with the two branches of the river (Pregel) flowing around it, as shown in Fig- 
ure 1. There are seven bridges, a, b, c, d, e,  f and g, crossing the two branches. 
The question is whether a person can plan a walk in such a way that he will 
cross each of these bridges once but not more than once. 
Euler recognized the combinatorial nature of the problem and his solution 

can be phrased in terms of the graph in Figure 1. An Euler path in a graph G is a 
path containing each edge of G exactly once. Euler showed that such a path is 
possible if and only if no more than 2 vertices of G have odd local degree and G 
is connected (an obviously necessary condition). Hence, the answer to the Konigs- 
berg bridge problem is negative, there being 4 odd vertices. If the graph has exactly 
two odd vertices a and b, then an Euler path must have a and bas end vertices. If no 
vertices are odd, the graph contains a closed Euler path. 

A constructive, algorithmic demonstration of the Zuler path result borrowing 
from [4, p. 1651 and [lo, p. 391 is as follows: Suppose graph G has exactly two 
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odd vertices a and b. Start growing a path z, at vertex a and ccntinue it as far 
as possible without repeating any edges. This path cannot get stuck at an even 
vertex because each time a vertex is crossed by the path two of its edges are used; 
furthermore, the path cannot stop at a because the first edge of the path is adjacent 
to vertex a leaving an even number of unused edges for subsequent crossings through 
a. Therefore, path x1 stops at  the only other odd vertex, b. If n1 includes all edges 
of G, then it is the required Euler path. If not, we delete the edges of n1 from G 
and obtain a new graph G‘ whose local degrees are aU even since n l  meets each vertex 
through an even number (possibly zero) of edges with the exception of a and b. The 
connectedness of G implies there is a vertex c on nl which is contained in an edge 
of G’. We construct a path 71, in G’ starting at c, which must return to c because all 
local degrees of G’ are even. Enlarge n, to the “spliced” path n1 (a, c)/n,/n,’(c, b) and 
repeat the process until n1 contains all edges of G. It can be shown by a similar 
argument [lo, p. 401 that a graph with 2N>O odd vertices can be covered by 
exactly N paths. More detailed discussions on Euler paths can be found in Ore 
[lo] and Berge [4]. 

4. Edmonds’ lemma. Edmonds [6, p. 4531 gave a one-sentence proof of the 
theorem of Berge [l] based on the following lemma: 

LEMMA E. Let M ,  and M 2  be matchings in graph G and let M ,  + M ,  denote 
t h e s e t o f e d g e s i n M , o r M ,  butnotboth. ThenthesubgraphG,,  formed by M ,  + M 2  
has connected components which are paths and circuits, each of which is MI- 
alternating as well as M,-alternating. Each end vertex of these paths is either 
MI-exposed or M,-exposed. 

Proof. No vertex of GI, has localdegree greater than two since a vertex can meet 
at  most one M i  edge and one M ,  edge. Hence, the graph G I ,  consists entirely of 
paths and circuits. Let a be an end vertex of one of the paths in G , ,  and suppose the 
adjacent end edge belongs to M ,  n M, . Since M ,  is a matching, a is not adjacent 
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to any other M,  edge. Any M ,  edge adjacent to a would therefore be in M, + M ,  
contradicting the fact that a is an end vertex of GI,. We conclude that a is M,- 
exposed. 

To prove a non-maximum matching M contains an M-augmenting path is 
now a matter of simple arithmetic! If M‘ is a matching larger than M;then some 
component of the subgraph M + M’ must contain more M’ edges than M edges 
implying the end edges are in it? and M-exposed. 

The natural decomposition of M ,  + M, into alternating paths depends heavily 
on the special “oneness” of matchings (1 -packings). An analogous result for general 
8-packings requires some extra device for generating the alternating paths. The Euler 
paths of Section 3 supply an adequate mechanism for this purpose. 

5. Alternating Euler paths. We begin this section by applying the Euler path 
idea to prove a generalization of Edmonds’ Lemma E. We have used the notation 
d(v)  to represent the local degree of vertex v in graph G. In what follows, we shall 
be conc-rned with the various local degrees of a single vertex v in various subgraphs 
H ,  of G and we use d(v,Hi) to denote the number of edges of H, which contain v. 

LEMMA EEZ. Let HI  and H, be subgraphs of G which have no cornrnon edges. 
Then the subgraph GI,  generated b y  H, U H, can be decoinposed into a n  edgewise 
disjoint f a m i l y  of paths whose edges alternate between H I  and I i , ,  such that each 
path i s  one of the following types: 

(1) Closed paths of eccn length. 
(2 )  Closed pnths of odd length such that the unique vertex v incident to two 

(3 )  Non-closed paths such that  if e is a n  end edge in H ,  containing end vertex 

Proof. Let A12(v) = d(v,H,) - d(.i,H,) for all vertices in G 1 2  and call vertex v 
balanced, positive or negative axording as Alz(v) is zero, positive or negative. If all 
vertices of G,, are balanced, then each connected component of G,, enjoys the same 
property and hence contains an Euler circuit (i closed Euler path). Furthermore, 
since d(v,H,) = d(v,H,) for each vertex, the Euler path can be chosen to alternate 
between edges of H I  and H, , and so becomes a path of type 1. 

If G,, contains unjalanzed vertices, let v1  be one such and, for convenience, 
suppose it to be positive. The argument is similar for negative vertices. 

Since v1 is positive d(v,,H,) - d(v,,H,) 2 1 and, therefore, d(v,,H,) 2 1 .  Let e ,  
be one of the edges of H ,  adjacent to v1 and let v2 be the other vertex of e , .  We 
select an e3ge e, amon: the H, elges at v2 and add it to the path (if there exists such 
an :Ige). This proxss is c3ntinued as long as the path alternates between HI and H2 
and does n3t u3e the szmz I: Ige twice. The finiteness of the graph ensures termina- 
tion; this can happen in several ways. 

If the path terminates at v, via edge ezp  in H, , then v, # v1 since the positiveness 

adjacent edges of the same H, satisfies d(v,H,) - d(v,Hj) 2 2 where j # i .  

v,  then d(v,H,) - d(v,H,) 5 1 ,  where J # i .  



i 

I 

400 C. T. ZAHN [April 

of vl- ensures that every time we enter that vertex via an H, edge, there will be an 
unused HI edge available for exit. Since the path uses up equal numbers of HI and 
H, edges at  each vertex it crosses (except v1 and v , ) ,  we can be forced to stop at 
v, after edge in H, only if v, is negative. In this case, the path {el , e,, ... , ezp) 
is of type 3. Deleting this path from G,, produces a new graph G r 1 2  in which the 
path tracing can be resumed. Had v1 been a negative vertex, the even length path 
would have ended at a positive vertex v, . In either case, the deletion of such a path 
may create some balanced vertices but never any positive or negative ones. 

If the path from positive v1 ends at v, via edge ezp+ in HI , then either v, = v ,  
and AI2(v1) 2 2 or else v, # v1 and v, is positive. The first case gives a path of type 2 
and the second case one of type 3. Similar results hold if vl is negative and once 
again the paths can be deleted and the path tracing resumed in the reduced graph. 
When we arrive at a reduced graph with no unbalanced vertices, we decompose each 
connected component into a path of type 2 ,  as indicated earlier in the proof. The 
path tracing must terminate for lack of edges or unbalanced vertices so the lemma 
is proved. 

We call the paths of Lemma EEZ alternating Euler paths. 

COROLLARY 1. I f  al i s  the number of odd-length paths (possibly c1osed)with more 
HI edges than H,, and similarly f o r  CY,, then 

- ~2 = - JH,I 4 C A l z ( v ) .  

Proof. Even-length alternating paths have equal numbers of edges from H I  and 
y2 and SO contribute nothing to  the expressio,n / H I /  - IH,l. Each odd-length 
alternating path has exactly one more H, edge than it has H2 edges or vice versa 
thereby contributing 5 1 to lHll - lH,l. Because each edge is counted twice when 
local vertex degrees are summed over all vertices 

Z A , ~ ( v )  = Z d(v,H,) - Z d(v,H,) = 2 - 2 IHZl. 

V E G 1 2  

V E G I Z  v ~ G i z  V E C l 2  

COROLLARY 2. Let H ,  and H 2  be as in Lemma EEZ and let (H1l > IH,\. Then 
G , ,  contains a path 7~ which alternates between H1 and H, has end edges in HI 

and end vertices v1 and v2 satisfying one of the following conditions: 
( 1 )  Alz(vi) 2 1 f o r  i = 1,2  if v, # v 2 .  
( 2 )  Al2(vi) 2 2 if VI = ~ 2 .  

Proof: By Corollary 1 we get a1 - a, = ] H I \  - )H2] 2 1 and hence cy1 2 1 .  
This assures the existence of an odd length path of type 2 or 3 with end edges in  H l .  

6. The theorein of Berge-Norman-Rabin. We can now give a simple proof of the 
Berge-Norman-Rabin theorem [4, p.1751 using Lemma EEZ and Corollary 2. 

THEOREM BNR. I f  P is a non-maximum &packing in graph G, then G contains 
a (P,G)-augmenting path. 
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Proof. Let P* be a larger &packing and put H, = P* - P and H, = P - P*.  
Applying Lemma EEZ and Corollary 2 (since lHll > /H,\), we get a path which 
alternates edges of P and P (i.e., P-alternating), has end edges in B and end vertices 
v 1  and v2 each satisfying condition (1) or (2) of Corollary 2. Since the edges in P n P* 
contribute to both terms of the expression d(vi ,P*> - d(vi , P )  , we see easily that 

d(vi ,P*) - d(vi ,P) = d(vi ,Hi) - d(vi ,H2) . 
Combining this with conditions (1) and (2) of Corollary 2 and the inequality 
d(v i ,P*)  5 6(vi) ,  we find that 

d(v , ,P )  5 6(vi)  - 1 for i = 1, 2 ‘if v1 # v ,  

d ( v , , P )  5 6 ( v l )  - 2 if v 1  = v 2 .  

Hence, the path is (P,G)-augmenting. 

7. Graphs with edge dichotomies. Any graph G whose edge set E has been dicho- 
tomized ( ie , ,  partioned into two subsets) can be decomposed by Lemma EEZ into 
a family of edge-disjoint alternating Euler paths with fairly natural conditions on 
the end vertices. If E = El u E ,  is the dichotomy, let Hi for i = 1,2 be the subgraph 
of G generated by the edge set Ei, and apply Lemma EEZ (in this case GI, = G ) .  
We separated Lemma EEZ from the proof of Theorem BNR because the alternating 
path decomposition is a general phenomenon not dependent on packings or covers 
or local degree constraints. The following corollaries strengthen Lemma EEZ 
somewhat: 

COROLLARY 3 .  If graph G1, in Lemma EEZ is connected, then it can be decom- 
posed so that there is, at  most, one path of type 1, and that only if i t  is the sole path 
covering all oj’G1,. 

Proof. Because G12 is connected, the even-length closed (type 1) paths can be 
“spliced” together or into other paths of types 2 or 3. If at least one path of type 
2 or 3 exists, then all the paths of type 1 can be made to disappear into one or more 
of the paths of types 2 or 3. The splicing is similar to that used in section 2 for Euler 
paths. Clearly, at least one path is required, so a single type 1 path is possible. 

To characterize further the alternating path decompositions, we need some 
additional terminology. Let a. be the number of even-length paths of type 3 and 
let ai for i = 1 and 2 be, as before, the number of odd-length paths of types 2 and 3 
with more Hi edges. I t  is then obvious that the number of paths of type 2 or 3 is 
exactly (ao + a1 + a,). We call AT = El Alz (v )  I the total vertex imbalance for 
dichotomy (HI,H2). 

COROLLARY 4. The path decomposition of a connected G12 as  presented in 
Corollary 3,  is minimum in the sense that no other representation of GI, as a fami ly  
of alternating paths has fewer paths. Furthermore, the number of paths of type 2 or 
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3 i s  related directly to the vertex diferentials A12 (v) by 

a , + a , + ~ 2 = f  C lAIZ(v)l  = A T / 2 .  
V E G I Z  

ProoJ First we show that AT/2 is a lower bound for the number of paths in an 
alternating family. Let 9 be a family of alternating paths for G12 and consider a 
singlevertexv with differential A12 (v) > 0. The edges of H, and H2 incident to v can 
be paired offexcept for exactly / A l 2  (v)l extra H, edges. Each pair ofedges corresponds 
to the occurrence of v as an internal vertex of an alternating path of 9. Each extra 
edge must represent the occurrence of v as an end vertex. An identical argument 
holds for A,, (v) < 0 .  The paths of any alternating path decomposition must hence 
account for at least AT end vertex occurrences, but each path can handle, at most 
2 so AT / 2 is indeed a lower bound. In the proof of Lemma EEZ, paths of type 2 or 3 
are constructed only between end vertices which are currently unbalanced and each 
pathdeletion decreases the total vertex imbalance by 2 units. The construction of type 
2 and type 3 paths terminates when the total vertex imbalance is reduced to zero so 
the total number of such .paths is precisely AT/ 2.  This establishes the formula and 
the ininimality follows because our particular decomposition achieves the lower bound. 

Let us call A' = C A I 2 ( v )  the net vertex imbalance. It is then tempting to ask 
if a decomposition of GI, into alternating paths can be accomplished with 
ut + a2 = ]A"1/2, i t  being clear that a1 + a2 2 1 A'1/2. If equality does hold, 
then either a1 = Ax/  2 while a2 = 0, or else ;2 = - A' /2 while a1 = 0. Figure 2 
depicts a simple dichotomized graph with A ' = 0 which requires a, + a2 2 2 .  

- m  
\ c H2 ---- 

FIG. 2 

On the other hand, this seems to result from the lack of connectedness between 
positive and negative vertices so equality may be achievable under some sort of 
multiple connectedness assumption. In any case, it would be interesting to find a 
decomposition with minimum value of a, + u2 and know how the minimum relates 
to the structure of graph G , 2 , .  
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