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Abstract 

I A general two-dimensional analytical solution is presented for the 

/ problem of transport current injection from a normal conductor into a 
I 
1 superconductor and collection back into a normal conductor. The current 

distribution is solved for the general case which takes in the full 

range from essentially point source to full-width injection and 

collection. The current distribution also represents that in a split 

ring superconductor joined by a link of variable width. A comparison 

is made with current injection into and collection from a normal 

conductor. Computer calculations are included showing a virtual 

anomaly which is reconciled. Speculation is made regarding the 

formation of transport current vortices in an initially simply- 

connected superconductor. 
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I. Analysis of Injection and Collection in a Superconductor 

With the increasing use of superconductors in electromagnets, in power 

transmission, and in electrical machinery, the normal to superconducting inter- 

face becomes a more scientifically and technologically important boundary to 

understand. It is of interest to consider the, general case of current injection 

from a normal conductor into a superconductor and collection back into a nor- 

mal conductor, The results are also valid for the current distribution in a 

superconducting split ring joined by a link of variable width. For generality, 

let the injection and collection regions be of arbitrary width 2d in a rectangular 

superconductor of width 2a and length 2b, as shown in Fig. 1. So that the 

problem may be treated two-dimensionally, the superconductor may be either 

a thin film or infinitely thick. The current, I, is homogeneous within the 

injection region of current density, J = 1/2d, per unit length. 

By taking the curl of the London equation 

v x vx-j+=- 
L 

-1 

PA2 
s , 

I 

and combining it with Maxwell’s equation 

pp vxg (no displacement current) 

and the continuity condition v . F= 0 for steady state, we have 

as the differential equation to solve to obtain the distribution of supercurrent 

density Fin the superconductor. For convenience, we have defined p as the 

inverse of the penetration depth A. 

Due to the symmetry provided by our choice of coordinates, jy and jz, the 

(1) 

(2) 

components of Thave the following symmetry properties to guide us in the 
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solution of Eq. (3): 

jy(Y, z) = -j,(Y, -4 = -jy(-y, z) =jy(-y, -z) 

jz(YI z) = jz(y, -z) = jz (-y, z) = jz( -y, -z) . 

The boundary conditions are given by: 

jy(*a, z) = 0 

jZOI,*b)=J{e(y+d)-B(y-d)} = 
J -d<y<d 

0 otherwise , 
where 0 is the unit step function. 
Assuming separation of variables, j 

Y 
jy and jz as well as3 yields 

Ld2 
g dy2 

+Ld2h 
- -P2 

h dz2 
= 

= g(y) h(z), then Eq. (3) (which holds for 

=o . 

Using the boundary condition (6), Eq. (8) separates thus 

and 

2 
= + v2 g(y) = 0 , 
dy2 

h(z) d2 
d z2 

- (p2 + q2)h(z) = 0 , 

where 5’ 2 > 0 is the separation constant. 

Equation (9) has a solution of the form g(y) c( sin qy and Eq. (10) implies 

h(z) x sinh [P” + G’21’/2z, where 

+L, n= 1, 2, 3, . . . 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Hence the general solution to Eq. (3) for jy is 
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(. 

00 

jy = 
c 

- An sin(yy) sinh[!32 + ($$]1’2 z , 

n=l 
(12) 

where the coefficients An have yet to be determined. 

To determine js, one may proceed similarly as above, or use the continuity 

equat ion 

8j 
--Z = 3 = gl An(~)cos(~y) sinh[f12 + (yi”]:/’ 8Z (13) 

which relates jz to j . 
Y 

Thus, by simple integration of (13)) we have 

jz = cos($ y) cosh[/32+($f]1:: f(y) , 

since f(y) = f(-y) is a solution of V 2f = P2f. Thus 

f(Y) = 

where A and the An coefficients may 

Thus 

d 

J 
I 

dY 

(14) 

-“d A= a JdP 
= sinhfi a ’ 

I 
coshPy dy 

-a 

A cash Py , (15) 

be determined by the boundary condition (7). 

(16) 
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and 

-A f cos(%o,hpydy + J p cos ydy 

An = -a 

co:hb,fi2 + (;$‘2 n7ra 

[ (Pa) 
2 

+ 0-4 
2 u2 1 

(17) 

(-1)” 2 Jd (pa)2 

2]1’2cosh bb2+ (!$r” ’ 

A. Full Width Injection 

If we take d = a, this corresponds to full width injection, and we can easily com- 

pare our results with London’s’ calculation, as we have used the same symbols for 

this purpose. In this case, the first term in (17) is 0 and Eq. (12) becomes 7 
O” , (-l)n2 J(pa)2 sin(yy) sinh p2 + (y) 

2-u2 

- c z 
Jy = 

n=l l/2 

Equat ion (14) becomes 

(18) 

03 j = JPacoshPy _ 
Z sinhpa c ’ (19) n=l 

Our results differ from those of London’ ; however, we ascribe this to 

typographical errors in London’s book. The differences are: In Eq. (18) London’s 

summation for jy (p. 40) is negative whereas ours is positive. In Eq. (19) for jz 
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Londqn (p. 40) has a positive sum whereas ours is negative. In addition, he has 

t/W2 + 
11/2 

ON2 I while we have no square root for this factor. We have 

cash p2 + 
2 l/i [ )I i y b in the denominator whereas he has sinh. Otherwise for this 

case the results are the same. 

B. Point Injection 

It is interesting to look at the opposite limit, which is the other extreme for 

d. The limit d + 0, with J-co and BdJ-I = the injection current, represents the 

limit of point injection and collection. In this case, we have 

sin t$yjsinh[p2 + cy2]‘! . 

cos (5~) cosh[p2 + (yje]y2 . 

II. Computer Results for the Super-current 

Equations (12) and (14) were programmed for computer calculation so that 

the streamlines showing the current distribution could be plotted. Thus the path 

taken by a given current line can easily be followed by this visualization. Either 

of two approaches can be taken, both of which start with the calculation of j 
Yl 

and jz, at the point (y,, zl). 
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These components of rcan then be converted into velocity components v 
Yl 

and v zl by dividing by the electron number density and charge. Then, by taking 

a small time interval t, the next point the electrons move to is found from 

y2 = vy2 t -I- Yl andz2=v t+z * 22 1’ Jy2 and jz2 are then calculated, and by re- 

peating the process, the entire electron trajectory or streamlines are calculated. 

Another approach is to take the normalized current density vectorT/(jt + j”,) 
l/2 

, 

times a small constant interval in obtaining the next point (y,, z2), etc. The dif- 

ference between the two approaches is that the former involves a variable step 

size, whereas the latter step size is constant. The former approach gives a more 

accurate representation. However, for our purposes, the difference in accuracy 

is not substantial, and the latter method was used for convenience. The results 

of three calculations are illustrated in Fig. 2, 3, and 4. Only a portion of the 

first quadrant is shown, as the streamlines in the other quadrants may be found 

by mirror symmetry. 

Figure 2 shows three streamlines for a = b = 5A = 5//3 = lOOd, using 50 

harmonics. (A was chosen not too small compared with a and b so that it would 

be easy to illustrate the streamlines. ) This could represent a small square plate 

with current injection and collection by means of fine wires or whiskers, or a 

point-link split-ring superconductor. Streamlines I and II are nicely behaved, as 

they appear smoothly varying. Streamline III shows an oscillatory behavior near 

the boundary z = b. 

Figure 3 shows streamline III together with two more streamlines IV and V 

even closer to the z = b boundary, also using 50 harmonics. Streamline IV has a 

slightly higher oscillation amplitude than III, and V has the highest. Thus we see 

that the oscillation amplitude increases as a given streamline is closer to z = b. The 

amplitude also increases as the injection region is approached, as well as 
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when y - a, as illustrated by streamline V. This behavior can be interpreted 

as a Gibbs overshoot. We interpret the oscillation near z =&b as a lack of 

accuracy in the boundary condition representation due to the limited number of 

harmonics . 

This interpretation was tested by decreasing the number of harmonics 

from 50 to 25 in the calculation. As expected, the oscillation increased accord- 

ingly. This case is depicted in Fig. 4 where the streamline shown corresponds 

to streamline III of the previous figures. The oscillation should not be present 

in the actual experimental situation of homogeneous current injection and 

collection within the region -d < y < d. It arises due to the harmonic series 

representation, and would vanish as n - 00 (except for the Gibbs overshoot) 0 

III. Current Injection and Collection in a Normal Conductor 

The differential equations describing the current distribution in a normal 

conductor resulting from a given configuration of injection and collection may 

be obtained from Maxwell’s equations and Ohm’s law by a method similar to 

that of Section I. However the same result may now be obtained more easily 

by noting that as /3 - 0 (penetration depth h - m) this limit corresponds to the 

passage from the superconducting to the normal state. Hence we may use 

Eqs. (12) and (14) with p - 0 for the case of a normal conductor. The results 

of the computer calculation for this case are displayed in Fig. 5, where stream- 

lines IN, IIN, and IIIN are shown. These streamlines correspond to I, II, and 

III of the superconducting case (Fig. 2) in that they pass through the same 

points on the z = 0 line, namely at y = 0.99, 0.96, and 0.93 respectively. 

The behavior of the streamlines in the normal state as contrasted with 

the superconducting state is that they penetrate the film surface more, as is to 

be expected. Thus, there is not a sharp turn near the corner for IIIN and this 
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streamline does not manifest the Gibbs overshoot phenomenon in that region. 

(However, a streamline much closer to the corner should show a Gibbs over- 

shoot for the normal case similar to that observed for the superconductor.) 

Otherwise the oscillatory pattern and the behavior near the injection and collec- 

tion regions is similar to the superconducting case. 

IV, Discussion 

The interesting observation of representational spatial oscillation of the 

current near z = kb made in Sections II and III, and depicted in Figs. 2, 3, 4 

and 5 raises the question as to what experimental conditions would in fact give 

rise to an actual spatial current oscillation. An obvious configuration would be 

an undulating boundary. A superconductor with dimensions large with respect 

to h would impart this oscillation to a larger fraction of the current due to the 

confinement of most of the current within the penetration depth A, as compared 

to a normal conductor. 

An experimental configuration which more closely simulates the analysis 

with a limited number of harmonics is that of a discrete number of small 

injection and collection regions distributed over the width of the superconductor. 

This may even arise inadvertently when a normal conductor makes poor contact 

with a superconductor at the interface. Such a situation leads to a stimulating 

speculation: Can a proper configuration of injection and collection points be 

realized which would lead to vortex formation in the current distribution in an 

initially simply-connected superconductor ? Heuristically it would seem possible 

by setting up the injection and collection points to give the proper magnitude and 

asymmetry to the oscillation in the transport current. In this case the same 

results should be obtained experimentally and theoretically. 
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A fluid flow analogue to the supercurrent distribution obtained in Section 

II, is that of the point injection and collection of gas into a cylinder with 

blocking horns as shown in Fig. 6. In this case it is possible to experimentally 

set up turbulent flow giving rise to vortices. This might lead one to think 

that it should similarly be possible to obtain vortices in a superconductor using 

single point injection and collection regions. It remains a problem for experi- 

mental determination as to whether or not vortices can thus be created. This 

question may be of interest in dealing with the phenomenology of Josephson 

junctions, since they may be understood as superconducting rings with self 

point injection and collection of current. 

A physically significant and interesting process occurs as the current den- 

sity is increased by increasing the current or as the injection and collection 

regions are reduced in size while a constant current is maintained. A point may 

be reached where the self-magnetic field of the transport current would exceed 

the effective critical field of the superconductor thus creating a normal region 

in the superconductor near the injection region. The current would then go 

straight in as well as being confined near the boundary. Under certain condi- 

tions this could lead to an oscillation of this region between the normal and 

superconducting states. Vortices could well form under these circumstances. 

Morgan’ has recently calculated the eddy currents induced in flat metal- 

filled superconducting braids by a time varying magnetic field. He considers 

the field distortions caused by eddy currents in the braid. We wish to point out 

another possible contribution to undesirable field shape changes related to our 

analysis. The superconductor is usually in intimate contact throughout with a 

good normal conductor such as copper to produce superior electrical stability 

and mechanical properties. However the eddy currents induced in the normal 

metal, may act as injection and collection points into and from the super- 

conductor. In some cases this change in the current distribution in the super- 

conductor itself may contribute non-negligibly to the field distortion. 
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Figure Captions 

1. Rectangular superconductor showing current injection and collection regions. 

2. Three computed streamlines for a = b = 5A = lOOd, using 50 harmonics. 

3. Streamline III, together with two more streamlines IV and V, also using 

a = b = 5h = lOOd, and 50 harmonics. 

4. Increase in oscillation amplitude of the streamline corresponding to III 

due to a decrease in the number of harmonics to 25. 

5. Three streamlines in a normal conductor corresponding to the three in 

Fig. 2. 

6. Schematic representation of vortex formation in turbulent fluid flow. 
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