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ABSTRACT 

The Lorentz generators for the Neveu-Schwartz theory, recently 

obtained by Iwasaki and Kikkawa from a zweibein formalism, are here 

derived with an emphasis on the parton interpretation of the results. 

This derivation sheds new light on possible ways to construct new 

dual models 0 
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The geometric action principle for the dynamics of the dual resonance 

i.. 

model’ has enormously advanced our understanding of the hitherto abstract 

Nambu-Susskind string. Starting from this principle, Chang and Mansouri have 
n 

demonstrated’ that one must view the string and its attendant modes of vibration 

as occurring in the physical Minkowski space. This approach, coupled with the 

Brower no-ghost theorem, 3 provides a manifestly covariant description of 

string dynamics. In addition, these authors2 observe that the choice of a para- 

metrization for the string and its world sheet such that Lorentz invariance can 

be made manifest amounts to choosing a particular coordinate gauge. 

Different choices of gauge are possible, and Goddard et al. (GGRT)4 have -- 

discussed the case when all potentially trouble-making timelike oscillations are 

eliminated at the outset. This is analogous to choosing Coulomb as opposed to 

Lorentz gauge in electrodynamics. Unlike electrodynamics, however, their 

choice simultaneously corresponds to null-plane quantization instead of ordinary 

equal-time quantization. It is these two features taken together that make their 

results extraordinarily interesting from the point of view of finding a bridge 

between the formal geometric action principle, and the rich body of investiga- 

tions which attempt to establish a connection between the dual model and parton 

physics. 5,6 

Recently, the Lorentz invariance of the Neveu-Schwartz (NS) model’ has 

been discussed by Iwasaki and Kikkawa, * who extend the geometric formalism 

through the use of “zweibein” fields in order to incorporate the spin degrees of 

freedom of that model. Because the NS model provides a particularly beautiful 

example of how the string picture realizes the dynamics of the wee parton sea, 

it is interesting to rederive the Lorentz generators from a parton point of view. 
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Following Bjorken, 5 let us first examine the conventional orbital dual model 

from the point of view of a parton enthusiast: in a near forward hadron-hadron 

collision, scattering is to be mediated by those partons which have wee fractions 

of their parent hadron’s longitudinal momentum, Suppose that the wee sea is 

formed (in terms of time-ordered perturbation graphs) by a cascade down from 

the leading parton. Multiperipheral work indicates that the dominant graphs 

are those for which the partons are ordered sequentially in rapidity. Further, 

if these graphs are calculated for e3 theory in the infinite momentum frame (or 

using the null-plane quantized theory) an interesting qualitative picture emerges - 

near neighbor partons in rapidity are also close together in transverse config- 

uration space. It is not implausible, therefore, that rescattering corrections 

to the basic parton picture involve repeated soft interactions between near 

neighbors in rapidity, with the basic dynamical variables involved being the 

distances in transverse configuration space between the interacting partons. 

One may attempt to describe the evolution of the wee sea by means of an effective 

Hamiltonian which is a function of the partons’ relative transverse momenta, 

labelled by an ordered parameter corresponding to the partons -rapidity. With 

the simplest possible dynamical assumption, and a judiciously chosen density 

of partons along the rapidity axis, the harmonic oscillator Hamiltonian can be 

obtained as an example in the continuum limit, 

l H= G 1; [ ($$f + ($$$r] + const. , (1) 

where 6 labels the parton, and xI (9 ) is the transverse coordinate of the parton 

at position 0 D 

Thus, the semi-quantitative Bjorken argument provides us with the natural 

variables in terms of which wee sea dynamics might conveniently be discussed. 
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This is the result of the calculation the dualist desires to abstract. However, 

it is not obvious from Eq. (1) that the theory so constructed will be relativistically 

invariant. It is at this point that the string formalism makes its contribution. 

Equation (1) is just the (mass)2 operator of the GGRT parametrization, with the 

same interpretation of the transverse coordinate, and of the string labelling 

parameter, as has been made in Bjorken’s parton model, The work of GGRT 

assures us an almost invariant theory can be constructed (up to a tachyon), but 

it is of independent interest to ask how one might have proceeded to construct 

a Lorentz invariant theory without making use of the geometrical formalism. 

Fortunately, methods for attacking this type of problem have been dis- 

cussed in detail by a number of authors, 9 Indeed, Ramond 10 has recently 

discussed the construction of the orbital dual model as an algebraic problem, 

based on these methods. In spite of the fact this formalism is not widely in use, 

it is in keeping with the scope of this paper to simply state its main features, 

along with nonrigorous plausibility arguments for why it works., 

The BH construction’ is a way of building a null-plane quantized theory of 

particle “dynamics in front form, ,111 To understand what all this means, we 

remind the reader of the Bjorken, Kogut, Soper representation 12 of the null- 

plane quantized Dirac field 

#+(x) = C 1% 1 $$ [b(<, q; A) Jzrl eTipxw(A) 
h=*l/2 (27r) 

+ d+(gl, 7; A) Jz, eipxu(-A) , 1 (2) 

where ~(1/2) = (0’) , and 0(-l/2) = (“1) O First quantized versions of the Lorentz 

generators for the free Dirac theory may be written as follows 

9 = -ia 
1 1 

; @a) 
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J3 = E& xa Pb +c3/2 ; 

Bl = Vl ; 

1 I1 
-z lGsK3 9k +- 

(W 

(3c) 

(3d) 

W 

(30 

m2 2 O 1 
For any number n of free particles, the generators acting on the n-particle 

wave function are the sum of the generators of the individual particles. For 

two particles, e.g., one has 

-+2 
Pl+m2 

Hl+2 = 2TJl 
+:iirn2 = g +-G2;-m2 , 

(4) 
2 

where we have passed to standard center-of-mass (CM) and relative variables, 

There is interaction if H, the generator of displacements in T = x+, has 

an additional nonconstant term on the right-hand side of Eq. (4)., Closure of 

the Poincare algebra imposes requirements on the form such an additional term 

may take. It also demands the other generators which take the system off a 

plane 7 = const. , SI , must also be modified to take account of the interaction. 

This is the nontrivial aspect of the problem. 

A mnemonic which paraphrases the results of BH is that if we write the 

Hamiltonian with interaction in the form 

H=Hl+2 + V12 = 
s2 + Jtd2 2M , 

A%‘~= 2HM- g2 = 2MV12+ (5) 
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-. 

then the desired generators SI are exactly of the form Eq. (3g), with the following 

substitutions 

m2 (parameter) - AY2 (operator) ; Pa) 

. . 
(r1/2 (Pauli spin) - j1 (operator) ; (6b) 

77 -+ M; and thexI, ,.9ZjL are CM quantities. (6~) 

The idea is that all algebraic relations are to be maintained in making 

these replacements O Thus, one requires that A2 be a rotational scalar under 

the three ji, which satisfy an SU(2); in addition, A2 and j1 must commute with 

all CM variables, and be Galilei invariant.. 

The dual model differs radically from this description because there are 

(in the continuum limit) an infinite number of constituents, not merely two. 

This is at once a blessing and a curse. The two-dimensional harmonic oscil- 

lator has the peculiar property9 of having its energy levels alternate between 

integer and half-interger spin with respect to the SU(2) we can form from the 

degrees of freedom at our disposal. The blessing is that this unphysical result 

is avoided in the continuum limit. Careful attention to Eq. (3g) reveals that 

for the SI to have the proper algebra, all that is really required is that a two- 
3 

vector under j be found, whose components have the same commutator as 

(Qj5, 

[ 1 
T1, T2 = id2T3; W 

c 1 T3, Ti = i Eij Tj 0 (W 

The dual model (almost) realizes this algebra, with T3 containing only integers 

in its spectrum. No such operators can be found for the two particle case. 
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(A second part of this continuum limit blessing is that the operator w 
13 never appears. ) 

The curse accompanying this construction is that by effectively lumping 
/.i (v A I ) into a single operator, severe singularities have been introduced. 

These rear their head when proper attention is paid to Schwinger terms when 

evaluating the commutator Eq. (7a) - a tachyon is required in the spectrum 

for the dual model. 

To see this, we explicitly construct the operators Ti of the orbital dual 

model. It is evident from Eq. (5) that the A’.operator is in fact the Hamiltonian 

of the system in a well-defined frame in which (PI)cm = 0. Let us derive this 

Hamiltonian (for the internal motions) from a canonical formalism, with 

Sb = & aaxiaax. ; 
1 

(i = 1, 2 corresponding to XL); (8) 

(9) 

(Here 01 = 0, 1 refers to T , conjugate of A%‘~; and oO) The Lorentz index “i” 

labels an external symmetry (like isospin) as far as the two dimensional (T, 0) 

system is concerned. The contraction in this index indicates &Zb is scalar 

under this symmetry, and the corresponding charge can be computed, 

T; = ~ : 1 
/ de 6ijxi8 Xj : 

7 (10) 

Utilizing the canonical commutation relations 

[Xi{@, T), a,X+e’, T)] = i6(e - e’) 8 (11) 

one verifies that “i” labels a two vector under T3 
b’ 
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The remaining task is to construct reasonable scalar operators which can 

be used together with the two-vectors to form the desired Tk 0 Recall A2 
. 

itself should commute with Tlf. This is a very stringent requirement. If we 

wish to form local bilinear scalars, we find no solution of Eq. (7) is possible. One 

must utilize a non-local form (as can be seen for dimensional reasons), 

T1 = 1. 
b 2 

de de’ s(e - el) PP aa X1(er), e”P(e) (12) 

where S is the step function. Conservation of this quantity follows at once from 

ea 
o! 

= 0; fjpv = evI.L; 8 6 ” = 0; and the equations of motion. 
P 

The algebra Eq, (7) would follow from Eq. (lo), (11) and (12) using naive 

manipulations 0 Unfortunately, the anomalous Schwinger term due to 14 

<[e:‘(e), e$q]>o = 1 F 
-7 

nmcos(n+m) e sin(n+m) 8’ (13) 
n,m> 0 

generates an operator Schwinger term in Eq. (7). The coefficient of this term 

can be made to vanish only if our transverse oscillators have i = 1 to 24, and if 
2 

H=cM dtY2-1 --, 
2M ’ These are the well-known catastrophes of the string 

model 0 

Armed with this experience from the orbital dual model, we are ready to 

study the NS model. To motivate this model in the parton spirit, recall that 

in Eqs. (2) and (3), the Dirac field was very conveniently parametrized in terms 

of two component quantities. There is no approximation involved in this, We 

now wish to “abstract” from the Bjorken model that, in addition to transverse 

coordinates and momenta, it is legitimate to include the spin matrices g1 among 

the possible dynamical variables upon which near-neighbor parton interactions 

can depend D 
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Now, examination of spin l/ 2 null-plane electrodynamics in the infinite 

momentum gauge12 reveals that only (T’ appear in elementary vertices, never 

cr3o If this can be stretched to the status of a guide, it may not be unreasonable 

to take only u ’ (0) as our dynamical variables. (To obtain the NS model, this 

must be done; we postpone further comment on the point to the end. ) 

In any case, if only g1 are considered, and if only nearest-neighbor 

couplings are permitted, a soluble model is obtained. 15 Furthermore, the 

continuum limit of this theory is, remarkably, the two-dimensional massless 

Dirac Equation, 16 The energy of the interacting spin system must be appended 

onto that of the orbital excitations, so our Lagrangian from which 

be derived is now 

d12 is to 

(14) 

(15) 

where 

Y0 
1 =(T ; y1 = if13; x = (f, ; jj =x+y” 0 

When Eq. (15) is used in Eq, (12), expected mixed bose-fermi terms are 

obtained, 8 A further complication in evaluating the algebra of the T’ is 

encountered because of the anomalous terms in the 8 r” = 8 PV - 0:” commu- 

tators. First, the naive result 

[e~ote), $?(e*)] = i/dO(f’g - g’f) efoO(e) (16) 
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must be modified if f and g are noncommuting operators. One must use 

+ H.c. 

In addition, one has the Schwinger term due to 

(17) 

<[e:‘(e), efol(el)] ‘0 = --+ C (m-n) (m+n-1) cos(m-n) 8 sin(m+n-1) 8’ 
27r i n,m> 0 

(18) 

(The form of this term depends on the boundary conditions16 chosen for $ and $.) 

Now, referring back to the interpretation of the dynamics of the NS model 

in terms of parton spiu, it is clear that the conserved charge 

3 1 /- 
7r 

Tf=7r Ode: 
XYOX :, 

is actually the helicity carried by the spin degrees of freedom. 
16 Making use of 

the canonical commutation relations 

I X te, 7) 3 xc(e’, 7) } = 6(e - e’) , 

one observes that Z/J, Q, transform like (a’ - ir2); and $+, $J+ transform like 

(cr’ + io2) under Tf . Since the theory conserves charge, the fermionic energy- 

momentum tensor Eq. (15) is a scalar under Tf3, Eq. (19). However, there are 

new possible structures for T’ based upon the “vector” character of x and x 
f 

under this new Tf”. 

Once again, conservation plays a very important role in deciding the form 

of the possible new candidates for T 1 Q Uniquely, a new conserved two-vector 
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not available previously is 

where 

*=/ de f(e) gap apxl(e), 

.a! = - a! 
3 -:xy x:o 

(21) 

Other candidates are either not conserved, vanish identically, or reduce 

eventually to Eq. (21). It is worth noting that the Schwinger term due to 

<[ j”(e, T), jl(ef, T)]> = - 2i 
0 7r2 

c COS(n+m-1) &3iII(II+m-1)8’ 

n,m>O 
(22) 

would give rise to problems with the two-vector character of Ti , Eq. (21), 

were it not for the boundary condition (8X1/80 ). ‘Ic = 0. The conservation of 
, 

$9 on the other hand, depends only on the equations of motion of x 1 , and on 

conservation of both vector and axial fermion currents. 

The operators to use in the algebra Eq. (7a) may then be chosen to be 

d = T; + o! T; , (23) 

. 
where now 8 Cl’ in Eq. (12) defining Ti has both Fermi and Bose parts. The 

requirement that Eq, (?a) be satisfied imposes the condition.that cy: = (I/&) 

to eliminate mixed Bose-Fermi pieces 17 from the commutator. The usual NS 

model results that the spectrum include a tachyon at rni = -l/2, and that the 

dimensions of all transverse operators be extended to 8, then follow. The 

details of this calculation are tedious, and are adequately presented in Ref 0 8 0 
. 

Note that we must have the Ti piece, 
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We conclude with the following comments: 

(1) The derivation of the generators based on the BH construction is self- 

contained. The results are in agreement with the geometrical formalism for both 

orbital and NS models, as they must be. The geometric formalism, because of 

its elegance and compactness in terms of an action, makes introduction of 

interaction straightforward in principle. However, it may prove useful to take 

advantage of the greater freedom of the BH method to construct new “free” dual 

models based on parton intuition. 

(2) The NS model illustrates the naive Heisenberg spin-spin interaction model 

can be applied straightforwardly to a hadron system, provided we quantize on a 

null-plane. 18 In this quantization, the Dirac field is adequately described by two- 

component spinors, with no approximation involved. Thus it is not necessary to 

consider four-dimensional [r’(i) yP(i+l)] interactions in order to show the NS 

model is relativistic O 

(3) For the orbital part of the model, one must start from scratch to include 

dynamics in the longitudinal direction. The reason for this is that the longitudinal 

fraction cannot at once serve as a label for the transverse degrees of freedom, 

and as an independent dynamical variable. 

However, for the spin degrees of freedom this problem does not arise, 

Indeed, since cz = I. (T+ , V- J , a model with near neighbor rz coupling (in addition 

to the o1 coupling) resembles a Thirring model. The interaction between the 

transverse modes may give rise to new independent (bound-state) longitudinal 

modes. This is currently under investigation. 

(4) As Ramond has stressed, lo it is possible to treat the construction of new 

dual models as the purely algebraic problem of finding dynamical variables that 

realize the algebra Eq, (‘7)0 The method employed in this note, making use of 
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two-dimensional field theory, is, unfortunately, limited to models with Boya! = 0. 

Other methods probably exist. 

However, it may be more profitable to examine four-dimensional field 

theories less trivial than c$~, to discover what the proper combinations of parton 

variables to use in the description of the hadron wavefunction actually are. 

Particularly intriguing is the question of how such a wavefunction would remember 

it was born from gauge invariant dynamics, which nontrivially couple transverse 

and longitudinal variables. (See, e.g, , Ref. 12). 

It is a pleasure to thank Prof., Y, Nambu for encouraging this investigation. 
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