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1. INTRODUCTION

We present a new angular momentum analysis of Faddeev's1 three-body
equations. This study is tailored to be appropriate for the multichannel scattering
aspects of the three-body problem. The underlying philosophy of our approach
is to always work directly with the various observable three-body amplitudes.
Our aim is to obtain simple and physically transparent angular momentum rep-
resentations for these observable amplitudes.

The physical problem assumed in Faddeev's work is that of three spinless
nonrelativistic particles interacting via potentials. In the following analysis we
shall restrict this problem by adding two further assumptions. First, we
assume that the pairwise two-body potentials are spherically symmetric. Sec-
ondly, we assume that each two-body channel has only one bound state, which
is an s-wave state. However, our general method is not limited to the case
where the above restrictions apply. We have assumed spherical symmetry
because this condition is both necessary and sufficient for the conservation of
angular momentum. The second additional assumption, of s-wave two-body
bound states, is chosen primarily in order to simplify the preséntation of our
results.

Let us now pose in a detailed manner the problem we will solve. To under-
stand the difficulties of an angular momentum analysis in the scattering region
we recount thelsalient features of Faddeev's treatment. Faddeev's time inde-
pendent account begins with the definition of a partial transition amplitude given
by
(z) = 6

-V, G(z)V @,8=1,2,3 (1.1)

B

The quantities in this equation are operators in the three-body center-of-mass

Maﬁ oz,BVoz

momentum space. The pair-wise potential between 8 and 7y is represented by
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Va and G(z) = (H—z)—1 is the Green's function at a complex energy z for the

fully interacting Hamiltonian H = H0 +3 Voz' The 3-to-3 transition amplitude
o
would be just the sum over « and § of the partial transition amplitudes Ma g

As is well knownz the Ma satisfy coupled linear equations of the form

B

My, 5(7) = 05T, (2) - y;a T (2)Go (2 M, 4(2)

6aBTa(z) - ;B Moz'y(z)GO(z)T,B(Z) (1.2)

The Green's function appearing here, GO(z), is the resolvent for the free
Hamiltonian, HO' The operator, Ta(z), is the two-body t-matrix realized in

the three-body Hilbert space and is determined by its kernel representation,

e ¢ t . — —n! -ql - -
T Py 9y Pp» 45 2 = 6°(P, ~Pp) t(a,5dy,5 2 - P, /20,). (1.3)

In this expression the, _15(1, is the individual particle momentum of particle a in the

three-particle center of mass system. The momentum, Eoz’ is the relative

momentum of the constituents of the cluster gy i.e. ’—(ia = (m';ﬁ[), -m.p )/(m

gy

These momenta _f;a’ —&oz are the conjugates to the coordinate-space Jacobi vari-

+m_).
)

ables. (See the appendix of Ref. 4 for a detailed account of these coordinates.)
The kernel ty is the off-shell two-body transition amplitude with an energy
argument z —_52 / 2na. The factor_ﬁz / 2na is the kinetic energy of the relative
motion of the particle @ and the cluster gy, and n, = ma(m‘3+m,y) / (m+m ,8+ my)
is the appropriate reduced mass.

A central feature in Faddeev's method is to describe the amplitudes, Moz g’
in terms of a primary pole decomposition. The t-matrices, Ta(z), in Eq. (1.2)

have poles in the energy arguments which are caused by the two-body bound

state in channel . By iterating, Eq. (1.2), one may find all the singularities



in M_ .. The primary pole representation so obtained for Ma can be Writtenl’ 3

ap B

-—

— — — — -_— — — ~2
. m e = ! 1. _
My g(Pys Ay Pyallgs 2) = 0450(Py, ~Py) £, (dy» dgi 2 = Py)

@aﬁ(pa,qa; Pgi Zz) ¢’E(%)

+3 (D 1q5 Ppr 45 2) +
apPor g3 Pgrd'gi 2) Z+x§—5

¢ (4G, B ; Phy dbs 2)
y o apg*ta’ "B B

-+
2 _~2 2 _~2 2
Z+X, " Py (Z+ Xy " D)+ X5 P

90 (99) 7, 40,3 05 2) 97(a1)
52)
B

(1.4)

On the right hand side of expression (1.4), the function ¢oz is the "vertex function'
related to the normalized two-body bound state wave function, Aba, of binding
energy —xi, in the following way:
6,0,) = (@ +x ) 4,73,) (1.5)
ot o o o o
In both Egs. (1.4) and (1.5) we introduce an abbreviated notation for the kinetic
energies, viz.

~2 _—2 ~2 _—2
P, =P,/2n, q, =q,/2H, (1.6)

where

By = mﬁmy/(mﬁ + my) .

F atteri idue functions & , ¢ , @
or scattering from a bound state the residue functions Jaﬁ, Yop igaﬁ’

J/% 8 are all singularity free kernels. Furthermore, J/(& 8 has the interpretation

of the transition amplitude for the two-body like scattering of channel g into channel

04.3 In fact in Ref. 4 it is proved that the cross-section for elastic or



rearrangement scattering is,

do (;c )
——A—gﬂi ® = (2ﬂ)4nanﬁ
o

pfx” E+0I 7
T aﬁ(p ,pB i0) (1.7

This cross-section is for the physical process where particle g is incident with

momentum p'

B

cluster gy and the free particle . The momentum available to a, P, in the

onto the cluster ay and the final state is characterized by the

final state is just

p1;= [Zn (pB - X;zaJ’XZ)] 1/2 (1.8)

The spatial coordinate, ;a’ in our formula is the vector separation of the posi-
tion of the center-of-mass of the 8y cluster and the position of particle a. The
variable E denotes the total three-body energy available for this scattering.

If we examine breakup scattering, then a linear combination of (goz 8 and

¢  determine the breakup cross section. Define ¢, to be

ap ap
¢ (G VA, B D, 2)
0P o By D = G, 400,74, 55 2) - s (1.9)
a Xa %

Then the cross section for scattering from the incident channel g8 with momentum

—I;'B into a final state of three free particles is.4
(X’yB’B)—z ng@ ; E+i0) 12 0
where,
BolB15 Bl ) = Z Sy B Gy B 7 (1.11)
and,
£ _ _ 2 _ /2
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The variables ;(,3’ fzﬂ, q 5 are five independent variables which completely specify
the final state. The spatial separation of @ and v is given by };, and ﬁﬁ is the

internal momentum of the pair ay. Once q, is given then p

B B

momentum that energy conservation permits particle g to have.

represents the

The cross section formula (1.7), (1.9) and (1.10) indicate that the functions

Jé’a and ya may be thought of as physical observables in the three-body

B B

problem. This point is reinforced when one examines the multichannel S matrices.
1,3
B

, because their behavior im-

There the functions which appear are just 9% and Jz& Thus it is desirable

B

to work directly with the functions I, and iga

B B

mediately affects the behavior of the cross sections. Furthermore, given %oz 8

and Qa the exact scattering wave function is completely specified.4

B

Faddeev completes the description of the time independent scattering problem

by giving an integral equation for g{& 8 and {ga g This equation is a consequence
of the relations (1.2) and has the form3
r s B - O = =,
HpPos Pgi 2) = Hy 50,5 Pgi 2)
¢*(@") 6o, - ") o
-2 | — S5 s (08.dy By =) by day
(575 o pn + qn -z
o) o
T LT o - 2 T T Ty,
@Olﬁ(pa, qa, pB’ Z) gaﬁ(pa, qa’ pB, Z)
~ — — — 2 - —
t (q ,q";z-p!'")o(p, -P.)
[0} o — — — — —
R Y L ok 53,y By 2) B
6t a Pt Ay -z
(1.13)

The function Eoz in the kernel of the second Eq. (1.13) is the non-pole portion of

the two-body t matrix defined as,

¢,(q,) 9% (a.)
— —_— . ~ a a (84 ~ — —->' .
t,(d,>9,5 %) y +t(q,,q,5 2) (1.14)

o
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The terms JJ’Z ‘gz 8 denote the driving terms of the integral equation. Specif-

B’
jcally they are,

05,5958, Bp) $4(B, B

o = . =
H 5Py Pgi 2) 7 = = P ) (1.15)
P, . Py, " Py . Pg
2p m, 2u z
B Y o
and,
5 & (@ BB 2 - Do) 6,0,
0 =~ = = . _ope’e’’e o’ g’ a’ "\ a’tp
Qaﬁ(pa,qa,pﬁ, z) pz S =2 (1.16)
o o' P Py
2u o Tou TF
B Y a

In these expressions, the ?a’ _ﬁb argument of qba or ¢ 8 denotes the vector_aa

or 'Efﬁ determined by the vectors —Eoz s _ﬁb (a # B). The symbol goz 8 denotes (1 - 601 B) .
We note in passing, that Faddeev's demonstration of the uniqueness of three-body
wave functions utilized Eq. (1.13). When set in an appropriately structured
Banach space the kernel of Eq. (1.13) can be shown to be compact. This ensures
that Eq. (1.13) is Fredholm. Employing the Fredholm alternative then leads to
uniqueness.

With the fundamental structure of the three-body scattering problem set
forth in Egs. (1.4 — 1.13) one can list the features a physically interesting
angular momentum analysis should possess. First, one should obtain simple
expansions for the observable quantities Jfa /3(30‘ ;'ﬁ'ﬂ), K, B(—ﬁa—aoz; _ﬁb)

The expansions for the two-body like amplitude Jfa 8 should have the form of an
expansion in P!l(f)oz . f)'B) and its coefficients should be defined in terms of multi-
channel phase shifts. Second, one needs to derive a well-behaved integral
equation for the expansion coefficients of Jfa g J{a g This equation should
possess some of the features of (1.13). It needs to be written for the angular

momentum reduced observables one obtains from %oz and J{a and it should

B B
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retain the compactness virtue that Eq. (1.13) has. Hopefully the resulting
integral equation will be simple enough to be solved numerically. Finally, one
should give formulae for all the partial-wave cross-sections as well as the
relevant form of the optical theorem. All this is accomplished in the following
sections.

Our general method is to introduce the angular momenta via the Omnes5
approach. However we find that in order to meet the first requirement cited
above we are forced to alter Omnes approach. Our modified Omnes equations
are given in Section II. In Section III we obtain coupled two-variable equations,
using a method similar to Ref. 6. These equations are the analog of Eq. (1.13).
Section III also gives a complete account of the invariances that are caused by
parity, rotation and time reversal. The last Section gives the partial-wave
representations for cross sections, wave functions, the optical theorem, as
well as the phase-shift parameterization of the amplitudes.

In closing we mention extant literature concerning angular momentum
reductions of the three-body problem. A helpfull guide to the literature is the
review article of El Baz etal. 7 This paper gives a comparative summary of
most of the different conceptual approaches used. In Ref. 8 we have compiled
all the angular reductions known to us. The method and results we present are
in marked contrast to those given in Ref. 8. In particular our approach is
distinctive in that we work directly with the observed multichannel amplitudes.

2. AN EULER ANGLE REDUCTION

The fundamental structure of any angular momentum reduction of a physical
problem stems from the commutators of the angular momentum operators with
the Hamiltonians which define the prbblem. It is assumed in the Introduction that

the two~body potentials, Voz’ are such that they commute with the o -channel
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tw R — =--> — _ — : -
o-body angular momentum operator la yax d, namely [la,va] 0. It

we let fa 2;01 X Foz’ be the angular momentum of particle a relative to the

—r

cluster By then the total angular momentum operator can be written as Tf=fa +2a

?

(@ =1,2,3). Since the three-body pair wise potential, Va’ is
Vv, (X, 7,) = v, (7, (2.1)

it follows from the above definitions that [fa, v a] =0, so [3: Va] =0. We may
now conclude that [J, Ma ﬁ(z)] =0, since M o B(Z) is a function of Va and HO' So
alll our representations of Ma ﬁ(z) will be diagonal in the eigen functions corre-
sponding to 32 and JZ. We shall usge this fact to simplify the notation in our
representations.

Let us now define the manner in which we shall attach the Euler rotation to
the vectors Fa and Tfa which describe the three-body system. We have three
equivalent but different momentum space coordinate systems: ('f)'l,_oIl), (—52,7{2),

(33,_&3). The center-of-mass condition implies that

Py + Py +pg=0. (2.2)
Thus the three individual particle momentum lie in a plane. We use this fact to

introduce the following angular convention depicted in Fig. 1. Our definition of

the angle 6 o is the angle needed to take the direction of 301 into the direction

B

of FB with a right hand positive rotation. For oy chosen to be ordered in a

counter-clockwise fashion then 6, , 8 , @
Ba” ay’ YB

angle between Fa and Ea we will call I‘a . This will be defined as the right hand

vary between 0 and . The

rotation of ﬁa into the direction of q o The angle I‘a varies between 0 and 27.

We shall denote by R a 3 X 3 Euler rotation matrix. Specifically

R =R(/,9,¢) =R,WR ()R (9) (2.3)



where RZ, Ry represent rotations about a spatially fixed z and y axis respectively.
The angles ¥, 0, ¢ are the three independent Euler angles that uniquely determine

a rotation. The convention we use for Ry is

cos 0 0 sin 6

Rv(e) = 0 1 0
J

\— sin 6 0 cos 0/

with a similar form obtaining for Rz(zp). This representation is consistent with
Rose's trea.‘cment9 of the @ functions that describe rotations of functions. In the
following we shall employ Rose's conventions.

Now consider the basic amplitude Ma B(poz’qa

suppress the energy variable when it is of no importance to our arguments. The

;_6.23’—&2‘3)' Note that, we shall

channel indices @ and 8 on Moz have a simple physical interpretation. The g

B

indicates that the pair avy interact through a potential V 8 before anything else
occurs. Similarly, o indicates that the last interaction is Va' We shall define
an angular representation so that the vector ?;oz’ in the left set of variables for

Ma g’ has a preferred simple description. For the right-hand set of variables

we arrange our definitions so that -f% has the simple description. So, we define

b, =R, Z=R@, 0, ¢,z
g =R R (T )z (2.4)

o oy
where z is the unit vector pointing in the z direction of a spatially fixed coordinate

system. Likewise

‘5}3 = RbRy(I‘b) z (2.5)

-10-



Furthermore, let us denote the triplet (pa, d, I‘a) by Poz" This triplet of
variables is the orthogonal complement of d)a, Ba, ¢a° Together these two sets
span the six dimensional space of (Foz’aa)' With this choice of variables we may
now define
. 1 1
My, 5P 0 40 93 Plpo ¥ s 0)
=M R z R R (T z, z
aﬁ(p q,R, y( o) B B qﬁ 5

As the index @ and 8 change then so does our choice of the representing coor-

'R (I‘B)z) (2. 6)

dinate system. Clearly Foe and P', are preferred variables because the direction

P8

of these two variables are simply given by (9 s zp ) and (@ This varying

g Vg

choice of coordinate representation differs from Omnes' approach. The Omnes
method uses a common rotation to construct the positions of all three equivalent
vector sets (pa,qa).

Now that M_ (P , ¥ , ) is defined,let us introduce
af' o

o' %’ Pp ¥p e 0
an orthogonal expansion of this kernel. We introduce the functions 7 M}\(ZP’ 0, 9).

1/2
~J _ f23+1 J*
@m(ll),@s(l?) - <—_8.7:§—> @M}\ (Z»b’es ¢) ' (2'7)
where the standard @ip\ is defined as
B3 W 0,9) = <IMIDRW, 0, $)) 19> (2.8)

and
-ip 03 -i¢d
DR@,0,9) =e ‘e e 7. (2.9)

The |JA> are the normalized eigen functions of J 2 and J 2° The rotation operator,

D(R), acting on functions of ?{a and ?oz or Fa and Ea is that induced by the Euler

matrix rotation R. The modified form of the @glij\ function we introduce in

Eq. (2.7) is a complete orthonormal set with respect to the rotation measure

-11-



dR = sin 6d6dyd¢. The functions étlIVD\ are eigen functions of the operad;orsnj2
and Jz with eigenvalues 2J + 1 and M respectively.

Employing the QFZ‘I{/D\ we may expand M in the form,

ap

My P VoS o9 Py 40400

= d JM

JMAA'
The coefficients M‘; B; AN are determined by
JM
Mag;aFoi P g5 Sy
~ yx
=) ® )M, @J dR_ dR! 2.11
The diagonality in J and M comes from the commutation relation, [Tf, Ma ﬁ] =0,

mentioned earlier. In the integral in Eq. (2.11), the direction of the vectors
are those given by the relations (2.4) and (2.5).
MJ M . . ) .
Once the af; A are defined we can now derive an Omnes-like” equation
for these coefficients. To effect this derivation one only need to know how two

M _ operators multiply in the JMAA' representation that we have introduced in

B

Eq.(2.10). Consider a second operator of the M type, N This operator will

vé*

have the representation,

H . = 1t 1 on 1. 1
1,5(p @ péqé) y(S(Py ZPV@yqby P %95%)

- 2 3 Ao (B M

p. R! 2,12
N (Bl P @ (RY (2.12)
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The operator product is defined as
]
3
B(paqa pﬁ B) N p"q'; pyay) d Spray

= Jg';w D, By) (M N (101 (B PY) BT R (2.13)

af 76 A

the representations (2.10) and (2.12) into the integral appearing in (2.13). To

We wish to find an expression for [M This can be done by substituting
carry out the integration however one needs to have both P 8 B ! and p"q.'; expressed
in the same angular coordinate system. By reference to Fig. 1 and the definitions

we have employed it is easy to see that

R" - R"R en 2.14
‘ Y = RaRyCyp (2.14)
Thus the @gﬂ(R;) appearing in (2.12) may be represented as
=J ~J
D (R') = RY d o" 2.15
TARD) ;@mﬁ( AERORE (2.15)

B
Eq. (2.15) is a consequence of the group property that the @‘I{JD\ functions possess.

The function diN(e) is just @ih,(zp, 0, ¢) with § and ¢ set equal to 0. Using the
differential relation (A.6) given in Appendix A, we carry out the integration on

the right of Eq. (2.13). We obtain,

Z M PH) d

(Ps (
AB}\,Y /3 Mg et TR g,

9" NJ

1. I 11
ﬁ) 5iA N(P Ps) dP
(2.16)
The angle 9,');3 appearing in the integral can be written in terms of the variables

P'é or Pj};. Eq. (2.16) provides us with the relationship governing the multiplica-

tion of two operators represented in the JMAA' basis. It is important to keep

-13-



in mind that the angular coordinate system used in the representation of Ma 8
and Ny(3 depends on the indices af and v§.
Let us proceed to obtain our equivalent of the Omnes equations. Once we

have (2.16) we may write down by inspection the forms (1.2) take. Thus,

M , IM o
Miﬁ,x NB(P Pgi 2) - 5T°‘;7‘a7‘b (Pyi Pgi 2)

M
S22 [ (B Pai 2 B s 205a) YU s (BT Y 2

vFa NI el YR NAg T F

X (p” +qy dP” o (2.17)

A similar equation holds for the second form of (1.2).

The matrix element T‘LIYIA A! is defined by an equation analogous to Eq. (2.11),
o'
JM . LI
Toz;?\ Al (Poz’ Poz’ z)
o«
| !
f@m (R )Ta(pa,qa, Py, q ; 2) @m, (R,) dR  dR (2.18)

where Toz appearing in the inner product is given by Eq. (1.3). ‘Because the

two-body potential va(?a) is spherically symmetric, the related t-matrix,

toz ,

has the expansion,

oy T = 2 e & (qdiz T B G-y (219
aqa’ qa:z pOl)_ 7 4T 'Qa(qa, qu’ pOl 'Qa qu qu °
4

One may exploit this rotational invariance of the toz to calculate5 the integral in
(2.18). The result is

JM J

. t . = . t .
Ta;}\ At (Pgs Pz =06, o Ta;h (P Py 2) (2.20)
o o a o o
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where the T‘;. is given by,

s A
o
2m6(p_ — p.)
J Pl ey = o
Ta;7\ (Pa’Pa’Z)_ 2 '
(4] P
o
~2
X Z t2 @ 59 ;2-P) Y (r _,0Y*, (I,0) (2.21)
Qa !Za o’ ‘o a !la?\a a ﬂa}\a o

Some simplification of the integral equation for Mgll\; ;\ Al takes place when we

substitute the relation (2.20) into (2.17). We have then > P
Miﬁ}\ B(P Pl 7) - 0y ‘;7\ (P, PLi 2)
Wéa‘:-,;frra 2 (P Ppia)d ) 7\"(9%; M%I/g, N'?\'B(P" Pgi2)
@+ a7 ap
) —52;"[;% Mgzé;xax"(P  Pgi 2) i"x'ﬁ( 8o TB,?\'B(PB g2
(532 + 3'6'2 -z)"t ap" ‘ (2.22)

Equations (2.22) represent our final form for the Omnes equations. These

differ in structure from the original Omnes equations by the presence of the

di}\, functions occurring in the kernels. Also, of course, the meaning of the

JM\ amplitudes differ here. It is seen from Egs. (2.19) and (2.20) that spheri-
cal symmetry of Ve has led to an invariance of the amplitudes TiMAN in the M
index. This in turn means that MJ o ;\ Al will be M independent. We have

accordingly simplified our notation for qu (2.22). This M independence is due

to the rotational invariance of the entire three-body problem.
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We note in conclusion of this section that our equations (2.22) in the JMA
basis have transformed the six-dimensional momentum space integral equations
into coupled integral equations in 3 continuous variables. In the next section
we will further simplify these equations so that they are reduced to integral
equations in 2 continuous variables.

3. TWO VARIABLE EQUATIONS

In this section we study several inter-related problems. We first introduce
a set of basis functions which permit a reduction of our integral equations to
two variables. In this basis set we investigate the beﬁavior of the primary pole
representation (1.4). From this we can extract definitions of the partial-wave
forms of A B and Jfa g We then can obtain the integral equations that these
forms satisfy.

"We now consider the appropriate basis of functions for a two variable reduction.
If one substitutes one form of (2.22) into the other and uses the representation
(2. 21), it follows that the amplitude MJ QB A B , has an explicit dependence on the
a

variables I‘a and I which may be summarized by

B

JM
M g a By P'Z)‘zﬂZ% .,.(pqp z)
Y (I‘ ,0) YX

Q A ﬁl }\Y(P‘

,0) . (3.1)
o’ g'g B

If this expansion is considered together with that of Eq. (2.10) it follows that

Jp/i ﬁ'ﬂ 7\ gt AT is the matrix element of M, with respect to the functions

8 e B
QJM defined as,
4 A
a o
JM _ ~J
Qﬁ A (Zzbasea,qba’ra)_ 2w YQ_ A (Fa,O) @m (Zpa90a’¢a)'
o o o o o

(3.2)
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These Q are orthonormal relative to the differential d4Qa = dcos I‘adz/)a

dcos Gadcpaa So we have

fc:z,Z N (B y) My By g Byl 2 Qﬁ'ﬁ}\b(pﬁ iy d*q,, d*qy

o’ B g’
(3.3)

In this formula the vectors 304’(?04 and _1373,?178 are given in terms of (2.4) and
(2.5). In writing the argument of Q we have used the fact that knowledge of
zl)a, 6 o ¢a, I‘a implies the orientation of Py %ye

¢ ) are complete on the Hilbert

Furthermore the set of functions lev’;\ (f) o q o

space related to f)a and &a’ i.e., that space associated with the inner product
appearing in (3.3). The only open problem here is showing that le\/.}[\ span the
space. This is verified by noting a simple connection between
A . . . .
YL M (pa) Y!Z m (qa) and our Q's. Using the relation (2.4) one may show,
oo o«
Y, u Co) Yy m ()

(¢
a a o

Z 2LC¥+ 1 1/2 J,Ma+ma . R
- 5 2T + 1 ClL, 2, ds Mym,) C(L, Ly J5 0, )\a)Q!Za?\a (PG
o

(3.4)

The C are the Clebsch-Gordon coefficients in Rose's no’cat;ion‘,9 Equation (3.4),

tells us that each YL M (p )Y (&a) is a linear combination of the Q's.

m
ﬂaa

Since the pair of YLM functlons are complete, then so must be the Q's.
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The indices that Q possess all have a simple meaning. Of course, J and
M represent the total angular momentum and its projection along a spatially
fixed z axis. These two quantum numbers are eigenvalues of both the exact
Hamiltonian, H, and the channel Hamiltonian, Hau The internal angular
momentum of the cluster ¢ is ’Qoz' Finally, it follows from the definition of the
rotation operators that ?\a is the projection of the angular momentum 2, on the
fixed-body axis. In this case the fixed body axis points in the f)a direction. So
}\oz is the projection of ﬂoz onto the f)a direction. It is easily seen that both £ o
and }\oz are eigenvalues of Haz‘ The operator Ha leaves the direction of Fa
unchanged, so ﬁ; may be regarded as a fixed vector in the @ channel. Then }\oz
is just the component of ia in this fixed direction.

Finally, we note that we have three distinct Q}?N;\ , one set for each

asymptotig Hamiltonian, Ha . It is also clear that ::Mheo;e three sets of functions
of four angular variables do not span a common four dimensional subspace of
?,Eo This is in contrast to our three sets of @iﬂ (Roz)’ all of which do span
the same space. Thus no unitary transformation l;xetween the three Q's exists.
This is one of the reasons why the derivations in this section must be somewhat
more lengthy than in the previous section. Specifically, for the Q's there is no

multiplication law similar to (2. 16).

Now let us obtain the two-variable integral equation for JlJ N
aﬁ;!&o}a;ﬁﬁhﬁ
If we substitute (3.1) into the Omnes Eq. (2.22) and equate the coefficient of

Y (r
!Zaha o

,00Y% ., (I, 0) we have,
g B
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This is a coupled two-variable integral equation for .#. By using,

2 2
dp" = p"“ dp"q'"“dq" dcos ™, one may integrate out the cos T'"" dependence
D,y P,YQ.Y Q,Y v y g v P

in the kernel of (3.5) and further simplify the equation. We define

VJ(p

5 p" q'}/)ﬂ A AN
o o’ Y v

pll 1" +1
= (2m) 'l;Y J. 6(pOl - p‘C‘!) YI A (I“&’O) di 7\'1(6,}, )Y111}\|1(
-1 o o ay Y'Y

Py

In the Appendix B we evaluate this integral and provide an explicit algebraic form

for it.

With this definition, now Eq. (3.5) becomes

J ( . . 5 5(pa—p'a)
M t 2t Py 4,5 Pgo q,;2z) =96 > S
aBil A, !ZB?\B a’ °p B ap Ra}‘ﬁ pi
ot . qlt . __~2
«— tﬂ (4,5 95 2 = Pg)
— 7‘ y VJ n n)
P Pydyde A 5 40aAn
v#e LN (p” +q; - z) a“a’ Yy

o
tﬂa(qa ’

T, 0)dcos I .
Y

1

J ' N
c//{,yﬁ, ‘QH }\" ‘Q' ;\l (p,y’ q‘; ’ pB’ qﬂ’ z) p" dp”q.,'}'/ q;

Y'Y BB
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(3. 6)

. Z _~2
5 Z = Py)

(3.7)

J 0Py, Py o L
LT ﬁb}‘b(p 995 B 93 P = Sagd 2 ———————pz £y (93 9 % " Bg)
6(p,, ‘p")tﬁ (5 4y 2 —-pa)
'}’% ﬁ;z);; p (p” qu 2n Y* )\ (I“" 0) d}\ )\1},/(9; )Yﬂ;}\:}"(rv ,0)
J{J . gty (P QY P q'; z) dP"
VB YA g Ny vy 7 Pggs (3.5)
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The term VJ occurring in the kernel of (3.7) is purely a universal kinematic
factor common to all three-body scattering problems. Such a factor is endemic
to all the angular momentum reductions in the literature. 8

As far as obtaining a two-variable integral equation is concerned Eq. (3.7)
provides the desired form. However, as emphasized in the Introd\iction, (3.7) has
several drawbacks. First, it contains the primary-pole structure implicitly; nor,
it is an equation for observable multichannel amplitudes. We proceed now to
develop such physical integral equations. The first step is to analyze the
primary-pole decomposition when represented in the le\/i basis. This will
give us the definitions of the partial-wave observable amplitudes. Once we have
these amplitudes it is a simple matter to obtain the integral equation they
satisfy.

Let us take an integral of the primary-pole decomposition for M_ ,, Eq. (1.4),

with respect to

IM* ~ - N S’ J
Qﬁaha(pa,qa) Q) g 7\' (pﬁ,qﬁ) d'Q,d'Q; -

Is™s A

Our s-wave bound-state assumption means the vertex function ¢ 8 may be written,

— 1 o
= —_ ° 3.8
¢B(qﬁ) - ¢B(qﬁ) (3.8)
The (47T)—1/2 is the value of Y..(q,). All the integrals are trival and one obtains,
00'%
JM = J‘JM . 1 1
Mg 1A %;\b(p U’ Pgdp) = Fop o QYB;\:B(PQQ o’ Pgp)
Byt o Ot o b2 (AN 5 ¢ (a,)
+ gl (D, a,;Ph) B P F L, fl L gy (P, PhaY)
3 A 2 2 ; t ! )
ap; l, B Z+Xﬁ_p32 | Z+X(22'pa ozB !ZBAB BB
o
512 0 ;\ 0 9old,) e By 9Oa1 0 Pplap)*
+ 2 ;) g Pos Pg) 5 =3 . (3.9)
Z+Xa‘pa Z+X5—pﬁ
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The partial-wave amplitudes in this expansion are:

= A gy o] o ~1
00 = [ Vi By) 95Ty Ypg B B, 08 (3.10)
JM -
St p ol B = fcz,Z  Bardy) GuplPy o Ty Y0 ' Q, dp,  (3.11)
M ~ P 4
Ta i B W0 = [ ThBy) Gy @B T QB &) dd, 4%y (3.12)
BB BB
JM JM .
and & is defined as M, - in (3.3) but with respect
a,ﬂ?\ ; TA! A SO
b B8 B Lo’ g
to the amplitude % B(p q ; B’qﬁ)
. JM, . JM
Let us examine ¢ B in detail. First we know that the amplitude, Jf ap’
is independent of M since /[ 2 is so. This fact, combined with

B,aa o

» . . > 0 . '
definition (3.10) means Jfa B(pa, P B) is a function only of the variables P, P 8
and f)a o f)}g Or mathematically,

3
A o) = D [ Ty 5,4, By YypBly by 8]
apa’ "B M= oJ 2J+1 JM of g TIMYB B

+1
'; cost

%B(Da; Pg ) Py(cos 6

)dcos0, . (3.13)

4 ap ap

and correspondingly,

o5, ) = JZM Y By) 0Py B Tl

2J+1 J t > R g}
an HpPyr Pp P3Py Py (3.14)

-21-



Thus we shall be able to parametrize the on-shell i 8 by a phase-shift repre-

sentation. This simple expansion of Jfa owes its existence to two circum-

B
stances. The firstis the M independence of the amplitudes. The second is the

definitions of the angular rotations, (2.4) and (2.5), introduced in Section II.

The remaining amplitude of physical interest for us is the partial-wave break-
JM

up amplitude. The breakup amplitude is a linear combination of Jfa 8 and
JM .
g y Viz,
afB; lla?\a
5, oB\ o Paldy)
AN ey M og s e T My
oz,B;!Za)\a o a’tg aﬁ;ﬂaha oa’ " Z+X2 _'52 apg ta’tp
o o
(3.15)
where HIM is defined like 9™ in Eq. (2.11) but with #
ap; i A af; L A ap
o' o«
replacing ¥ .. From the definition of %’JM 5 it follows that K may be
ap op; ﬁa o ap
represented
—- IM s A IM ~
H AP q 5P = 2: Q (p,,q ) K _pa. (p, 4, Pp) Y5, (D)) .
oV a e’ "B JMiaAa ﬂa?\a o’ o oz,B,!laAa a“a’ g TIMYB
(3.16)

As with our other amplitudes, the breakup amplitudes will be M independent.
We would like to find the geometrical invariance J{a 8 (B’a'aa;_ﬁb) will possess

as a consequence of this independence. Using Eq. (3.2) we have

el B BN 1/2 J )
ey By B MZ; E0Y2Yy 3 (Tyr0) Hogy r (i B
o o
/2,
X Z(—zﬁ—l—> Dy (R ) Y% ()
{M 8772 ma ¢ JM, B

1/2
2J+1> J ~
= 2: Y (T _,0) A _ ,. (p,q ;pL) Y (R ph)
(41r loe?\a o of; Qaha oa’ R J?\a o B
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This can be further simplified by choosing the z axis along the p’B direction.

Then Rozpﬁ = pa, 80

1/2
— = = 2J+ 1 A J
H P s q Py = Z (——— ) Y (T ,0) Y% () o, ,. (P 9q ;P
afa’ a’"B Jﬂaka a7 na}\oz a J)\a (o] aB,!Zala aa’ "B

(3.17)
From examination of the right hand side of Eq. (3.17) we see that ,y{a B(Fa;—aa;—ﬁ'ﬁ)
has no dependence on the azimuthal angle of (ioz about the f)a direction. Equi-
valently, any rotation about the direction f)a leaves the amplitude invarient.
We proceed by giving the integral equations for ov i B LA
and in 8; ﬂaha . We desire these equations because their a%p?itudes are the

multi-channel partial-wave observable amplitudes. The equation for ¢ J

af; L A
oo
is obtained from that for JZJ .oty Ed. (3.7), by equating the coefficient
aB; LA GLOA
a o’ BB
of the singular factor 6, .6,, qbo(q' y¥(z + xz -~ 5'2)_1 which appears in the
IZBO )\,80 BB B B

primary-pole expansion (3.9). By inspection we deduce from Eq. (3.7) that

J 1 _ od '
K, . (P9 ;P Z2)= A _ . (P, Q.5 Py Z)
ozp, ia}‘a aa’"s of; Qoz)‘oz a “a’"fB

o Mt ey -T2
tﬂa(qa,qa, z-p,)

VJ J
- Z Z ~ g (p.;p" q") ot Koape gt (P! Qs p')p”dp”q”d !
yFa £ p;2+q;2 . a’ "y ;v!laha,ﬂy?\y VB ATY By Ty

(3.18)
This above equation still is characterized by singular solutions as can be

seen from examining representation (3.15) for J{i If we introduce Eq.

B ﬂcvhan
(3.15) into (3.18) and equate the residues of the singular term
2 ~2 -1 0 .
(z+ X, ~P,) 620:067\010(250‘(%‘) then we derive,
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,%i Py Ppi 2) = Jfg']ﬁ(pa; Pgs 2)

O, 1yx R
o2 *V(p 5 p o, 0;41

Y
z 8)
— Jb/ (p” H; pl ;Z)p"dp" 1" d "
2 il B; 1A Py Gy Pgi 2P, A0, 4
a MA" a4 L g - g Y6
vhe LA By T vy
(3.19)
and
J od
G5 (P4 ;P2 = G o (P, q,; Ph; 2)
af; ﬂaha aa’ B aﬁ,lzala o "o’ "B
2 I ST T
> 1 (@3 @i 2 PRy BIL)y 5 g
~ o o o Y v
— 2 —~ 2
o A ne Lghe L g
vie LAy Py T
J{J 1 (P n; pv ; Z) p"dp”q”d " (8.20)
VB LAY vy’ Pgi ) Py Py Q) day .
where we have used the pole-decomposition of t‘;
o
o 0
¢ _(aq,) ¢, )*
o Voo = o e’ Ta o o ',
tﬂ (qa’ qa H] Z) éﬂ 0 2 + tﬂ (qa’qa9 Z) ° (3'21)
a a z+y o
o
In solving these equations one must employ Eq. (3.15) to insert in 8 and
@';B' g A On the right hand sides of (3.19) and (3.20). These equations will
A"
share nice mathematical properties of their momentum-space analogs, Eq.

J
g %ag; LA,
free Holder continuous functions. Although, we have not proved it, we think

(1.13). These essential properties are that Jfa are singularity

it is clear that the operator associated with the kernel of (3.19) and (3.20) will be
compact in an appropriate reduced Banach space, so that these equations will
then have unique solutions. Finally, these equations should be attractive to

physicists since the unknown functions in

, and y{i g are observable
B B; a o

partial-wave amplitudes.
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Our description of these equations will be complete when we have given
formulae for the driving terms. These terms are computed just by taking
matrix elements of (1.15) and (1.16) with respect to the correct angular func-

tions. We shall just quote the result of these straight forward evaluations,

5 1
%g;(pa, Ppgs 2) = - —%ﬁ- [1 Pylcosf5.)

Ba

K m 2 2m m_ \2 2m
ox[ 42 "B 2 _ "B 1 " of 2 o 12 : gn
(poz (pﬁ +(mﬁ+my) pa+ m.8+m,y papﬂeoseﬁa ¢ﬁ poz+ mﬁ+my pﬂ ma+my papﬁcos B
5 2 dcoso"
1 1
Py . pong I I.Og )
B Y o
(3.22)
od .
The term goz,B-!Z \ 1s,
oo
od
ga[f'ﬂ A (paqa§ 'ﬁ)
s ''s" .
Yr o (TN, 00d) (67 )6%a!
- 1 2 A o’ A0 Ba’ TBMB
=-0 "/;j % (@ ,q"; 2z -p2) —22 = dcos 0"
af o A et e al 2 b pf p'? Ba
-—a_.. -+ -&ﬁ coSs 6” + _ﬁ_ -Z
2u m Ba  2u
B
(3.23)

Earlier in this section we have studied the properties of our amplitudes that
stem from the rotational invarience inherent in this problem. We would like to
consider here the invarience properties associated with parity and time reversal.
Let us consider parity first.

We shall denote by & the parity operaﬁ:or° The parity operator effects the
transformation ?;oz —_ ?Xa; 37& — :—3;05 and ffa —_ :I;a; Eoz ~ r&ao Parity commutes
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with the three-body potentials, since they are spherically symmetric, viz.

PVLE T )= Pv,F,) =V (TP = V,&,.T,)P (3.24)

Parity also commutes with HO’ so we may conclude that [Moz g’ Z] =0,
Invariance due to parity comes from evaluating this last commutator in the

JMA basis. For example the ?Ma leads to the integral,

B

3 ; 5T T 90 ,
S B R My 0y P Ry 8 PR R (L)% Ty Py B Ry

(3.25)
One computes this integral by using the fact that & commutes with all rotations

to write (say for the second argumeﬁ't of Moz

g

gRaRy(I‘a)i = RaRy(ra)(-i) = RaRy(I‘a)Ry(ﬂ)i = RaRy(w)Ry(I‘a)i
(3.26)

Thus we define a new rotation, RT’ by R, = RaRy(ﬂ) and use dRa = dRTo Now,

T
the integral (3.25) becomes, after using the group property (2.15), equal to

J+A
2. wM ipnd | (=1 oM (PP )
AT aB;)\TAB o 7\T7\a aﬁ;—?\a,AB o’ B

| (3.27)

In a similar fashion the matrix element of Ma &P 1is determined to be,

B
J+A!
-y P M';l\[f A '7‘}3(13“’ P52) (3.28)

Because [Moz , #] = 0 these two expressions, (3.27) and (3.28), must be equal.

8
So we find
A A
M Pl oy = B o M . pr.
M. gy Bai B 9= (1 M. gy Pt B (3.29)
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We can easily translate this result into a relation which applies to & o

B

and For &4 _ we have
o o

B’ B
AN (P, 4 Py z) = (-1)7\0‘ 2 (P4 ; D):z) (3.30)
of; ﬂa}\a oo aﬁ;ﬂa —Aa a‘a’ " f
For J/fa 8 there is no restriction on the amplitude. This is because our bound

states are s-waves.
Finally, we turn to the effect of time-reversal invariance. The time~
reversal operator as defined by Wignerlo is denoted by @ Its effect on any

element in our momentum Hilbert space is,

o B (5,9 = £*(D, =) (3.31)
According to assumption (R) of Faddeev1 the two-body potentials satisfy
> = * '__’ . . . . =
Voz(qoz) Va( qa)o This immediately ensures that [@ , Voe] 0. Now let

us examine the effect of @ on Moz (z) as defined by (1.1). Because @ is

B
anti-linear, @ G(z) = G(E) @ . So we have

= 7 = mf
® M, (%) = M, 5(7) ® ML, (2) ® . (3.32)
This relation is the fundamental operator consequence of time-reversal
invariance. We shall now compute the result Eq. (3.32) implies for our matrix

elements. Let f, q be arbitrary elements of our Hilbert space, then

(@ 1, M, @ o

t, M, g208) = (@ £, @ M, J2)0)*

=M, () @ & @ 9% = (D e My, @ D. (3.33)
The above equation is also valid for the inner products associated with @7‘1{@\
. =dJ =dJ
funct1ops. Let f be @M}\Q(Roa) and g be @M)\' (Rb), We need the effect of @

on éifﬂ\ Recall that (H) reverses the direction of all the momenta. With the
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convention given by (2.4) we have, e.g.

® Ii; = —71 = -4, R R (T, )2 =4, R R (T IR (mz =q,R R OLNCN )Z .
(3.34)

Thus,
® Fp® - m(RR( m) = L@mv(R)d (=T - (3.35)
J+?\ M+

Using dy,, (-0 = (-7 o, L and B @) = (T G R), Ea. (3.35)

then becomes

~J
® @M;\(R) = (-17" D3 ®R) - (3.36)

Substituting this result into (3. 33) gives us

=J
( @M}‘a B

(P, Pl 2) @M”ﬁ)—(@m}s’ Mg, (P P ,z)@m),

or
M gy = 1. p .
MJaB N }\;3 (Pys Pps 2) = Mga A, (Ps Pys 2),

where we have used rotational invariance to replace -M by M. In general this

(3.37)

result implies relations between o _ and A . However, it has a simple

ap Ba
form for Jfa g namely
; ; . 3.38
aﬁ(p pl8 z) = Boe(pﬁ o 2 (3.38)
This is useful in deriving the off-shell unitarity relation Jfa 8 satisfy.

-28-



4. WAVE FUNCTIONS,CROSS SECTIONS AND PHASE SHIFTS

Throughout this paper we have repeatedly stressed that & gz 8 and A i B A
possess interpretations as observable partial-wave amplitudes. In this sectiog *
we give the various representations which support this view. We obtain explicit
forms for the asymptotic behavior of the coordinate-space wave functions,
written in our partial-wave form. We also give the formulae for the various
partial-wave cross sections, find the related form of the optical theorem, and
obtain a phase-shift parametrization of the observable amplitudes.

We consider the wave-function properties first. In Ref. (4) it is proved

that the form the exact wave function, Z’b(ﬂ(;{a’ -Sr»a;—ﬁ' ), has in the limit

B
lxal - Y, = const is given by,
¥.() +iph e X
t)—> — - . azra B B
Z,D( (X .,V :p"E'l'lO) - 6 e
a’ Ya’ "B lxal R (2“)372 op
S
1palxa!
—n(21r)2 € S (pf;( 'p"E+iO)) (4. 1)
() 1% aptaa’ tp S °
o

where pfx is defined by (1.8), the coordinates 5_{;‘ , —37& are defined in Section 1,
and E is the incident scattering energy. zpa is the unit-normalized bound state
of the Hamiltonian qi/z P + Voo The terms on the right are the leading terms
in Ix o l—l and higher order terms are omitted.

The partial-wave version of Eq. (4.1) is given by substituting expansion

o—
iple X

(3.14) for Jfa and using the spherical-harmonic expansion of e BB . One

B
then takes the inner product of Eq. (4.1) with respect to QJEM; (ia, fya) and
oo
. _
YJM(pﬁ) to obtain,
(+)3 - =fJM*~A B = o mei 4
wﬂaxa(xaya, pg) Qﬁaxa(xaya) V(X Vo3 Pgi B H10) Y gy (pp) dx dy, dpg
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(+)J !
ﬁa}‘a(x"‘y“’ Py ——

X -— OO

Y

, . f
6204 06}\050 o] J 2 elpaxa J £
—75 i j ' - s et .
(217)3/ 2 Yo (Ot 5B ~ 1 (2T *a %aﬁ(pa’ Pgi B+ 10)-

(4.2)

Here, zpa(-f) = (47r)_1/ 2 z/)(; (y) defines a normalized ﬁa = 0 wavefunction ng, The

jj are the customary spherical-Bessel functions. As is expected the Xy Yy
dependence on the right-hand side of Eq. (4.2) occurs only in the Bessel function
ip,,X
e ¢, Clearly JKJ
Xy of

partial-wave amplitude of total angular momentum J.

and the radiation term has the interpretation of the

Now let us discuss the breakup asymptotic limit. As explained in Ref. (4)
the contribution of the exact wave function to the breakup is given by the limit
X | — o, |y |— «with the condition that |X Hg;ﬁrl remain constant. The

B B B

leading contribution in this limit is,

i iVES

4 1/2 3/2 8/2 _3/4 e £ . O _
427 E 573 B X :p; E + 10
(4.3)
where ‘%O 8 is given by (1.11). The invariant metric, E, is defined as
~ 2 2.1/2
= (2n + 2 =1,2,3 4.4
p=( 553 uﬁyﬁ) , B=12, (4.4)

In this case we want to take matrix elements of Eq. (4.3) with respect to -
@fw}\ (R)and Y (15' ). We note that in order to carry out the evaluation of
8 B JM™B

this inner product that all the terms J{a 8 appearing in 930 must be expressed

B

in the same coordinate system. Here we have selected the coordinate system
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with unrotated ?B oriented along z to be the common coordinate system. Our

Euler angle representation of J{a 8 is

Hoy By Gy B = 20 Ty War0qrby) Ay P By Yy (4:5)

H ot | a,pﬂr; WYy 5 (T0) Ko gy Paloi PP (40
o

To obtain the representation in the R 8 basis for all @ we use Roe =R BRy(@ cv,fs) and

the group property of the & functions.

JM ~y
9, {Byr G5 P AZ; @mb% 05099 d}‘}ika( op Hagn Fol AR M(p[g
B a (4.7)

We may now substitute Eq. (4.7) into (4.3) and form the inner product with

Ay .
respect to @ B( ﬁ) and YJM(pB)" We obtain,
()J r oo =135 () o & T DL Yo (D)) dR D! 4.8
171‘ ,J—~
Ep
(+)J L e 1/2 3/2 3/2 g3/4 e
%b (XB’ y‘B’ I‘ﬁ’ pﬁ) T~ { e 4:(27[') ﬂ B ?575_
"8 lx | —
B8
lxﬁ| |yB| “L_ const
JM
d , ; E+ 4.9
a; Ao @, {aﬁ)\ (pﬁ dgr Tgs P 10)} (4.9)
The physical meaning of our integration over RB is to average over all orienta-
tions of the plane formed by 5.1,—52,33 with a weigthing factor @'1{/9\ . After this

B
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average is performed then the only independent coordinate variables left in the
mixed representation above are the distances x B’ B and T 8 — the angle between
;ﬁ and_g;ﬁ. We note the term in the first curly brackets, which in this breakup limit
represents the radiation condition, is independent of all our integration variables.
If we want to display the dependence on the I''s we can introduce (4.6) into the
right-hand side of (4.9).

We shall now consider the various partial-wave cross sections that exist
in this problem. Let us take up the elastic and rearrangement cross sections
first. By combining the general cross section given by (1.7) with the representation

of &  found in (3.14) we find

op
~ £
do_ (X ) P, 2
__Qﬁi = 2 2941 _J £ TR
ao; (Zvr) nytg p;z ~ " Jfaﬁ(pa,pﬁ) Py(x, pﬁ) (4.10)

In the above and following formula we shall omit the common energy argument,

E= Ebz - x; +1i0. If we construct the total cross section by integrating the

differential cross section relative to dSZ;{ , we have
(6!

. . ¢
do (X ) p
_ ap o _ 4 a E: §2J+1)
Uaﬁ __f_d_Q_;.f._— dQ;( =(2m n n‘B o . l%aﬁ P, pﬂ)l

o @ 3
(4.11)

From Eq. (4.11) we can read off the partial-wave cross sections, cr'; g’

f
ol y= @m0, 2 o AETCAA (4.12)
where,
aaB=Za‘;B : (4. 13)
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Equation (4. 12) is an explicit verification that %’J

B is the physical partial-

wave amplitude.

Next we must determine the partial wave forms of the breakup eross sections.
We start with the general breakup cross section given by (1.10). Into (1.10) we
insert the form of :/{a 8 given by (4.7). We have then

dO-OB(XB, zﬁ, qB)
ng{Bd qB

2 B_@ o]
Ol

JM
(4.14)
One can show using the results of Appendix A that
dQy dQA q%dgq _ Doy dp,,dp, dR (4.15)
B B ,3 ﬁ pB Y B

Before integrating (4.14) with respect to dR _, we simplify it by choosing the z
2J+1)1/2

] The integration gives

. . -
axis to lie along pﬁ S0, M( :3) ( MO°

2
s - T2 3

i |}E: . 6,4 P (P> Pgs Pgs D)
&%, Abxa af Fapa, 1273 g

(4.16)

The partial-wave cross section is clearly

J
do 3 5, PP 2
03 _ @em” 2 “a’y J
dpadp'y (29+1) 2 nﬁ p'B 7\2' OZZA: }\b}\ (¢ B) J{ aB; }\ (pl’pzsp3, pB)
o

(4.17)
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and

J

do do
T dn =Z—d__83_
P, p’Y P, P,y

We will now employ our partial-wave cross sections in the unitarity relation
to obtain a partial-wave version of the optical theorem. The off-shell unitarity

relation is given in Ref. (4) and is

+ i0) -

(® - 10)

Koy g8 P B %, (P P B

=- 211rf,%’* BT B +10)6 (3 + 3% - E\) B B(’E"Tf" ; pL; EL + i0) dp" dq”

a’ B B)O :3

- ~,2 2 T
- 2im b3 e El +10) & ns _ - E! ny H d r
1_4 HoyaPy i Pys By #1000 (0" —x, = Ep) I a0 pﬂ g+ i0) del
(4.18) .
. - . * ~ A' ~ A~ _
Let us now integrate this with respect to Y JM(poz) Y JM(p ﬁ) dpa dp 5 The left

hand side is

+ i0) - - i0) (4.19)

Jt’i 5P’ P Ep B(p pgs Ep

Let us compute the second term on the right of (4.18). Using the expansion

(3. 14) we find at once that the term is

- 2im Zf H oy (P Py s B +10) 6 (5%;2 - xy - Ep Jf,‘iﬂ(p;, pgs Eg +10) p” dpl)
(4. 20)

Finally we must evaluate the first term on the right of (4.18). Analogous to

~ T
(4.8) we define the matrix element of %, with respect to @g\ﬂ\ (R ﬁ) and

08 5
YJM(f)B), viz,
J "y _ [z3*
5303 }\B(p 5Py Pgi z) [@MAK;R,B)‘%O/B(‘)’ a4 P B’ z) Y M(pﬁ) dRﬁdpﬁ
J
. t. °2
Z d}\ﬁ)\a B) ty{aﬁ;ka(Pa’ pﬁ, Z) (4.21)
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And given %J

08; 7\5 we have the representation for %‘70 g’
—— — o J A
B ,;‘;Z=Z R) % s Z) Y* (p') (4.22
0gtP» & Pgi 2) sin, mﬁ( 8 Bog; 7\‘B(p oPgPy’ Pgi 2 Yyp(Pp) (%:22)
Putting (4.22) in Eq. (4.18) and integrating with respect to the Y 's and Q~DJ*
JM MAB
yields,
2 2 2
pH pH pn
‘2“1f Z% (p, PP Pys Egt 10)6<°‘ T i )
Oc; AB B 'y [:} 2ma Zmﬁ 2my B
J 1t 1" 1" 1 1" t 11
7 ; Pl E}, + i0) p)) dpl), 0 dp) "d " 4.23

Equating the term (4.19) to the sum of (4.20) and (4.23) gives us the off-shell

partial~wave unitarity relations for Jé’i g In fact, because of the time-reversal
%

property of J/f g demonstrated in Section III and 2 B(z) = J’fﬁa(i) the term

(4.19) can be written as 2i Im J/I B(p i pLs + 10).

8’ /3

Specializing to the case where o = f3, putting the relation on-shell by setting

we have

pB = pb,

2i Im 3¢ + i0)

56%) P B
2
—-211‘1';‘2 ‘ OB,KB(p"’ pB p" pB ‘3+1O)‘

nl nl 02
5 pOt + pB + p'Y p dp" p" dp" p" dp"
2m,, sz 2m,y BBV Y

~2 2
-2mi Z.ﬂjg}/}g (p}); pﬁ, E'B + i0) ‘ 6(p" - ’Y - Eb) p" dp (4.24)

To obtain the optical theorem we substitute the partial-wave cross sections

(4.12) and (4.17) into (4.24) and perform the indicated integrations.
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We obtain,

-

2J+1 Im

3
. 4,2
4T 54® P B 2n? g 7;0 (4.25)

If one replaces the transition amplitude, ‘%gﬁ by the traditional scattering

amplitude, f‘;, where
fg = -on 2rP (4.26)

one obtains that

_ 2J+1
TOT }E_: = Im f; (4.27)

We conclude this paper by giving a phase-shift parametrization of our reduced

amplitudes. The most direct approach is to parametrize the S-matrices. Thus

we consider the multichannel unitarity relationl’ in its operator form
6 = i ST S (4.28)
af 7=% Yo VB
1,4,11

The operators in this relation have the well known kernel definitions

-'ﬁb) -2mi8(E,, - E}) o,

B (.

i ot :
a,pB, E5+10)

ap

SOB(p, q, ﬂ) = - 27 6([) + q - Eb) UgOB (p’ q’ B B + 10)

1. J— : Ot 1. . Tt :
Sgo(Ppgs Ps @ = - 211 6(p + 4 Ep) Fao(Pgs Py 43 Eg+ 10) (4.29)
~2 2
where Ea =P, "Xy and E

P22
g~ P “Xpg

In terms of these kernels the relation (4.28) becomes,

—_ ]l T i " '
600 B = :‘_: ISR

11 1" . 11 " 1" 1. 1
v fapt ag s, A 5E T T (4.30)
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The partial wave two-body like S-matrices are defined by

$6Pai B = S ThyBy) 8, 5B B Yy (BL) 0,0y (4.31)

The associated breakup partial-wave S-matrix is

J . ! = =d* ey
SOB;AB(P’ L f @mg(Rﬁ) Soﬁ(p, q pp) YJM(pﬁ) dRdeﬁ (4.32)

The definitions (4.31) and (4. 32) imply

6(p_, - Ph)
. Jd
=6, —2 - 2m6(E, - By # ;pL; E' + 40
B (4. 33)
and
J
P; =-27i 6 + PB P; + i0 4,34
S0s; 7‘3( 3 Py = - 27 @+ T - Ep) OB’AB( Pgs B+ 10) (4.34)
where ﬁgﬁ-h is given by (4.21).
B - arma
- * . * ' '
Now if we integrate Eq. (4.30) with respect to YJM(poz) YJM(p B) dpadp 5 and
use the representations that follow from (4.31) and (4.32) we obtain
6(p,, - pY)
5 __Ql__é_ S* ", 1, n2
B Ry /_,J (0); 2, vﬁ(p pg) Py do,
B
+ Zf Sch 7\ (P"; p )SOB AB(P" 23) dp" (4. 35)

Because of the presence of the energy conserving §-functions the partial-wave
S-matrix forms (4.33) and (4.34) are not suited for a phase-shift representation.

We therefore factor out these §-functions and define an appropriate reduced

-37-



S- matrix, sJ as follows,

ap
S(E - E")
J SR T — a B J )
Sozﬁ(poz’ pﬁ) = 0 o 1/2 saﬁ(poz’ pﬁ) (4°36)
(0P RgPp)
where it follows from (4.33) that sCJ! 8 is
J enly = : ! 1/2 J e ! - T :
sOlﬁ(pGl, pB) - 6aB - 2m 1(nozpoz nﬁpﬁ) ‘%aﬁ(poz’ pﬁ’ EB + 10) (4“’ 37)

The choice of factors in the square root here have been determined on the basis
that si 8 should share the time reversal property that S‘; 8 possesses. If we
insert (4.37) into (4.35) we get for the case where o = 4,
6(E, - E! oE_-E'

( 3 ﬁ) ( )

7 = £ Z sl ; ty s (pf;p')
ngPy (ngpgngp 1/2 ' VETY B VBTY B

2 ! 1/2 ) J 1 f 1"n..t J 1" f. ", 1 111 1" 11
+ f 4T (RPN D) ; .7333;}\3(10 » Pgs P 3Pp) ‘%OB;AB(pa’pB’ P.3 PpIP, Py dpy, dp

o oy Fa Ty
(4.38)
Equating coefficients of the §—function gives
J J 2 2 ' J f 2
1 = s ] , +4:7T n f % 1 H; 1 1" Hd 1 d 1"
y};l Vﬁ(pﬁ). 5P J D % 05Pe* P2 Py Pp)| P, 2o dpy, dpl
(4.39)

In the first term on the right we indicate just one momentum argument for s;T/ g
We have used the on-shell energy conditionpf)f/ = (5}32 - xz + X,?,) 1/2 to eliminate
the pf/ dependence. The second term on the right may be expressed in terms of

the breakup cross section. Using (4.17) one has for this last term




The final form (4.39) takes is then

11,2 J
T 231 7 P %o

(

(4.40)

Y=1

This result justifies a phase shift representation for sJ

aB

. Specifically since

J 1 = {
saﬂ(p o=1,2,3all pﬁ (4.41)
we may introduce
T oy e nd oy 2 0ap®p) ) |
SaplPp) = Mg pPp) @ a=12,3. (4.42)
J . . J .
where 6 _ , is real and the absorbtion parameter n° _ is
ap ap
{ni gl <1 (4,43)
Using (4. 37) one finds that the transition amplitudes are parametrized by
J 1 ' + O = _________1 J e Bﬁ
: : -~ 1), 4,44
s od
J 2i 604 8
afB
I, B(pa g Eg+10) = 73 (4.45)

27T1(n pﬁn P, )1

The parametrization given in Eq. (4.44) is the usual elastic channel phase-shift
representation. One could also obtain this phase-shift representation starting
from the asymptotic wave function form (4',‘2)‘, In this alternate approach

j J(p 5 ,8) is expaﬁ%eg Bfor large x 5° The resultant coefficient for the term with

the behavior e_;__ is proportional to the elastic channel S-matrix. The

B

result is identical with (4.37) for o = 3. However, this wave-function approach
does not give one any guidance about how to construct a reduced S-matrix
appropriate for rearrangement scattering.
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One final observation about the unitarity representation (4.40) is that it
gives a unitary bound on the partial-wave breakup cross section plus rearrange-

ment cross-sections, namely

aiﬁ+af}{ﬁ+ogﬁ= 2J:’21“(1— Ingﬁlz) < ﬁ———L—ZJTz” (4.46)
Ps Ps

In obtaining this result from Eq. (4.40) it is necessary to use Eq. (4.44) and
(4.45) together with the partial-wave cross-section definitions (4.12).
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APPENDIX A

We give here some of the Jacobians that are useful in our angular

momentum reductions. Consider first the integral
fdﬁ’ fdcT = fpz dp d2% [ o dq de-
o o @ o p, J 9g %%y d,

with our convention for vectors

~ ~

S0
dﬂﬁ = dcoseadlpa

o

f)a = dcos I‘a dqba

9

Thus the integral (A.1) becomes,

- - (2 2
fdpa qua = fpadpa qoqua dcos I‘a dRoz’

Py =Ry 0,002, q, =Ry, 0,0, )R(T )2

(A.1)

(A.2)

(A.3)

where dRa = dzpa dcos ead¢a° One may obtain another form for this integral

by using (B.4) to show

dcos I‘a

% |
b6 Py

So,

m
— — = —_'Z
[ dpa f dqoz ,[ Py dpoz dqa p,/3 de Ko, dRoz

Now if one takes the partial derivative of the energy relation

2 2 2 2 2

G, Py _ P P P,

2 on. ~ 2m_ V" %m. T om
o o a B Y
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for fixed PP 4 one has
U
= &
qadqal @ Pdp
D_,b Y
o’ B
Thus the integral can be written
Jao, )43, = fo oo an, av a0 ar, (A.5)

Further by comparing (A.5) with (A.3) it is clear that our three coordinate

systems Py» 4, COS I‘a where @ = 1, 2, 3 have an invariant measure, i.e.,

_ 2 2 -
plpzp3 dpldpz dp3 = pa dpa qa dqa dcos I‘a, a=12,3. (A.6)
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APPENDIX B
In this Appendix we give an explicit algebraic expression for the kinematic

kernel VJ which appears in Section III. The kernel in question is

VJ (Zﬂ)p"q" +1 J
(p §p”’ ") gt = 5 X 5(p, -p")Y¥ (rm,0)d n(@ VY "N,(F", 0)dcosTI?,
a’fy q'yp'a}\a’ﬂ'y}\y . 4 oo ioz}\oz a }\a}\'y vo !Z,Y v ¥ v

vy#a. (B.1)
In the integral of (B.1) we must express all the angle dependencies of I‘&, I‘,');
1 3 3 ‘| 1" 3 3
and eyoz as a function of the variables (pa, py, q_y), Further in order to exploit
the 6 function in (B.1) we need the Jacobian relating pgl and cosI‘f); for fixed
(A 1"
Py Ay
We examine first some of the kinematics needed for this calculation. The

internal momentum of cluster « is Ea and is defined by

. mp -mp
qQ, = —-@J—L@mﬁmy . =123 ga (B.2)

If we use Fa +;5+EY = 0 to re-express the momentum ?ﬁ in (B.2) we find the

following representation for ?fa o

= 4P,k mf;}_ P, @=1,23. (B3
@ My+1 Par1 @

———

9o

Equation (B.3) represents 6 relations between the ;oz and an The convention
for the right-hand side is that either all the upper or all the lower signs must
be used together. Furthermore the indices on the masses and momenta are
understood to be cyclical over (1,2,3). If we take the second term on the right

of (B.3) to the left and square that equation we have,

2
2 2 “apa - o
pozil—qa+< +2 —— pyq,cosl, - (B.4)

My¥1 a+1
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From (B.4) it is easy to show that,

2 2 [MoPys;
poz o+l \m +m -

_ o a+1
cosI‘oH_1 = % m o (B.5)
2 m0l+m()l_;1 pozdzlqozztl

If in the integral we specify p,');,q';/ and p‘o't =P, then these three variables fix

the momenta variables p'', p! and p! and all angles associated with these vectors,
1’72 3

i.e., 8" , I'"', Let us denote the so determined angles by 6 on , ", We
Yo Y ay v

evaluate (B. 1) by using,

b g(x.)
f 5(£(x)) g(x) dx = > 1 (B. 6)

. ,8f | ’
a i =
oxX x=xi

where X, € [a,b] and are such that f(xi) = (0. Here we have,

11" 1t 1t
apa o = My 91 Pga1 (B.17)
1 1 — 1 _ ’ °
9 cosrail Cosrail cosI‘ail (ma+moz+ l)poz
where,
o ,
cosI‘a':":1 €[-1,1] (B.8)

This last condition implies the 6 function integral is zero unless the constraint

67 8]
p . ———— p" < q" < p + —— p”
(44 tm % (0= o +m - E

(B.9)
is satisfied. So our expression for VJ is, when (B.8) is satisfied,

VJ(p ;P! gt ) .o 1
@’ el Tkl Ba}\a’ ﬁail’}\aﬂ:l

I\OH )’

+m_ -
en [(Po et 0 J o
Yz‘a;\a(f‘a",()) d (e " )Y az1,0

"
p m Aakail aﬂ:l’a O!:!:l’

n
(0 o h:!:

VE 3
(B.10)

otherwise the value of VJ is zero.
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The only remaining problem is to determine the three angles ra':Ll’ o",

93‘;1 o’ The expression (B.4) immediately gives the first angle, viz.
1
2 n2
P, Q- [mph. . /(m +m =]
cos ra‘:ﬂ =+ 2 axl a£] o —1a+1 . (B.11)
200 4 1Ppaq (Mgt 0y 1) Ty,
Next, let us consider the angle 6° =E1 o We recall the formula relating
sinzﬁ,y o and sinzl‘y derived by Omnes,5
"2
2 2.0 qozil
11 = 1 —r—
Sin 0 ig,0 "5 Toiy 73 (B.12)
Py
3 0 - . 0 ” R
This relation gives us sin wtl, o in terms of pozil’ qoz:tl and P,
Finally we need to find cos I‘Z"o From (B.4) we have
w2 o2 _ (ol 2 2
o _ pail qa mae+1+moz—1 poz
cosI''" = + (B.13)
o 2m
2 . axl _> q" p
moz+1+moz- oo

We note that q" occurs on the right hand side of Eq. (B.13). This must be
expressed in terms of Py pa &£1° q’o'Z 11" This can be done by using the

condition associated with energy conservation, viz.

qnz qlv2 pllz pz
@ _ _oxl | "ol |

o (B.14)
2 o 2 axl 2noz:lzl 2noz

Substituting (B. 14) into (B. 13) give us a closed expression for cosI‘Z" in terms
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FIGURE CAPTION

Angular Conventions for Three Body Momentum Variables.
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