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ABSTRACT 

The physical origins and dynamical details of Regge behavior are studied 

by examining a general class of theories which are capable of describing the 

observed large momentum transfer data and extending them into the intermedi- 

ate t-range. The mechanism responsible for the smooth connection between the 

deep scattering region and the Regge region is discussed in detail. We derive 

a convenient new form of the exact integral equation which describes generalized 

ladder graphs containing irreducible scattering amplitudes as the rungs. The 

limiting behavior of the Regge trajectories and residues are then calculated in 

both the single channel, and the more realistic coupled channel cases. The 

trajectories are found to approach negative constants for large negative momen- 

tum transfer and the residues fall as powers in the same limit. Furthermore, 

since the forward and backward Regge regimes must join smoothly onto the same 

fixed angle behavior, there are relations between a priori unrelated trajectory 

functions and residues. The standard properties of Regge poles, in particular 

factorization and signature, are shown to be present even though the basic, fixed 

angle interaction possesses neither of these properties. These general consider- 

ations are then applied to the more specific constituent interchange model. Here 

we find that the asymptotic behavior of the trajectories and residues are con- 

trolled by the form factors of the particles involved in the scattering. Finally, 

we elucidate the relationship between the constituent interchange diagrams and 

the Harari-Rosner duality diagrams. 
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I. INTRODUCTION 

The conventional wisdom of Regge analyses states that hadron scattering 

at large angles is hopelessly complicated: one could never hope to unravel the 

effects of cuts, nonleading trajectories, and other secondary singularities of 

the j-plane as they become increasingly important and intertwined as I t I and 

lu I become large. In this paper we present just the opposite view: Regge 

behavior at large It I and large I u I is elegant and simple; moreover, scattering 

in this region directly reflects the fundamental properties of the interacting 

hadrons at short distances. 

The most dramatic feature of this new point of view for Regge theory is 

that all trajectories, ai( in hadron-hadron scattering will approach negative 

constants as t --co. (A logarithmic behavior is also possible and is not incon- 

sistent with our approach.) For instance, in a model calculation we find that 

meson-meson and meson-baryon scattering is controlled at large angles by four 

factorizable Regge poles which become degenerate and approach M -1 as t --c - M. 

In baryon-baryon scattering, the contributions of these four trajectories cancel as 

It I becomes large thereby exposing a nonleading set of approximately exchange 

degenerate trajectories which approach M - 3 at t -- co . The dependence of the 

residues,and most important, the behavior of the first order deviation of the 

trajectories from their asymptotic values can be readily obtained. Thus we 

can discuss quantitatively the transition region which connects the large angle 

asymptotic region of deep elastic scattering (t/s, u/s fixed; s -L 00 ) to the multi- 

particle coherent Regge regions of fixed t or u. 

The simplest illustration of this type of Regge behavior is found in super- 

renormalizable field theories such as G3. As is well known, the t-channel 

iteration of the Born amplitude, e.g. , K(s, t) = g2/[s-m2+ ie]-’ , generates 

, , 
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Regge behavior. However, for large It I , the leading behavior of the complete 

amplitude is given by the Born term and thus the effective trajectory a(t) 

approaches -1. 

In the calculations presented here we start with simple forms for the Born 

term, K, which will reproduce the features of all current large angle scattering 

data. The t-channel iteration of this basic interaction then yields moving tra- 

jectories, cri(t). Iterations in the s-channel which unitarize the theory, become 

important at low energies (in the resonance region) and at high energies when 

an c~(t) approaches +I, which is expected to occur only at small values of It I. 

Thus our simple theory should apply except near It I - 0 where the above compli- 

cations are manifest. 

Because of the power law nature of the assumed Born amplitudes, one finds 

that the leading behavior of the complete amplitude in the deep scattering region 

is given by the Born terms and the asymptotic trajectories and residues are 

thereby constrained to produce this behavior. In the asymptotic large angle 

region, the interaction time is so short that only the simplest l%adron irreducible” 

interactions can take place and the use of the impulse approximation is justified. 

In this region the coherent Regge effects are suppressed, exposing the basic 

mechanisms which underly the interactions between hadrons. 

It should be noted that our conclusions concerning the nature of Regge 

behavior in the large angle and transition regions are independent of any model 

used for calculating the basic interaction so long as the underlying theory allows 

t-channel iterations. Indeed, we could almost rely solely on experimental data 

for the behavior in the large angle region. We admit our prejudices, however, 

in favor of the parton interchange model discussed in Refs. 1,2,3, since this 

theory is a natural consequence of composite hadron models and correctly 
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reproduces the deep scattering exclusive data - given only the power law fall off 

of the meson and baryon form factors. We can also consistently allow for loga- 

modifications of the basic power law results. 

It is possible, of course, that other mechanisms such as vector meson 

exchange, 4 elementary gluon exchange, 5 direct parton-parton interactions, 6 or 

perhaps hadronic bootstrap mechanisms, 7 could contribute to the Born terms. 

However, in view of the apparent success of the interchange model, the coupling 

constant between these other mechanisms and the real hadronic world may well 

be small. In that case, it is clear that as one approaches the region of small 

It I or lu I from the deep scattering region, the first corrections to simple inter- 

change results will be those due to multiple interactions of the basic interchange 

mechanism itself. Such iterative effects Reggeize the scattering process when 

the forward or backward regions of exclusive scattering are approached, and 

other interactions will only become important at quite small It I where coherence 

can overcome their intrinsically small coupling constant. Furthermore, if such 

additional mechanisms exist, it will be important to know the kernel outside the 

deep region in order to extend the Reggeization procedure to the kinematic domain 

of very small lu I or It I. However, we want to 

of this paragraph notwithstanding, the approach 

to a specific model of deep scattering. 

emphasize that, the discussion 

of the present paper is not tied 

Physically, the inclusion of multiple interactions in the t channel can be 

thought of as allowing one of the incoming hadrons to bremsstrahlung a secondary 

hadron which in turn undergoes the basic interaction with the other incoming 

hadron, at a lower effective energy. The resulting theory has the complexities 

of normal Regge behavior in the forward and backward regions and joins smoothly 

to the impulse result in the deep region. The physical consequences and effects 

of the hadronic bremsstrahlung component on parton model results, especially 

in electromagnetic processes, is discussed in another paper. 8 
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The outline of this paper is as follows. In Section II we derive a very con- 

venient three-dimensional Euclidean integral equation for the iteration of two- 

body scattering amplitudes. An alternate derivation using time-ordered per- 

turbation theory in the infinite momentum frame is given inan Appendix to help 

in clarifying the physics of the equation. 

In Section III we review the well known fact that the iteration of the ladder 

Born terms, K, in the t-channel becomes important and leads to Regge behavior 

of the scattering amplitude when the backward or forward regions of exclusive 

scattering are approached. 

In Section IV, a treatment of more complicated basic interactions is given. 

The Born terms used here provide a realistic description of large angle scat- 

tering data. The single and coupled channel cases, as well as the effects of 

signature, are discussed, and the transition region between the fixed angle and the 

fixed t,or Regge domain is described in detail. Techniques applicable to meson 

and baryon scattering in the large angle and transition regions are also presented. 
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II. DERIVATION OF THE INTEGRAL EQUATION 

In this section we shall derive a very useful three-dimensional integral 

equation which gives the convolution of two general, two-particle scattering 

amplitudes: M = K x T. Each amplitude K and T can have general off mass 

shell dependence in its external legs. Upon integration over the mass-squared 

.e2 of the Feynman loop, a covariant equation is obtained in terms of the trans- 

verse momentum and fractional longitudinal momentum variables familiar from 

infinite momentum frame and light-cone variable analyses. 

Among the uses of this equation are the following: 

(1) If K is chosen as a kernel which fits large angle scattering, then the 

t-channel iteration of K: i. e. , M = K + K x M will produce an integral equation 

which determines M in terms of K. This equation yields Regge behavior and 

provides a description of the physics of the transition between fixed angle and 

fixed t. This problem is discussed in detail in Section III. 

(2) IfK=K?is takenas abasic (e.g., parton model) Compton or electro- 

production (or weak production) amplitude, then the convolution MY = KY + KY x M 

with a sum of hadronic scattering amplitudes M provides the synthesis between 

electromagnetic parton models and hadronic physics. The Regge behavior of the 

Compton electroproduction amplitude in both energy and the Bjorken scaling 

variable w is a natural reflection of the Regge behavior of the hadronic amplitude, 

M. This will be discussed in detail in another paper.8 

(3) Since K is by definition irreducible with respect to two-hadron particle 

states in the t channel, Regge behavior in M can be viewed as arising from the 

elementary scattering on the “hadronic bremsstrahlung” constituents of the 

target. The spectrum of the hadronic bremsstrahlung is Regge-behaved, 

G(x) dx - x- dx for x-0 (a! = 1 for Pomeron behavior), where x is the fractional 
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longitudinal momentum in the P -+ 00 frame. Further discussion of this point 

may be found in Ref. 8. This picture is similar to the “wee” parton exchange 

theory of Feynman’ except that hadrons rather than partons with x- 0 are 

responsible for Regge behavior in hadron-hadron scattering. 

The derivation of the integral equation presented below will use a method 

discussed by Chang and Ma 10 and M. Schmidt 11 in which a covariant Feynman 

expression is transformed to a three-dimensional form in terms of light-cone 

variables. An alternative derivation using time-ordered perturbation theory in 

the infinite momentum frame also can be carried out. Although somewhat more 

cumbersome, this latter derivation can be very illuminating, especially in the 

context of constituent models and in comparison with earlier calculations. It is 

discussed in detail in the Appendix. 

Let us begin by considering a diagram of the type shown in Fig. la. This 

figure describes a term,M,,which is the n-fold iteration in the t-channel of some 

basic scattering amplitude K. The total scattering amplitude is a sum over n, 

M=K+ 2 M (1) 
n=l n ’ 

In order to discuss the properties of the sum, it is convenient to derive an in- 

tegral equation for M. First, a recursion relation for Mn+l in terms of Mn 

and K will be derived as depicted in Fig. lb. If all particles are spinless, 

covariant perturbation theory yields the expression 

Mn+&u, t; v2, y2) = j--+& [Q2-m2+ieJ-’ [(Q+q)2-m2+iej-1 

+ K&u 2, y2;Q2, (Q+ ,2) Mn( u, t;Q2, (Q+ q)2) , (2) 
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where u = @-r)2, t = q2, 6 = (Q-r)2, u= @I-Q)~, v 2 =p2, v N2 = (p+q)2. The 

dependence of Mn on the upper masses r2 and (q+r)2 has been suppressedbut the 

other off-mass-shell dependences of Mn and K have been explicitly displayed. 

It is convenient at this point to introduce a dispersion representation for 

K: 

KQ, t;v 2,i;2;h2,“h2) = 
J 

da2 

P2 
W(a2, t;v 2, i;“;A2,“h2) , (3) 

-u-tie) 

where W is the discontinuity of K across the 2 cut and the notation A2=Q2, 

-2 A = (Q-I-~)~ has been introduced. When this expression is introduced into 

Eq. (2)) the integrand depends on Q through the three explicit propagators, as 

well as through the dependence of Mn on u= (Q-r)2 and the off-mass-shell 

dependences (X2,x2) of Mn and W. 

The integration over Q2 can, however, be readily carried out. To do this 

conveniently, we choose the following parametrization of the Lorentz frame: 

q= ( e, z--,-g) 
(4) 

Q = r=s,F -9 
( 1’ 1 

The rapidity of the incident particle pp is Qn 2P/v , and is, of course, arbitrary. 

The choice P = v /2 is the lab system, and the choice P -+ 00 is the usual infinite 

momentum frame, In this case x E (Qo+Q3)/2P can be identified with the fractional 

longitudinal momentum Q3/p3. Note that the masses of the two external particles 

at the top, r2= -r2 I and (r+qj2 = -(r-W) 
2 I, have been chosen to be space-like. 

This choice produces many simplifications which will become apparent as we 

proceed. It will be simple to continue our final results back to stable physical 

mass values at the end of the calculation. 
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To obtain the recursion relation in its most useful form, the Q2 integration 

must be explicitly performed. Using the above parametrization of Q, one finds 

(independent of P) that12 

(5) 

The obvious poles in Q2 arise from the three explicit propagators and the u 

dependence of Mn (which can be written in the form of a dispersion relation). 

The additional singularities in Q2 which may arise as a result of the off-mass- 

shell dependences of the subamplitudes will be discussed below. Using the 

four-vectors as given in (4), it is easy to see that all these singularities are 

in the lower half Q2-plane if x is outside the range (0,l). If x is inside this 

range, only the pole at @-Q)2 = a2 - ie is in the upper half plane and the Q2 

integration can be immediately performed to yield 

where 

A2-m2=x v2-SflL,x) 
[ 1 ‘“Di 

~2-m2=x~2 C - S(T- + (l-x)x1 , x) 1 - xDf 

,x) 1 , 
(7) 

(8) 

and 

S(Q, ,x) = 
Qf+ m2 

X 
+ Qfl+12 

(9) 

which is the sum of the kinetic energies in the infinite momentum frame time- 

ordered analysis. 
-9- 



A few comments about this result are useful here. First, the fact that only 

values of x in the range (0,l) contribute to the integral is due to the choice 

of a particular type of frame. Using the infinite momentum method language, 

the vectors r and q+ r are not allowed to bring in any longitudinal momentum 

(in the P -00 limit). This is accomplished by giving the masses r2 and (q+r)2 

spacelike values. This statement is identical to the observation made in the 

Appendix that only one time-ordered graph contributes because the longitudinal 

momentum must flow to the right in each line. 

Second, we note that the integral in Eq. (6) looks very much like those 

that appear in time-ordered perturbation theory in the infinite momentum frame. 

In fact, if a spectral representation of Mn is introduced similar to that given for 

K in Eq. (3), and is inserted into (6), the result is exactly the OFPT expression 

2 -2 for the box graph (with external masses v , v , -rT , and -(q+r)f ) multiplied 

by weight functions and integrated over the masses of the rungs. 

Third, in the case of simple analytic off-shell behavior for K (e.g., Born 

terms with vertex parts), Eq. (6) may be used in a straightforward way. In the 

case of other, more complicated graphs involving certain kinds of singularities in 

2 h2 andx , the o2 line integration must be deformed to avoid singularities of the 

integrand . 13 This more complicated situation does not occur in the calculation of 

the absorptive part of M, nor in any of the examples treated in this paper. 

Having demonstrated the recursion relation given by Eq. (6), the last 

(trivial) step in deriving an integral equation for M is to sum over n. The 

result is 

M(u, t;v 2 -2 ,v ) = K(u,t;v2,-2 v 

(10) 
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where the D’s are defined by Eq. (7). The structure of the formula is depicted 

in Fig. lc. This is a particularly simple and convenient equation to use to 

discuss Reggeization since it is covariant yet has a nonsingular, Euclidian 

kernel O 
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III. REGGE BEHAVIOR IN LADDER APPROXIMATION 

As a first application of the integral equation (lo), we turn to a well-known 

problem; that of the Regge behavior of sums of simple ladder graphs. This 

example will illustrate in a straightforward way the transition between fixed t 

and fixed angle behavior. 

We work in 9” theory, and choose as our Born term a u-channel pole, 

K = -g”[u-p2 + ie]-I. 

Using the dispersion representation (3), the weight function which corresponds 

to this kernel is 

W(cF2) = g2d(p2-rn2) . 

Iterating this kernel in the t-channel will generate simple ladder graphs (as 

shown, for example, in Fig. 2). Notice that the top two lines are crossed 

making the graph nonplanar, and therefore purely real for s > 0, t < 0. 14 

Turning now to Eq. (10) we see that with the present choice for W a power 

behavior for M is consistent with the integral equation. In particular, if one 

attempts to write M in the form 

+ . . . 

then for large (-u), the equation for M becomes a nonsingular homogeneous 

equation for p if a!(t) > - 1 and 

d2Ql xo1 tt) -l 

(lmx) DiDf i%t;h2S x22, l 

-.. -_ 

To discuss the transition from the large It 1 to the small 1 t I region, let 

us examine the first two terms in the series for M, and consider a slightly 
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more general case in which W may depend upon t. To second order in W, the 

scattering amplitude can be written as 

M= 
/ 

do2 2 
- + 

02-u / 

2 2 
- w(cr2,t) wGo2,t) J 
2(27r)3 

(11) 

where 

J = wfd2’l 4’ x2(1-x) Gf(p2-6) (12) 

If the three denominators are combined using Feynman parameters, the 

d2Q, integral can be performed and J becomes [after scaling the Feynman 

parameters by (l-x)], 

J=r 
s l dx dy d@M, d(l-~-y--~~-~~) A-2 

0 

where 

A= 
2 2 2 

+ p,p, qL - xyu + yp + xcr 

-2 
- x 

( 
p1v2+p2v 

1 ( 
+Y Pp1 -2 + p2(q+F;)2)] l 

(13) 

This form explicitly shows the analyticity in the upper masses and the symmetry 

under the double interchange v 
2 -2 ++-r 

1 
and F2 +. -(TL+Flj2. This result 

could also have been obtained directly from a standard Feynman-parametrized 

form for M. 

For large t-u), the leading behavior in J arises from small values of x and 

y, and one easily finds from (13) or directly from (12), that 

J = (-J) - -log(%) S1az[m2+z(l-r)~~]-ltr(l/u) 
0 

(14) 
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and this leading behavior is essentially independent of o2 and p2 and the external 

masses, and depends only on the internal mass m2. Expanding the Regge expres- 

sion for M , 

M N ,0(t) (-u//~~)o(~) 

in powers of Qn(-u), and comparing the first two terms with (ll), we find that 

to lowest order in W, 

P(t) = j- a2 W((r2,t)/p2 , 
and l p(t) /A2 s [ I -1 

o!(t) = -1+ 
4(2r)2 m2 0 

dz 1-z(l-z) t/m2 . (15) 

In the simple ladder case we are considering, ,6(t) is g2/p2, to this order in 

the couplings, and a(t) in (15) reduces to the well-known result of Lee and 

Sawyer. 15 This is equivalent to a leading log perturbation expansion 16 in the 

coupling g , and thus yields the result (15). Finally, for comparison with later 

results, we note that o!(t) approaches its asymptotic limit for large It I as 

Q! tt) 
N -1+ 1-12 J39 Qn (-t/p2) -I- . .o 

2(2rJ2 m2 (-‘) 
(16) 

Hence this simple ladder model yields the following physical picture of 

exclusive 2 --) 2 scattering: In the deep, fixed angle region, only the basic Born 

amplitude is important. Large angle scattering, therefore, is particularly 

simple. As the forward or backward direction is approached, multi-runged 

ladders become increasingly important, thus Reggeizing the underlying process, 

and building up the energy dependence of the scattering amplitude. 

To gain further insight into the relationship between the deep and Regge 

regions, it is very instructive to consider another simple example for the 
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kernel in the iteration scheme. The graph we want to discuss is shown in 

Fig. 3 : This kernel includes one vertex correction. We work in the frame 

described above, and parametrize the additional momentum, k, as 

zp-- 

Using this frame it is straightforward to carry out the dQ2 and dk2 contour 

integrals. Doing this, we find there are three terms which contribute to the 

diagram. These are shown as time-ordered graphs in Fig. 4, where the 

dashed lines indicate which particles are on-mass shell. The first term, 

Fig. 4a contributes when z < x, while the others contribute when z > x. ’ 

Remember that in the infinite momentum limit P + ~0, z and x are the fractions 

of longitudinal momentum carried by the lines k and Q, respectively. 

We may now ask which of the vertex correction time orderings we expect 

to dominate in the Regge region. Since, as we have discussed, small x is most 

important here, we expect the time orderings with x < z will predominate. 

These are the graphs of Figs. 4b and 4c. As we move away from the Regge 

region It I grows for fixed I u I, and, as we see from Eqs. (11-13)) it becomes more 

and more important for a! and p to be small in order to get a sizable contribu- 

tion to J. Since the 6-function must be satisfied,regions of the x integration 

where x is not near zero become increasingly important, and it is no longer 

justifiable to consider only contributions to J coming from small x. As far as 

the vertex correction graphs are concerned this means that the time ordering 

of Fig. 4a becomes more and more important. In addition, when It I is large 

all the amplitudes, Mn , n >O are down by at least a factor ItI-’ from the Born 

term, as we have shown. The picture of Regge behavior and its relation to 

deep scattering which emerges from these considerations is the following: In 
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the t-channel, the Regge region is dominated by the exchange of light particles 

with relatively small longitudinal momentum in the IMF (X near zero). If these 

particles are partons, we recover Feynman’s idea that Regge behavior arises 

from the exchange of wee partons. ’ Notice, however, that the exchanged 

particles need not have point-like form factors or unusual quantum numbers - 

in our formalism, the possibility that they are ordinary hadrons is more natural. 

Meanwhile, the picture in the s-channel is that in each amplitude, Mn, the 

Regge region is dominated by the many particle intermediate states as in 

Figs. 4b and 4c - whatever particles there are want to live as long as possible. 

In addition, amplitudes Mn with increasingly large values of n become important 

in order to build up the moving Regge trajectory. As It I increases, each Mn 

gets larger and larger contributions from diagrams like Fig. 4a - that is, the 

particles in the intermediate state pull back and live for shorter and shorter 

times. Furthermore, as It I increases, all the amplitudes, Mn fern> 0 

become small in comparison with the Born term by at least a factor of It I -l, 

until finally in the deep region only the Born term is important. 
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IV. THE TRANSITION BETWEEN THE DEEP AND THE REGGE REGIONS 

In the simple example of the last section, we reviewed how the dynamics of 

scattering in the deep region (roughly, s - ~4, t/s, u/s fixed) produces, by t- 

channel iteration, ladder amplitudes which are increasingly important as we move 

into the Regge regions . Iterations of this type build up moving Regge poles. 

In this section we will extend the analysis of the last section to more realistic 

cases. The basic interaction kernels, K, which are used here provide a good 

description of the large angle data. While their form is motivated by the parton- 

interchange model, the iterative contribution to Reggeization is more general, 

and is not tied to any specific model for deep scattering. 

Near the forward and backward directions, coherent effects, including multiple 

gluon exchange between the hadronic constituents, will very probably become 

important. These are not generated by the t-channel iteration procedure but 

must be included as an additional irreducible kernel. As 1 t I, becomes larger, 

such effects may be suppressed relative to iteration of the basic Born amplitude, 

provided the relevant coupling constants are small. This is certainly the case in 

the interchange theory of the deep scattering (fixed angle) region. In this theory 

the iterative contribution will provide an accurate picture of the nature of the 

transition between the deep scattering region and the Regge region. Consideration 

of the coherent effects of gluon exchange is beyond the scope of the present paper. 

Indeed, if present, such direct interaction could be capable of binding the propa- 

gating intermediate constituents to form sets of hadrons or resonances, such as 

depicted in Fig. 5, in the appropriate kinematic region. In this picture the positive 

energy portion of a trajectory probes different aspects of the underlying interactions 

than does the trajectory for large negative t. 
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In this section, therefore, we shall approximate the kernel in the iterative 

Reggeization process and neglect other types of two hadron irreducible kernels 

(such as those of Fig. 5 ) . We will discuss the trajectories obtained by our 

iteration scheme and present a qualitative analysis of the energy and angular 

dependence of hadronic scattering through the transition region. Only scalar 

particles will be treated here; the extension to particles with spin is straight- 

forward using the methods described in Refs. 1 and 2. 

We turn first to a brief review of large angle scattering amplitudes. Since 

we are interested primarily in the nature of the transition between fixed angle 

and fixed t (Regge) behavior we can utilize the asymptotic large t and u behavior 

of the scattering amplitude to construct the kernel, K. Thus we shall be able 

to use the simple asymptotic power law form of the parton interchange amplitude. 

This can be written approximately as 

KAB -CD m (-s) FA(-s) FCW FDtt) 

ry s1-A (-u)-c (-t)-D 

Here we have assumed the power law behavior 

T 
FIW lJ2 t-v , I=A,B,C,D WV 

for the form factors; possible logarithmic factors have been neglected. The 

above form for K arises when we consider the (ut) parton interchange diagram 

of Fig, 6, and particle B has the most convergent form factor. For example, 

following the naive quark model, we assume that nucleon-nucleon scattering at 

large angles is controlled by the interchange of the common quarks and thus 

obtain 

-1 -2 -2 KNN- NN - s (-u) (-t) 3 
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where a dipole dependence for the nucleon form factors has been assumed. This 

result for the scattering amplitude is in excellent agreement with large angle pp 

scattering data. Thus if one wishes, one can take the assumed parametrizations 

of K as simple empirical fits to data, and for most purposes of this paper the 

theoretical origin can be ignored. However, as we shall discuss later, the identi- 

fication of K with the interchange amplitude and Reggeization via the hadronic 

bremsstrahlung mechanism may allow an elegant dynamical interpretation of the 

Harari-Rosner duality diagrams. 17 

In the case of meson-nucleon scattering, we obtain using (17) 

%p -K+p - (-u)-l (-t)-2 

from (p) quark interchange, and the assumption of monopole meson form factors 

FK(t) - t-l (see also Ref. 18). In the case of 7rp - np scattering, both the (ut) 

diagram and the (st) (box) diagram (which are related by s-u crossing) contribute 

in the quark model. All of these forms, especially the prediction that da/dt - sB8 

at fixed angle, are consistent with present data. (A complete review is given 

in Ref. 1.) 

To discuss the transition regions, we must discuss the region where (-u)- s 

is large compared to (-t) which may or may not be large compared to a typical 

squared mass. It is then convenient to write the kernel corresponding to a (ut) 

parton interchange diagram as 

where 

K(u,t) = @2-u)-n F(t) 

n=A+C-1 , 

(19) 

and F(t) falls asymptotically as (-t)-D. For example, for p-p elastic scattering, 

n-3 and D-2 while for r-p scattering, D is still -2 but n-l. In a physically 
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I 

realistic consideration of these cases, one must treat a coupled channel problem 

which could include, for example, a dominant TT channel with n- 1 and D- 1. 

Such a coupled channel situation will be discussed shortly but first the simpler 

single channel case will be considered. Within the limitations of the models 

discussed here, this is directly applicable to the transition to Regge behavior 

arising from the baryon trajectory in backward meson-baryon scattering as 

illustrated in Fig. 7. For this process n-2 and D-l. 

A. Single Channel Case 

The weight function W for the interchange amplitude of the above form (19) 

is given by -. 

w = $ig (p-l) (a2 -p2) . n- . cw 

where (n-l) refers to the derivatives of the delta function. Alternatively, one 

could impose spectral conditions of W(02, t) to achieve the same (-u)-n behavior 

of K. The dependence of F(t) on the off-shell masses has been neglected. This 

is permissible in the interchange theory because F(t) is independent of h2 and 
-2 A for large enough t and all integrals involved in the equation for M converge 

rapidly in these off-shell mass variables. (Recall also the discussion of 

Section II.) 

Returning to the equation for M, and inserting the above form for W, the 

a2 and o2 integrals can be directly performed and the contribution, to M from 

the second order iteration of the (ut) graphs is 

M = (p2-u)-n F(t) + nF2Q) o! 
1 

2(27r)3 Bn-1)!12 
CIX dy dP,dP, W-X-Y-P~-P~) 

x BYI n-l A-2n 

where A is defined in Eq. (13). 

(21) 
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The large (-u) behavior can be conveniently extracted by standard Mellin 

transform techniques (see, for example, the reference in Ref. 20) or, more 

simply, by noting that only small values of x and y can contribute in this limit 

and explicitly carrying out their integration. The result is 

M = (/A~-u)-~ F(t) + F(t) Qn;-u2F2 (22) 
4(2~) m 

This leads to the identification of the Regge functions to this order: 

and 

02(t) = -n + P( t)(/.,l/ ) 2M2n 1 

/ [ 4(2702 0 
dz l-z(l-z) t/m2 I 

-n 

(23) 

(24) 

We see then that for large -t the trajectory deviates from its asymptotic value 

of -n (n > 1) according to 

a(t) - -n + 
m2(1-n)F(t) 

2(2~r)~ (n-l) (-t) 
(25) 

(If n=l, an extra factor of Qn(-t) arises from the z-integral.) Thus the rate of 

approach of o(t) to the value (-n) depends on the falloff of the form factor of 

particle D. Recall, for example, that TN scattering is characterized by D-2. 

From Eq. (22) we can also estimate the point at which Regge effects be- 

come small compared to the basic interaction term K. This occurs when the 

second term of M is small compared to the first, i.e., when 

( 01 (t) + n) Qn(-u/m2) << 1 

or 

h) -t p2 
l+D 

>> c Qn(-u/m2) . 
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Thus the transition from the deep region, in which only the basic Born 

term dominates, to the Regge region, where hadronic bremsstrahlung, i. e., 

iterative affects become important, occurs neither at a fixed value of t nor a 

fixed angle, but someplace in between . The “softer” the particles involved 

(that is the larger the value of D), the smaller the value of It I required at a 

fixed value of (-u) for the deep scattering formulas to be valid. 

B. Coupled Channel Case 

In this section we will extend the previous discussion to a coupled channel 

situation. A two channel problem will be set up and solved explicitly but the 

final matrix forms can be easily extended to any number of channels. The 

channel labels refer, of course, to the possible two hadron states of given 

isotopic spin in the t channel, such as (%r) and (Ejp), lg which occur in the 

iteration procedure (see Fig. 8). For simplicity we will assume that power 

law falloff in (-u) of the interchange kernel does not depend upon the coupled 

t channel states but that the residue does. Thus if we label the t channel states 

by indices i and j, the appropriate weight functions W. ., corresponding to the 
1J 

absorptive parts of the interchange kernels, are assumed to be given by 

F. .(t) G..(t) 
w = 24 &-l) (g2-p2) + LJ- @+(~2+2) + , . . 

ij (n-l)! (m- 1) ! 
, (27) 

The effects of subsidiary trajectories in the Born terms will be ignored through- 

out our discussion. More general forms could be considered, for example p2 

could depend on i and j, etc. , but the above form is sufficient to illustrate the 

behavior of the leading trajectories and to make the physical points that are of 

interest here. 
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Using this W to calculate the scattering matrix to second order, the result 

coming from the first term only in W with equal pairwise masses is 

Mij = (/J~-u)-~ 
Fij(t) + 

(2n-l)! 
c 4(27r)2[(n-1)!]2 K 

Fik(t) ~j Fkj(t) 9 

where 

dxdy dp,dp, 6(1-x-y-p1-P2) &#-’ A;ln 

and 

Ajk = (l-x-y)+ + p,p,q;2 - xyu + (y+x) /.J~ 

- xq+ P2P$ 
2 

- YtP1+P21”i l 

(28) 

(29) 

(30) 

For large (-u), the asymptotic limit of the integral 1: arises from small values 

of x and y and therefore it does not depend on i or j but only on k. Introducing 

the diagonal matrix H(t) with elements 

-n 
, (31) 

the scattering matrix in the limit (-u)-~0 can be written as 

M 2 (/~~-u)-~ (32) 

In an N channel situation the scattering matrix will in general be diagonalizable 

and thus be characterized by N eigen-amplitudes. In the large (-u) limit, each 

eigen-amplitude will have its own independent Regge behavior and residue. 

Thus, for example, the scattering matrix for two channels will be of the form 

(neglecting subsidiary trajectories) 

M = p’(t) (- u,~“)~+@) + p-(t) (-u/p2 jo-@) , (33) 
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I 

where cr+ and CZ- are independent eigentrajectories and p’ and p- are (2 x 2) 

matrices satisfying the factorization condition 

det [p*(t)] = 0 . (34) 

The 01’s and p’s can be determined to lowest order by comparing the Regge 

expression (33) with the second order expression (32) for M. One obtains the 

equations 

F(t) = P+ tt) + P- tt) (35) 

and 

F(t) H(t) F(t) = (a++ n) P+(t) + (u-+n) p-(t) . (36) 

2(ac&+n) = Tr FH f 
[ 
(Tr FH)2 - 4det FH 1 l/2 

(38) 

The residues can then be written as 

P*(t) = * (“+O - a-(t)) -l [FHF - (o $ + n) FJ (39) 

The most important feature of the solution to note at this point is that both 

eigentrajectories have the same asymptotic limit, a,(-~) = -n. This, of course, 

is a direct consequence of the fact that the trajectories and residues must be 

such as to reproduce the Born terms, i. e. , interchange kernels, at large 

momentum transfer. Since the Born term does not in general factorize, more 

than one Regge pole is necessary to allow this limiting behavior while 

The trajectory functions are determined from the above equations and the 

factorization conditions on the residues. The explicit relation that determines 

the a’s is then 

det [FHF - (a!+ n)F] = 0 . (37) 

The roots of this equation are the eigentrajectories. In the two channel case 

under discussion, the trajectories are given by 
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simultaneously satisfying the factorizability requirements on the trajectory 

residues. It should also be noted that the scattering matrix for the cases 

considered so far is purely real, so that when we speak of a Regge trajectory 

we really mean a strongly exchangedegenerate pair of trajectories added 

together with the sign appropriate to a purely real contribution. The effects 

of signature will be discussed later. 

We are now finally in a position to discuss the most realistic case: that of 

the coupled t-channel %T and cp systems, in which the power falloff of the inter- 

change kernels are not all the same. In this case, the two coupling matrices, 

F and G inEq. (27) are required to be non-zero. Fortunately, the discussion 

of Reggeization is in lowest order only slightly more complicated since the 

cross terms between F and G do not generate a Qn(-u) behavior in the second 

order calculation, The cross term integrals produce a contribution to M which 

in leading order has the simple form 

1 
W-3 [I C(m,n, t) (/~~-u)-~ - C(n,m, t)@2-u)-m 1 

That is, the integral reproduces the behavior of the basic Born terms if m f n 

but yields the logarithmic contribution necessary for Regge behavior if m=n. 

As follows from the previous discussion, the trajectories that approach (-n) and 

(-m) are each doubled in the general case. 

In the physically interesting %r and pp coupled channel system, recall that 

the interchange theory (which agrees well with experiment) predicts asymptotically 

that 

n-l F22=0, Fll-(-t)-‘, F12 = F21- (-t)-2 

(40) 
m- 3 G22 (-t)-2 , G1,, = G12 = G21 = 0 . 
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The label 1 refers to the ii~ channel and 2 refers to the pp channel, Of par - 

titular interest here is the manner in which M22 makes the transition from 

the Regge region to the deep region. The two leading Regge trajectories both 

of which approach t-n) asymptotically, must cancel in this amplitude. Using 

our previous results the trajectories are given by 

a f 
z-n+1 2 (F11J311 f [FTIHfl + 4HllH22F;2] “‘). (41) 

For large momentum transfer they approach their asymptotic limits as 

-2 
&+ - -n + HllFll - -n + @(-t) 

a - -n _ H&/Fl~ - -n - a(-t)-4 , 
(42) 

and thus, Q! is much flatter than 01+. The residues for the 22 process (pp - pp) 

behave for large t-t) as 

+ - 
p22 = - p22 = HllF;2ta+ - 01-J -’ N F;2/Fll+-t)-3 . (43) 

The lower lying trajectory (which is not doubled in this order) approaches -m 

for asymptotic (-t) and behaves as 

- Qn(-u/p2) ti (-t/p2) + 

t-t,5 t-w 
1 [1+y$q (-t)2 (-u)3 

(45) 
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Thus the nonleading Regge trajectory dominates in the fixed angle, deep region 

by almost a full power of s because the two leading trajectories cancel. For 

small It I, however, it is clear that the trajectory Q+ dominates the scattering 

amplitude for all coupled processes. Since a+ arises primarily from the pion 

channels in the iterative process, we can rephrase this result as implying that 

all hadron-hadron beams are essentially pion beams at large impact parameters. 

That is, in the region of small It I or I u I , incoming hadrons bremsstrahlung 

pions (the bremsstrahlung spectrum being characterized by Regge behavior) 

which then undergoes the basic interchange interactions. Note that coherent 

Regge effects become unimportant, and the Born term dominates when 

(-t)3 
t-a2 

>> &(~) 4q.g . (46) 

This is to be compared with Eq. (26) for the single channel case. 

C . Signature 

In our discussions so far, we have limited ourselves to cases in which the 

irreducible kernels have d&continuities in u for positive u, but no d&continuities 

in s for positive s. As a result of this restriction, the amplitudes generated by 

t-channel iterations of these irreducible kernels have been purely real. In 

Regge language, this means that we have been generating only pairs of strongly 

exchange degenerate Regge poles. In general, however, hadronic amplitudes 

are not purely real, and so we must generalize our Reggeization procedure to 

include the possibility of nonzero imaginary parts. The imaginary parts of 

amplitudes described by Regge poles come from the rotating phase terms of the 

signature factors, and so the generalization to complex amplitudes requires a 

method of properly including signature factors in the Regge poles. This is the 

task of the present section. 
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To see how signature factors come about in our scheme, consider the 

simple one channel problem defined by specifying the basic interaction 

K = f(t) (/J~-s)-~ . (47) 

This represents a Born amplitude which has singularities for s > 0. Since 

t 5 0, we need not concern ourselves with any of the singularities in t. In the 

parton interchange model, such a Born term corresponds to an (st) interchange 

graph. We now want to iterate this kernel in the t-channel. Using the notation 

of Fig. 9, we can write 

2 
Ml = f lt) 

/ 

O3 dyd2QL de2 

(n-l)! 2(27r)4 --co 2lyl 
k2 [Q2- m2+iJ’ kQq2 - m2+i;l-’ 

-c2+ie 
-1 1 [ (Q+q+r)2 -p2+ie 1 -n 6 (n-1) tp2-02) , 

where we have used the dispersion representation 

s do2 6 
(n-1) & 2) 

2 s-u +ir 

for the lower amplitude. The upper external lines of Fig. 9 are uncrossed since 

K has a singularity for s > 0, rather than u > 0. The s variable for the lower 

and upper subamplitudes are respectively s’ = @-tQ+q)2 and s= (Q+q+r)2. The 

expression for Ml can be evaluated by methods similar to those used before. 

In the present case, the only nonzero contributions to the integral come from 

the region -l<y<O. For our purposes, however, it is easier to simply shift 

the origin of the d4Q integration. With the substitution Q - -Q-q, it is clear that 

(48) is identical to (11) . In particular, therefore, the asymptotic behavior of 

(48) for lu I - 00 (or s -L m) is 

f2(t) H(t) (/J~-u)-~ Qn(-u) (49) 
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as in (32). This result can be understood by drawing Feynman diagrams in, 

say, $” theory. In that case, it is easy to see that the t-channel iteration of 

two s-channel poles has the same topology as the t-channel iteration of two u- 

channel poles. (Recall that because of our conventions, it is necessary to 

cross the intermediate lines to keep the quantum numbers flowing properly, 

and this results in an overall nonplanar graph with (ut) topology.) 

Now, suppose we wish to continue iterating the kernel. The third order 

iteration presents us with a new situation; the kernel has an s-channel (i.e., 

positive s) discontinuity, but the amplitude, Ml, with which it is convoluted 

has a u-channel discontinuity. Using arguments similar to those sketched 

above, one can show that this graph is related to the third order graph calculated 

by thrice iterating a (ut) Born term by s .- u crossing. In particular, the 

leading term as s -L 00 is 

M2 = f3(t) H2(t) (JA~-s)-~ Qn2(-s),‘2! 

Furthermore, the same result follows from the convolution of a kernel which 

has a u-channel discontinuity with a subamplitude, Ml, which has an s-channel 

discontinuity. These topological properties are conveniently summarized by 

the following rules: 

u@u=u 

s@s=s 

s@u=s 

u@s=s . 

Here u(s) stands for any amplitude with only a u-channel (s-channel) discontinuity, 

and @ denotes the operation of convolution. We remark in passing that kernels 

which have discontinuities both for u > 0 and s > 0, su amplitudes, can be handled 
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in a similar way. These kernels have nonzero third double spectral functions 

and correspond, for example, in the parton interchange theory, to ( su) inter- 

change graphs. When such a kernel is inserted as a subamplitude into our 

recursion relation, it generates an output amplitude with both s- and u-channel 

discontinuities. The topology rules for su amplitudes are 

su@u=sc3u+ucQu=s+u 

suc3s=s@s+u~s=u+s 

suc3su=sc3s+s@u+uc3s+u@u=s+u . 

Let us return now to the problem posed at the beginning of this section. To 

see the structure of the total amplitude, M, generated by iterations of the 

Born term (47), it is convenient to use a (perturbation) approximation keeping 

only the highest powers of J?n(-u) or b(-s) coming from each order of the itera- 

tion. It is then a simple matter to sum these terms. The result is 

M = $ f(t) [I(-u)“+ + (-s)~+] - + f(t) [(-I+ - (-@-] , (50) 

where a*(t) = -n f f(t) H(t) in this approximation. We therefore have two non- 

exchange degenerate, signatured Regge poles of opposite signature. For It i-00, 

a*(t) - -n and the trajectories do become degenerate; their sum reproducing the 

Born term as required by consistency. As we move to smaller It I, however, the 

trajectories split, one rising while the other falls. This is to be contrasted 

with the case in which the kernel has only a u-channel discontinuity. In that case, 

we can also write the amplitude as the sum of two signatured Regge poles, but 

they must be exactly strongly exchange degenerate. The fact that the residues 

of the poles in (50) are (up to a sign) equal is an artifact of our approximation. 

This equality will be broken by the terms we have neglected in deriving the above 

expression (50). 
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The results we have been discussing depend only on the singularity struc- 

ture of the kernels used in the iteration scheme. Jf we apply our methods to the 

parton-interchange theory, we find that iterations of (tu) graphs generate pairs 

of exchange degenerate poles, while the iterations of (St) graphs generate pairs 

of nonexchange degenerate poles. There is evidently a correspondence between 

these observations and the predictions of Harari-Rosner duality diagrams. 17 

In the case of duality diagrams, a 2 -) 2 hadronic scattering amplitude with 

exotic s-channel quantum numbers is represented by a nonplanar diagram which, 

for forward (elastic) scattering generally looks like a (tu) parton interchange 

diagram. The nondiffractive parts of such amplitudes are predicted to be real 

in the Regge region, i. e., the leading non-Pomeron Regge poles are supposed 

to be exchange degenerate near ti0. On the other hand, planar duality diagrams 

which look just like (St) parton interchange diagrams can be drawn for reactions 

with nonexotic s- and t-channel quantum numbers. For such amplitudes exchange 

degeneracy among the non-Pomeron poles near t=O is not expected. The same 

rules of exoticity that determine whether or not a planar duality diagram can be 

drawn also determine if a planar parton interchange diagram can be drawn. In 

the single channel case, therefore, there is a straightforward connection between 

the predictions of duality diagrams near t=O and parton interchange diagrams 

in the deep region, since t-channel iterations of the (tu) interchange amplitude 

generate pairs of exchange degenerate poles, while no such degeneracy auto- 

matically follows from the iteration of (st) interchange amplitudes. 

In the more realistic coupled channel problem, the correspondence is not 

quite so simple, since planar (st) subamplitudes will in general contribute in the 

iteration scheme to processes with exotic s-channel quantum numbers, and 
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thus will generate imaginary parts in such amplitudes. However, these imaginary 

parts, in addition to contributing to very low lying trajectories, probably build 

the Pomeron pole. In fact, in the context of our Reggeization scheme, a quite 

natural characteristic of the Pomeron pole is that it is a measure of how much 

the particles entering the bottom of the graph forget their identity on their way up 

the ladder. 2o (See the discussion for further clarification.) 
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V. DISCUSSION 

It is a well known and obvious fact that the sum of simple ladder graphs 

yield an amplitude which is Regge behaved. In this paper we have derived a 

particularly useful form of the integral equation describing such graphs which 

can also handle generalized ladder graphs. This equation was used to extract 

the limiting behavior of the Regge functions in the case of general input Born 

terms of physical relevance in both the single and coupled channel situations. 

In this latter case, it was shown that if the basic Born terms do not 

factorize (i. e. , if they are not of rank one - which is certainly the situation 

in general) then multiple eigen-Regge trajectories are generated which have the 

property that they become degenerate asymptotically. This happens in such a 

way that the sum of the separate Regge contributions, each of which factorizes, 

correctly reproduces the nonfactorizing input terms. Thus it is expected that 

such degeneracies will be a quite common phenomena if the basic input terms 

have the general structure used here. 

In the physical example of the coupled meson-baryon system, which was 

briefly discussed in the text, we expect that the leading and most important 

trajectories to be roughly as shown in Fig. 10 for each signature. The input 

to this calculation is a fit to elastic q and pp scattering at large angles based 

on the interchange model’ which is in agreement with the phenomenological 

analysis of the effective Regge trajectory for the above processes. 21 Ina cal- 

culation which includes the effects of signature, this model also predicts that in 

p-p scattering the non-leading, but surviving trajectories rapidly become 

exchange degenerate as It I increases and both approach Q! 0’ 

Some general predictions following from this approach which are in addition 

to the specific limiting behavior derived in the text are: 

(1) For any process, the existence of hadronic bremsstrahlung will lead 
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to Regge behavior at small momentum transfers. As It I increases, this multi- 

hadronic component of the wave function will become less important and the 

basic interaction mechanism will increase in importance. The physical reason 

for this is that if the basic interaction falls with energy, then a high energy 

projectile will prefer to emit hadrons (via a bremsstrahlung-type process) which 

have less longitudinal momentum and hence can interact at a lower effective 

energy. At large It I values, it is difficult for this emitted particle to be re- 

absorbed by the projectile as required for an elastic or quasi-elastic scattering 

process. At low It I values, however, reabsorption can occur easily, and this 

leads to the Reggeization of the amplitude which should control the behavior of 

the process in this kinematic region. 

(2) The above theory of Regge behavior in exclusive scattering is physically 

the same as that described in Ref. 2 for the inclusive case. However, it is 

interesting to note the contrast between the mechanisms that suppress Regge 

behavior at large transverse momentum in exclusive scattering and in the 

pionization region of inclusive scattering. In the exclusive case, it is the fact 

that at large momentum transfer, the probability of reabsorbing all the hadronic 

bremsstrahlung is small. In the inclusive case, it is energy-momentum con- 

servation - the radiated hadron that is responsible for directly producing the 

detected particle must have the necessary energy-momentum. 

(3) For sufficiently large, but fixed t, the rr and m differential cross 

section should have an energy dependence corresponding to a trajectory having 

the value a!(t) - - 1. Furthermore, if the parton-interchange picture is correct, 

the associated residues p(t) should fall in t as the pion and nucleon form factors 

respectively. 
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(4) In general, we expect the I=0 and I=1 exchanges to have the same 

limiting trajectory value and residue behavior. It is possible to adjust the 

hadronic wave functions to destroy this expected degeneracy but this would 

not be a very natural choice. 

(5) As was pointed out in Ref. 21, the fact that the large angle behavior 

of the amplitude is related to the asymptotic behavior of the Regge trajectories 
22 

yields relations between a priori unrelated Regge functions. For example, in 

meson-nucleon scattering, as one moves out from the forward direction, the 

exchange meson trajectories must join smoothly on to the basic interaction 

describing the 90’ behavior. Similarly, as one moves out from the backward 

direction, the exchanged baryon trajectories and residues must join smoothly 

on to the same 90’ amplitude. Thus, the baryonic trajectories and residues 

are related to the mesonic residues and trajectories at large momentum transfer. 

(6) For sufficiently large 1 t I, the pp scattering amplitude should become ex- 

change degenerate without subtracting out the Pomeron contribution since it is 

most naturally associated with the leading trajectories which cancel for large 1 t I. 2o 

(7) The complexities in our calculational approach near zero momentum 

transfer arise from two sources. The fact that there is a trajectory near 1 

means that unitarity in the s- and u-channels must be taken care of properly. 

The second point is that the two hadron irreducible kernels K were approximated 

by forms which should be accurate and relevant only for large It I values. 

Therefore the output could hardly be trusted for small t values. It is certainly 

natural to assume, however, that the trajectories we compute for large negative 

t will continue to positive t and in some sense keep their identity (except perhaps 

for the leading I=0 Pomeron singularity which goes to 1 at t=O) thus giving rise 

to particles and resonances. 
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(8) There seems to be an intriguing parallel between the interchange graphs 

iterated in the t-channel and duality diagrams, as we discussed at the end of 

Section IV. Perhaps we can make this relationship somewhat clearer by drawing 

an analogy from atomic physics. 

Consider the problem of an atom in a magnetic field. For zero external 

field, all the states with a given J (total angular momentum) have very nearly 

the same energy, and are thus degenerate. When a weak magnetic field is 

applied,the (2J+l) degenerate states split, and we have the Zeeman effect. As 

the external field is increased, the energy levels of states with different J and 

M J change, until finally in a very strong field some of the levels again become 

degenerate (the’ Paschen-Back effect). The degeneracy pattern for a strong field 

is, however, not the same as the degeneracy pattern for the weak field. The 

reason is that different pieces of the Hamiltonian are dominant in the two different 

regions, and so the approximate eigenstates of the Hamiltonian are not the same. 

Exactly the same thing happens in hadronic scattering. In the deep region 

(ItI --a), a number of Regge trajectories become degenerate as we have shown. 

This is because, in this domain, the most important forces are those which are 

short ranged. In the Regge region, we again find degeneracy among various 

trajectories, but here the degeneracy arises because the long-range part of the 

Hamiltonian is most important (large impact parameters), and so the approximate 

eigenstates are different. In the single channel case the degeneracy patterns are 

simple enough so that the connection between duality diagrams and parton inter- 

change diagrams can be easily made. But a realistic coupled channel situation 

involves many trajectories so that the exact relationships among them over the 

entire t-range is complicated, indeed. Nevertheless, the analogy presented here 

shows why one should expect degeneracies among trajectories at large 1 t I and in 

general, a different degeneracy pattern at small It I. 

. -: 
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(9) Our experience in fitting the lowest order predictions of the inter- 

change theory to experimental data lead us to expect that the type of behavior 

predicted here for the transition region will improve both the fit to the data 

and extend the range over which a fit can be carried out. The rather striking 

cancellation between the leading trajectories in pp scattering, and the 

degeneracy of the leading trajectories in the Q case should produce effects 

which can be clearly seen experimentally. These effects may have been 

responsible for some of the difficulties found in attempts to extend simple Regge 

fits to higher momentum transfer. 

In this paper we have tried to accomplish two main objectives. The first 

is to derive an integral equation which allows a simple discussion of Regge 

behavior arising from generalized ladder-type interactions. The second is to 

apply this equation by considering a basic interaction which correctly reproduces 

the features of large angle data and which has some theoretical motivation. 

Thus we have gone considerably beyond the normal Regge approach to scattering 

by predicting the behavior of trajectories (their asymptotic limit and the approach 

to that limit), and the behavior of their residue functions at large momentum 

transfer. We cannot extend these predictions to small t values without con- 

siderably expanding the input assumptions and the dynamics. 

The general behavior of the trajectories arising from our model is in good 

agreement with the effective trajectories derived from experiment in Ref, 21. 

However, the cancellation between the leading trajectories in pp scattering is 

a rather novel effect which will require considerably more experimental con- 

firmation. Its existence depends on the fact that the meson-nucleon and nucleon- 

nucleon differential cross sections fall with a different power of the energy at 
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fixed, large angle. This does seem to be the case in the present experimental 

regime. 

While a full comparison with experiment of a Regge parametrization of 

the type proposed here has not yet been carried out, the success of the fits 

described in Ref. 1 and the trend of the fits at smaller momentum transfer lead 

us to expect good agreement. 23 This would considerably extend the applicability 

in a new kinematical direction of a type of theory which has already been success- 

fully applied to reactions ranging from pion-nucleon scattering at M 5 GeV/c to 

the inclusive production of large transverse momentum mesons at the 

CERN-ISR. 24 
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APPENDIX 

In this appendix we give an alternate derivation of the basic iterative 

equation (IO), given in the text, for the case of (generalized) ladder graphs. 

Time-ordered perturbation theory in the infinite momentum frame of Eq. ( 4 ) 

will be used. The momenta of the internal particles are defined in the text 

and, as before, tr 2 and vr 2 are the masses of the lower external particles. 

The advantage of choosing a frame in which the upper two particles do not 

carry any longitudinal momenta is that only the trapizoidal time-ordered of 

Fig, 2 contributes. 

Defining E J to be 2P times the energy of the intermediate state J, the 

required “energy” denominators are of the form D J= E-E J. For example, the 

first denominator on the left is 

(A. 1) 

(For convenience we drop the 1 subscript on all transverse momenta. ) The 

second denominator is conveniently written in the form 

DN-l = DN + EN - EN 1 = DN + $- - S (TNsl-xN l-hN, xNW1) . 
N 1 

In general 

DJ=DN+L 1 M2 - WN StQN-l-xN-lQN, xN-1) 1 
1 M2 -I-- 

WN-l [ 
- 

StQN-2-XN - 2’N - 1’ XN-2) 1 
(A. 2) 

- S(QJ-xJQJ+l, xJJ 1 9 
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where 

wJ =XNXNel . . . XJ . 

The central energy denominator takes the form 

Do=Dl+-L 
w1 

[Q”, - (Ql-r)2] - 2p l r 

=u+r2- 
1 

v2+Dl+l 
(-9 

[QT - (e,-r12] 

(A* 3) 

which is actually independent of u2 at fixed u. The denominators on the right- 

hand side of the diagram have the form 

+E-E~z vt2- S(Q,+ (l-x$, xN) 

DiL = D4,+ 1 M2 - S QN 1+ (1-xNB1)q, XN . 
WN [ (- 

Thus the (N+l)th order ladder contribution to the scattering amplitude is 

simply 

(A. 4) 

where g is the coupling coupling constant describing the three-particle vertices. 

An iterative form for this equation can be derived by writing down a similar 

formula for MN+2, changing variables in it from QJ to Q; defined by 

“; - “#;,I = ‘J - xJ@J+l 

for J=l, 2,. . . N-l, and 

“ij’ = % - XNQN+l 

QN+l = k, xN+l = x 
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and comparing to (A. 4). We find 

MN+2 22 ;Y ,v’ 2 ,-r 2 ,-(q+r) 2 1 = 

d2- d2kdx 22 2 2 2 

2(27r)3 / x2( l-x)DD’ 
MN+1 -q ; h ,A’ ;-r , -(q+r) 1 

64.6) 

where 

D=v2 - fv%x) , h2-M2=xD 

(A* 7) 
Dq= v’2 - w+u-m, xl , hf2- M2 = xDq 

and a rearrangement of Do shows that we must define u’ by 

u’-M2 =x [u - S(k-(1-x)r,x)] . (A* 8) 

The integral equation for the full ladder scattering amplitude is then 

-q2;v 2, v r2;-r2, -(q-i-r)2 1 =B-!- 

2 
4-g 

2(27r)3 J 
-q2;h2, hf2;-r2, -(q+r)2 1 

with 

B = g2w2-u)-l . (A. 10) 

The generalized folding formula (10) of the text can be derived after only slightly , 

more work by treating as a unit the addition of two (or more) rungs to the ladder. 
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I 

FIGURE CAPTIONS 

1. The integral equation for an hadronic amplitude generated by the t-channel 

iteration of an hadronic scattering kernel, K. (a) The amplitude in nth 

order. (b) The iteration equation computed in Eq. (6). (c) The integral 

equation derived in Eq. (10). 

2. Ladder graph generated in $3 theory. This is calculated explicitly in the 

Appendix. 

3. Example of a vertex insertion in a G3 theory calculation of the full hadronic 

amplitude. 

4. Time-ordered contributions to the vertex insertion diagram of Fig. 3. 

The dashed lines indicate which intermediate-state particles are on the 

mass shell. 

5. Example of a dynamical correction to the kernel K which is important at 

low t, but which is assumed not to be important for large angle scattering 

in, for example, the parton interchange model. The external wavy lines 

could be hadrons or photons. 

6. A (tu) interchange contribution to the kernel, K. The hadrons (double line) 

are represented at large transverse momentum as parton (solid line) core 

(wavy line) bound states. The partons do not interact with each other. 

7. Integral equation for backward meson-baryon scattering. The double line 

is a baryon, and the dashed line is a meson. 

8. Full integral equation for the scattering A-f-B - A+B. The summation over 

H is over all contributing pairs of hadrons. 

9. Labelling of the integral equation for the first iteration of K. The equation 

gives the first correction to the asymptotic values of the effective trajectories. 

The top lines are uncrossed here since these diagrams are planar in the s-t 

plane. 
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10. Regge trajectories of hadronic scattering. The a+ and a! trajectories 

become degenerate at -1 for t - - 03 and control large angle meson-baryon 

scattering. The 01~ trajectories cancel in baryon-baryon scattering 

exposing the a0 trajectory which is expected to approach -3 at t - --co _ 

in the interchange theory. Although the iteration scheme becomes very 

complicated to compute for t - 0, the trajectories are expected to smoothly 

continue to positive t where at least some of them will be associated with 

physical hadrons according to the usual dicta of Regge theory. 
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