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ABSTRACT 

A method for accommodating a large class of equality con- 

straints that appear in multidimensional constrained optimization 
and sampling problems is discussed. A recursive procedure is 
developed for reducing the constraints on the full n-dimensional 
space to similar constraints on progressively lower dimensional 
subspaces. The technique can be applied to multiply constrained 
problems as long as each constraint can be cast in the general 
form 

F = constant 

where Cf, 3Jf=, are arbitrary functions of the individual coordi- 
nates and F is an invertible function. 
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INTRODUCTION 

In many applications one is forced to deal with functions of many vari- 

ables where&there exist non-linear relations among the variables. Often this 

problem can be formulated in terms of a scalar function defined over a multi- 

dimensional space, with the constraints defining a lower dimensional manifold 

embedded in the space. Frequently one is faced with optimizing or integrating 

the function over the manifold. 

The classical approach to the optimization problem with equality con- 

straints is the method of Lagrange multipliers. For the case of m constraints 

in an n-dimensional space, this technique converts the problem to one of 

solving a set of m + n-non-linear equations. The difficulties involved in 

finding solutions to sets of simultaneous non-linear equations limits the 

applicability of this approach. L Another approach is to reduce the constrained 

optimization problem to a sequence of unconstrained problems by the incorpo- 

ration of penalty functions into the objective function. 2 A third method 

is to transform the independent variables to coordinates that automatically 

satisfy the constraints, leaving the objective function unchanged. When such 

transformations can be found, this is generally preferable to the first two 

methods. The transformation approach reduces the dimensionality of the prob- 

lemto n - m, rather than increasing it to n + m, as is the case with Lagrange 

multipliers. Furthermore, only one unconstrained optimization is necessary 

rather than a series of them, as required by the incorporation of penalty 

functions. Generally, these advantages result in increased stability and com- 

putational efficiency. Very few generally applicable transformation techniques 

have been developed, however, due to the difficulty of finding the appropriate 

transformations for most problems. 
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For numerical integration over manifolds embedded 'in higher dimensional 

spaces, one must choose function evaluation points that lie on the manifold. 

In general this is difficult, especially when a uniform distribution of sample 

points is required. When possible, one can perform a transformation to the 

manifold from the unit hypercube of corresponding dimension. For certain 

applications, there have also been discovered specialized tricks* for randcpn 

sampling on manifolds embedded in higher dimensional spaces. 

This report describes a procedure for obtaining reversible transfor- 

mations from a large class of manifolds defined by one or more equality con- - 

straints to the corresponding Euclidean space. ,This method utilizes a re- 

cursive procedure that converts the constraints on the full n-dimensional 

space to similar constraints on progressively lower dimensional subspaces. 

The problem is then reduced to applying the constraints on these low dimen- 

sional subspaces, where they may often be dealt with directly. 

* 
See reference 3 for a large collection of these specialized techniques. 
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Single Equality Constraint 

Consider a constrained n-dimensional integration of the following form 

(1) 

where the fi(Xi) are arbitrary functions of the individual coordinates and F 

is an invertible function. This is an integration over an n-l dimensional 

manifold defined by the equality constraint in the .argument of the Dirac 

6-function. Let 

and 'n-k = F[!zk+lfi(x~J 

then the RHS of eqn. 1 can be re-expressed as 

(2b) 

or 

P n 

1 dVn(Cn) = j dCkdCnwk dv&Ck) dVn,k(Cn,k> 
t X6 (3) 

where dVk(Ck) and dVn-k(Cn k) are defined by eqn. (1). 
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The constrained n-dimensional integration of eqn. 1 has been converted 

in eqn. 3 to two similarly constrained integrations on k and n-k dimensions, 

and a constrained two-dimensional integration. The procedure that led from 

eqn. 1 to eqn. 3 can now be analogously applied to dV&Ck) and dVnmk(CnBk) 
l 

This yields a further reduction of dimensionality for the constrained inte- 

grations and the addition of two more two-dimensional constrained integrations. 

This dimension reducing process can be continued until the constrained inte- 

grations are of sufficiently low dimensionality to be handled directly. Thus 
-- 

e'qn. 3 provides a framework for deriving recursive procedures that utilize 

known solutions in.lower dimensional cases to solve higher dimensional problems. 

There is considerable flexibility in the degree by which the dimension- 

ality can be reduced at each step, namely, any k in the range 1 I k 5 n-l 

may be used. 

The number of these dimension reducing steps, and thus the ultimate re- 

duction in the dimensionality of the constrained integration, is also arbitrary. 

However, it is clear from eqn. 3 that the largest reduction that can be achieved 

is a series of n-l two-dimensional constrained integrations. 

We now illustrate how this recursive strategy can be implemented to solve 

specific problems. 

A. Solid Angle Transform (SAT) 

This transformation maps the n-l dimensional unit hypercube to the sur- 

face of a sphere in n-dimensions. Such a surface can be defined by the equality 

constraint 
n 

1 1 X2 
i=l i 

=r n (4) 

This constraint occurs in n-dimensional random direction sampling as well as 

many constrained optimization problems. 
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For this constraint, eqn. 1 becomes c-- 
s 

In 
3 
dV,,(‘,i) = bdX 6(rn -dFl< 1. 

i=l ' *ZZ 

Applying eqn. 3 with k=2 

1 dVn(rn) =[dr2drnM2 dV2(r2) dVn,2(rn,2) ' 

x 6(rn - \I 
2 r2 + 'E-2 1. 

Converting r2 and rnm2 to polar coordinates 

'2 = 
6 cos 8, r n-2 = 6 sin 0 

. and ihtegrating over 6, we obtain 
J-d2 0 r 

I dVn(rn) = rn I 
de dV2(rn cos 0) dVns2(rn sin d l 

J JO 

NOW s ,--. -. 
dV2(rn cos 0) = dXldX2 S(rn cos 8 - \i 1 'x2+< ) ~ 

Again using polar coordinates 

xl = R cos cp x2 = R sin cp 

and integrating over R 

(5) 

(6) 

dV2 (rn cos 8) = rn cos 8 dq = mm COS 8 dPl 
0 J 0 
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Substituting this into eqn. (6) 

s 1 

dVn(rn) = BrE J J x/2 

dPl cos Bd0 dV n-2bn sin e> 
0 0 

nl 01 
= 2rcrE 

J J 
dPl W2 dVnB2( rnp2> 

0 0 

Note that 

Xl= rn co6 (sin-'v2).cos (25rPl) 

X2 = rn co~~(Sin-~~~) sin (239) . 

Reapplying eqn. 3 to dVnW2 in eqn. 7 and proceeding as above 

where 

x3 = rnp2 cos('sin-lClq) co6 (2xp3) 

x4 = rnv2 cos(sinv1v4) sin(2flp3). 

Continuing this two at a time reduction m=[n/2-l]* times one obtains 

x dV n-2m('n tlP2i) . 

*IfI is the greatest integer less than or equal to f. * 

(7) 

-- 
(8) - 

(9) 

(10) 

01) 
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If n is even, then n-2m = 2. In this case 

dVnma = 

so that eqn. 11 becomes 

or 

*where' 

2d2 n-l r n 

T2i-l = '2i-1 

‘(1 
n-2i 

2i = '2i 

n-l 
Tr 
i=l 

. 

(12) 

s 1 

all. 1 03) 
0 . 

15 i 5 n/2 

15 i 5 n/2-1 , 

with 

X = \rn f +$-2j)i cos [sin-1T;[(n-2i)l r 
2i sin( 2n%i-ll 

L j=l i 1 
(1 I i I n/2-1) 

n 2-1 Xh = r lf ‘;I l/(n-2j) 

1 
O2j sin@fiT& 

j=l i 

X 2i-1 = '2i 'Ot (2n~i_l) (1 5 i 5 n/2) 

If n is odd, then n-2m = 3. In this case, 

dVn 2m = 4nrz 
1 

s 
dpn-2 J ' dpnn-l . f 

0 0 

04) 



Inserting this into eqn. 11 and following the procedures used 

case, we once again obtain eqn. 13, with the transformation 

for the even 

xnmT = [: r bll/(n-2j)] (?Jn,2 - JE-2)1'2 sin(211(ln-l, \ 

X ?ih l/b25 1 
2i = rn j=l i 2j 1 i cos sin-11]2i l/(n-21) 1 sin( W2,4) 

(15) y--- 

1 5 i I (n-3)/2 

X 2i-1 = x2i 'Ot (2'T2i-l) IS i 5 (n-1)/2 . 

Equations 14 and 15 represent a transformation from the (n-l) dimensional 

unit hypercube to the surface of an n-dimensional sphere of radius rn. The 

q. (1 5 i 5 n-l) are the hypercube variables, while the Xi (1 5 i 5 n) are 1 1 

the constrained variables on the n-dimensional space. From eqn. 13 we see 

that the Jacobian of this transformation, 

Jnbn) = 2n 
n/2 m-1 

n ? 

r($ 

in a constant, namely the well known expression for the surface area of an 

n-dimensional sphere of radius rn. It is a volume preserving one to one onto 

transformation. The inverse transformation can easily be obtained by solving 

equations 14 or 15 for the 7's in terms of the X-coordinates. 

In deriving this transformation, we applied eqn. 3 to our constraint 

(eqn. 4) using k=2. As discussed above, this choice of k is not unique. 
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Choosing k=l and following the same procedure would have led to the standard 

n-dimensional spherical polar coordinate representation 4 as the transfor- 

mation. This transformation has the Jacobian 

Jn( rn) n b2sinnB1- iii . n-l =r 
i=l 

In order to obtain a constant Jacobian, the following additional transfor- 

mation must be performed 

'i n-i-l sin cpd v 
= 

?i (1 5 i I n-2) 
B(q, l/2) . 

07) - 

e = 23t ?l-1 * 
. 
Thus using k=l for this problem has the advantage that we need not consider 

special cases for even and odd dimensionality. If volume preservation is de- 

sired, however, eqn. 17 must be solved numerically for 'pi in terms of 7,. 

Choosing different values of k for this problem corresponds 

position of the n-dimensional sphere into lower-dimensional 

various ways, as discussed by Shelupsky.5 

B. Power Product Transform (PFT) 

‘I 

to the decom- 

spheres in 

For a second example of a single equality constraint, we consider one of 

the form ?- 
n 
l-r 

'i 

i=l 'i = Pn 08) 

where Pn and the yi are arbitrary constants. Although this constraint does 
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not appear to conform to the type of constraint in eqn. 1, it can be readily 

cast into this form: 

s 
av,cP,, = (19) 

Using k=l in eqn. 3, we have 

J ~v,(P, = jaVlCP1) dVn,l(P,-l) ‘(l&-‘kPn,k) ‘5 dpn-k (2.0) -- 
and 

with x1 
Yl = PI , Y1 + 0. For the trivial case yl = 0, we take 

*1 = PI. In what follows we assume the yi are non-zero. 

Substituting eqn. 21 into eqn. 20, and integrating over Pnml 

l-271 

Repeating this procedure n-l times, one obtains 

s 

COr l-2yi 

dV,(P,) = 1 
jn-1 - 

l-I Yi 
i=l 

-j P 

,c 

n 
1 n-l 

l-I Pi 
i=l 

(22) 

-, l-Yn 

'n 

/ 
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with 

L 

'i = Pi 'i 1 5 i 5 n-l 

c 
\ 

1 
Xn= 'n 'n 

n-l 
l-i Pi 

i=l / 

Therefore 

. l-Y, s E1 P bi,Yn) s al 
dV,(P,> = 'n 

7n 
d'J'l, 

n i=l 
' Yi 0 

i=l 

where 

[ 1 (Yi = 7,) ' 

~(Yi,Y,) = ( YiYn 

'y,-Ti 
i 

(Yi ~ 7,) 

and 

/- 
’ log rli 

xi = 
1 'n 
[ lji 'n"i 

(7i =y,) / 
i 15 i 5 n-l 

(7i * 7,) , 

(23) 

(24) 

1 5 
xn = Pn yn Yj; x ;  7n l 

The infinite range of the independent variables can be compressed to the in- 

terval (0,l) using standard techniques. It can be easily verified from 

-- 
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eqn. 24 that the Xi satisfy the constraint (eqn. 

Jacobian for this volume.preserving transformation 

18), and that the constant 

is given by eqn. 23. 

. Multiple Equality Constraints 

The technique discussed in the previous section can be extended 'to the 

problem of several simultaneous equality constraints. Consider a multiply 

constrained n-dimensional integration of the form 

(id where m is the number of simultaneous constraints and the Fj and fi are as 

defined for eqn. 1. .This represents an integration over an n-m dimensional 

manifold embedded in the n-dimensional space.' Boceeding as for the case of a 

single equality constraint, one obtains in analogy to eqn. 3 

v (c(l)...,Cf') = 
n n, s 

t dCp)dCF; 
j=l 

(26) 

x s{c;l -Fj [F;l (Cp)) + ";' ($;)I3 

X dv,(C;) 
J 

. ..Cp') dV,-,(C;;;,...C~mj) . 

As before, eqn. 26 provides a framework for deriving recursive procedures 

that utilize known solutions in lower dimensional cases to solve higher di- 

mensional problems. Here one has the same flexibility in the degree by which 

the dimensionality can be reduced at each step (1 5 k 5 n-l), and the largest 

reduction that can be achieved is n-m two-dimensional constrained inte- 

grations. In this case, however, owing to the increased number of constraints, 
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it is considerably more difficult to obtain the lower dimensional solutions. 

We illustrate the application of eqn. 26 with a single example. 

c. Intersection of Sphere and Ellipse Transform (ISET) 

Consider the integral over an n-2 dimensional manifold 

intersection of the surfaces of an n-dimensional sphere and 

For n=2, one has the result 

C27) 

-- 

defined by the 

ellipse, 

\ 

dV2 (r2, P2> = . 

where the conditions 

3 p2 
a; < 2 -2 < cY12 

'2 

are required for the sphere and ellipse to intersect. pe transformation 

in this case becomes 

(28> 

/ 

(29) a*. 
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Then, using k=2 in eqn. 26, one obtains 

s dVnbn,Pn) = 4 
-- .---- 

x 6 (rn- d 
2 r2+rn2 "_ > 

x dr2drnm2 dP2 dPnm2 . 
-- 

Transforming to polar coordinates 

r2 = cl cos Cl1 P2 = c2 CO6 e, 

r n-2 = 61 sin el P n-2= 62 sin C12 

and integrating over cl and,c2, one obtains 

s dV,(rnd’n) =. n n 16r"g 

This represents a recursion relation for eliminating the constraints two 

dimensions at a time until, ultimately, one is left with an n-2 dimensional 

unconstrained integration in pl . . . pn 2. The resulting transformation frbm 

the p's to the x's are analogous to eqn. 29. 

Note that, unlike the single constraint case, the n-2 p's are not in- 

dependent but are pairwise correlated. In general, with m constraints the 

’ - 

(30) 

integration variables are m-wise correlated. 
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