
SLAC-PUB-1289 
P-1 
August 1973 

AN ANGULAR MOMENTUM REDUCTION FOR PHYSICAL 

AMPLITUDES IN THE THREE BODY PROBLEM” 

D. Bolle’f’ and T. A. Osborntt 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

ABSTRACT 

We give here an approach to the angular momentum reduction that 

is tailored to be appropriate for the multichannel structure of the three- 

body problem. Where ever possible we work directly with the physical 

scattering amplitudes. We obtain concrete partial wave expansions of 

elastic, rearrangement and breakup amplitudes. For these amplitudes 

we obtain a coupled two-variable integral equation. The effects of 

parity, time reversal and rotational invariance are fully discussed. 

Finally, we provide expressions for the multichannel partial-wave 

cross sections, asymptotic coordinate-space wave functions, off-shell 

unitarity and the partial-wave version of the optical theorem as well 

as phase-shift parametrizations of the amplitudes. 
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1. INTRODUCTION 

We present a new angular momentum analysis of Faddeev’s’ three-body 

equations. This study is tailored to be appropriate for the multichannel scattering 

aspects of the three-body problem. The underlying philosophy of our approach 

is to always work directly with the various observable three-body amplitudes. 

Our aim is to obtain simple and physically transparent angular momentum rep- 

resentations for these observable amplitudes. 

The physical problem assumed in Faddeev’s work is that of three spinless 

nonrelativistic particles interacting via potentials. In the following analysis we 

shall restrict this problem by adding two further assumptions. First, we 

assume that the pairwise two-body potentials are spherically symmetric. Sec- 

ondly, we assume that each two-body channel has only one bound state, which 

is an s-wave state. However, our general method is not limited to the case 

where the above restrictions apply. We have assumed spherical symmetry 

because this condition is both necessary and sufficient for the conservation of 

angular momentum. The second additional assumption, of s-wave two-body 

bound states, is chosen primarily in order to simplify the presentation of our 

results. 

Let us now pose in a detailed manner the problem we will solve. To under- 

stand the difficulties of an angular momentum analysis in the scattering region 

we recount the salient features of Faddeev’s treatment. Faddeev’s time inde- 

pendent account begins with the definition of a partial transition amplitude given 

by 

M,,(z) = 6 a&! - VcrG(z)V 
P 

cQ=l,2,3 (1-l) 

The quantities in this equation are operators in the three-body center-of-mass 

momentum space. The pair-wise potential between p and y is represented by 
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Va! and G(z) = (H-z)-l is the Green’s function at a complex energy z for the 

fully interacting Hamiltonian H = HO + c Va!. The 3-to-3 transition amplitude 
o! 

would be just the sum over Q! and p of the partial transition amplitudes M 
@’ 

As is well known2 the M 
@ 

satisfy coupled linear equations of the form 

Map(z) = 6 T (z) - 
(4 Q! c 

Y+a 
T,W,(zWyptz) 

= QpTaW - c YfP Ma,(z)G,(z)Tptz) (l-2) 

The Green’s function appearing here, GO(z), is the resolvent for the free 

Hamiltonian, HO. The operator, Ta(z), is the two-body t-matrix realized in 

the three-body Hilbert space and is determined by its kernel representation, 

In this expression the,-i;o! , is the individual particle momentum of particle (Y in the 

three-particle center of mass system. The momentum, 4,, is the relative 

momentum of the constituents of the cluster /3r i.e., <a = (m T -m T )/(m +m 
YP Pr P Y 

). 

These momenta Ea, -;;a! are the conjugates to the coordinate-space Jacobi vari- 

ables. (See the appendix of Ref. 4 for a detailed account of these coordinates.) 

The kernel ta! is the off-shell two-body transition amplitude with an energy 

argument z -Tt /2nQ!. The factorTi /2nQ! is the kinetic energy of the relative 

motion of the particle CY and the cluster Pr, and na! = rna(rn fm )/(m,+m 
P Y 

+m 
P Y 

) 

is the appropriate reduced mass. 

A central feature in Faddeev’s method is to describe the amplitudes, M 
QP’ 

in terms of a primary pole decomposition. The t-matrices, To,(z), in Eq. (1.2) 

have poles in the energy arguments which are caused by the two-body bound 

state in channel Q!. By iterating, Eq. (1.2), one may find all the singularities 
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inM 
0’ 

The primary pole representation so obtained for M 
w 

can be writtenI’ 3 

(1.4) 

On the right hand side of expression (1.4)) the function ea! is the “vertex function” 

related to the normalized two-body bound state wave function, +Q, of binding 
2 

energy -x a!, in the following way: 

(1.5) 

In both Eqs. (1.4) and (1.5) we introduce an abbreviated notation for the kinetic 

energies, viz. 

where 

% = mpmy /tmp + my) . 

For scattering from a bound state the residue functions g 
“P , y+’ 9 @* 

Zap are all singularity free kernels. Furthermore, S’$& has the interpretation 

of the transition amplitude for the two-body like scattering of channel p into channel 
3 o!. In fact in Ref. 4 it is proved that the cross-section for elastic or 
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rearrangement scattering is, 

(1.7) 

This cross-section is for the physical process where particle p is incident with 

momentumT” onto the cluster cry and the final state is characterized by the 
P 

cluster & and the free particle (Y. The momentum available to o, p,, in the 

final state is just 

p”,= 
C 

2n (32-x 2 l/2 o! P +x,) l 1 (l-8) 
The spatial coordinate, ;;o! , in our formula is the vector separation of the posi- 

tion of the center-of-mass of the /3r cluster and the position of particle a!. The 

variable E denotes the total three-body energy available for this scattering. 

If we examine breakup scattering, then a linear combination of % 
Q!P 

and 

$8 determine the breakup cross section. Define LX to be 
QP w 

Then the cross section for scattering from the incident channel p with momentum 

Tb into a final state of three free particles is4 

E+i0)12 (1.10) 

where, 

3 
e-e 

z) 9 (1.11) 

(1.12) 

and, 

P; = 1 
-2 l/2 2n&;;b” - xi - qp) 

3 0 
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The variables xP, iP, qP are five independent variables which completely specify 

the final state. The spatial separation of CI and y is given by 7 andz is the 
P’ P 

internal momentum of the pair cry. Once qP is given then pi represents the 

momentum that energy conservation permits particle p to have. 

The cross section formula (1.7), (1.9) and (1.10) indicate that the functions 

se 
@ 

and 9 
@ 

may be thought of as physical observables in the three-body 

problem, This point is reinforced when one examines the multichannel S matrices. 

There the functions which appear are just X 193 
@ 

and LX 
w 

Thus it is desirable 

to work directly with the functions $6 
M 

and cg crP, because their behavior im- 

mediately affects the behavior of the cross sections. Furthermore, given A? aP 

and 3 
a@ 

the exact scattering wave function is completely specified. 
4 

Faddeev completes the description of the time independent scattering problem 

by giving an integral equation for Zap and gap. This equation is a consequence 

of the relations (1.2) and has the form3 

(1.13) 

The function ia! in the kernel of the second Eq. (1.13) is the non-pole portion of 

the two-body t matrix defined as, 

(1.14) 
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The terms X0 go 
aP’ QfP 

denote the driving terms of the integral equation. Specif- 

ically they are, 

(1.15) 

-za 
(1.16) 

In these expressions, theF cI!, $ argument of C#I~ or $p denotes the vector-;iQ! 
- 

or T determined by the vectors ?j&, 3 (a! f p). 
P P 

The symbol 6 alp denotes (1 - “o+). 

We note in passing, that Faddeev’s demonstration of the uniqueness of three-body 

wave functions utilized Eq. (1.13). When set in an appropriately structured 

Banach space the kernel of Eq. (1.13) can be shown to be compact. This ensures 

that Eq. (1.13) is Fredholm. Employing the Fredholm alternative then leads to 

uniqueness . 

With the fundamental structure of the three-body scattering problem set 

forth in Eqs. (1.4 - 1.13) one can list the features a physically interesting 

angular momentum analysis should possess. First, one should obtain simple 

expansions for the observable quantities Y? (< ;$’ ), Y[ 
Q!p Q! P ())p a ,;T;lj)’ G 3 

The expansions for the two-body like amplitude Y? 
a@ 

should have the form of an 
,. 

expansion in P1(p, p l 6’) and its coefficients should be defined in terms of multi- 

channel phase shifts. Second, one needs to derive a well-behaved integral 

equation for the expansion coefficients of Z YL ap’ o!p- This equation should 

possess some of the features of (1.13). It needs to be written for the angular 

momentum reduced observables one obtains from Y? 
Q!P 

and YL 
aP 

and it should 
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retain the compactness virtue that Eq. (1.13) has. Hopefully the resulting 

integral equation will be simple enough to be solved numerically. Finally, one 

should give formulae for all the partial-wave cross-sections as well as the 

relevant form of the optical theorem. All this is accomplished in the following 

sections. 

Our general method is to introduce the angular momenta via the Omnes’ 

approach. However we find that in order to meet the first requirement cited 

above we are forced to alter Omnes approach. Our modified Omnes equations 

are given in Section II. In Section III we obtain coupled two-variable equations, 

using a method similar to Ref. 6. These equations are the analog of Eq. (1.13). 

Section III also gives a complete account of the invariances that are caused by 

parity, rotation and time reversal. The last Section gives the partial-wave 

representations for cross sections, wave functions, the optical theorem, as 

well as the phase-shift parameterization of the amplitudes. 

In closing we mention extant literature concerning angular momentum 

reductions of the three-body problem. A helpful1 guide to the literature is the 

review article of El Baz et al. 7 This paper gives a comparative summary of 

most of the different conceptual approaches used. In Ref. 8 we have compiled 

all the angular reductions known to us. The method and results we present are 

in marked contrast to those given in Ref. 8. In particular our approach is 

distinctive in that we work directly with the observed multichannel amplitudes. 

2. AN EULER ANGLE REDUCTION 

The fundamental structure of any angular momentum reduction of a physical 

problem stems from the commutators of the angular momentum operators with 

the Hamiltonians which define the problem. It is assumed in the Introduction that 

the two-body potentials, vQ , are such that they commute with the a! -channel 
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two -body angular momentum operator Ta = ya x-;;Q! - namely [% , “~11 = 0. If 

we let Z-a =Ta XFa, be the angular momentum of particle Q relative to the 

cluster by then the total angular momentum operator can be written as ?= xQ +r , 
cl! 

(a! = 1,2,3). Since the three-body pair wise potential, Va!, is 

v,,GpJ = va(Q (2-l) 

it follows from the above definitions that [ cQ, va] = 0, so [x, VQ! ] = 0. We may 

now conclude that [T, M 
QP 

(z)] = 0, since M 
w 

(z) is a function of Va! and Ho. So 

all our representations of M 
QP 

(z) will be diagonal in the eigen functions corre- 

spending to ? and Js. We shall use this fact to simplify the notation in our 

representations. 

Let us now define the manner in which we shall attach the Euler rotation to 

the vectors Fa and TQ which describe the three-body system. We have three 

equivalent but different momentum space coordinate systems: (cI,;,), G2,x2), 

(z3,<3). The center-of-mass condition implies that 

, 
T;1 +<2 +yi3 = 0. (2.2) 

Thus the three individual particle momentum lie in a plane. We use this fact to 

introduce the following angular convention depicted in Fig. I. Our definition of 

the angle 8 
@a 

is the angle needed to take the direction of Fa into the direction 

of E with a right hand positive rotation. 
P 

For cr@y chosen to.be ordered in a 

counter-clockwise fashion then 8 
Pa’ 

0 8 
Q!Y’ YP 

vary between 0 and II. The 

angle between Fa andTa we will call ra. This will be defined as the right hand 

rotation of co, into the direction of 4,. The angle ra! varies between 0 and 2~. 

We shall denote by R a 3 X 3 Euler rotation matrix. Specifically 

R = W, 036) = RZWRyWRZW (2.3) 

-9- 



-- 
! 

where RZ, Ry represent rotations about a spatially fixed z and y axis respectively. 

The angles $, 8, Cp are the three independent Euler angles that uniquely determine 

a rotation. The convention we use for Ry is 

cots 6 0 sin 8 

RytQ = 

with a similar form obtaining for RZ($). This representation is consistent with 

Rose’s treatment’ of the 9J functions that describe rotations of functions. In the 

following we shall employ Rose’s conventions. 

Now consider the basic amplitude MaPGa ,?& ;TB,$). Note that, we shall 

suppress the energy variable when it is of no importance to our arguments. The 

channel indices Q! and p on M 
@ 

have a simple physical interpretation. The p 

indicates that the pair cry interact through a potential V 
P 

before anything else 

occurs. Similarly, Q! indicates that the last interaction is Vcr. We shall define 

an angular representation so that the vector F@, in the left set of variables for 

M 
@’ 

has a preferred simple description. For the right-hand set of variables 

we arrange our definitions so that 2 has the simple description. So, we define 
P 

4!! =Rol;=R($ 8 $,)i a’ o!’ 

%Y = RorRy( l?cJ i (2.4) 

where k is the unit vector pointing in the z direction of a spatially fixed coordinate 

system. Likewise 

(2.5) 
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Furthermore, let us denote the triplet (p,, go,, r(y) by Pa0 This triplet of 

variables is the orthogonal complement of ?ja!, Ba, $,* Together these two sets 

span the six dimensional space of if;ol,TQ). With this choice of variables we may 

now define 

P-6) 

As the index cx and p change then so does our choice of the representing coor- 

dinate system. Clearly$Q and 3p are preferred variables because the direction 

of these two variables are simply given by (8 Q!, ?i),) and (0 b, 9;) D This varying 

choice of coordinate representation differs from Omnes’ approach. The Omnes 

method uses a common rotation to construct the positions of all three equivalent 

vector sets (TQ ,?Q . 

Now that M @ (P Q’ +,,8,14,; P;j, $, eb, $&) is defined,let us introduce 

an orthogonal expansion of this kernel. -J We introduce the functions GB MA ($9 es+). 

where the standard gJm is defined as 

cBJmW, 0, $) = < JMIDW’, e,sb)) IJh> (2.8) 

(2-V 

and 

WWJ, 0, $4) = e 
-i$Jz -iBJ -i$Jz 

e ye o (2.9) 

The I Jh > are the normalized eigen functions of J2 and JzS The rotation operator, 

D(R), acting on functions of TQ and FQ or ;-a and za is that induced by the Euler 

matrix rotation R. The modified form of the GBJm function we introduce in 

Eq. (2.7) is a complete orthonormal set with respect to the rotation measure 
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dR = sin eded$dr$. The functions GJm are eigen functions of the operators-j2 

and Jz with eigenvalues 25 + 1 and M respectively. 

Employing the GJm we may expand M 
@!p 

in the form, 

(2.10) 

The coefficients h8” o!p; Ah are determined by 

(2.11) 

The diagonality in J and M comes from the commutation relation, [‘Tj, Map] = 0, 

mentioned earlier. In the integral in Eq. (2.11) S the direction of the vectors 

are those given by the relations (2.4) and (2.5). 

Once the dM a!p; Ah , are defined we can now derive an Omnes-like5 equation 

for these coefficients. To effect this derivation one only need to know how two 

M 
Q$ 

operators multiply in the JMAh’ representation that we have introduced in 

Eq. (2.10). Consider a second operator of the M type, N 
Y6’ 

This operator will 

have the representation, 

(2.12) 
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The operator product is defined as 

(2.13) 

We wish to find an expression for [M JM cupNyalAAt l 

This can be done by substituting 

the representations (2.10) and (2.12) into the integral appearing in (2.13). To 

carry out the integration however one needs to have both?;“‘$ and ‘F;it7’ expressed 
PB Y% 

in the same angular coordinate system. By reference to Fig. 1 and the definitions 

we have employed it is easy to see that 

R; = R; Ry(6; s’ 

Thus the k%‘&(Ry) appearing in (2.12) may be represented as 

GJm(R;:) = c GJm (Rtt ) dJ (0” 
p P App” YP 

) . 

I hs 

(2.14) 

(2.15) 

Eq. (2.15) is a consequence of the group property that the !Z8 Jm functions possess. 

The function dJ ,,(e) is just G&,(@, 6, Cp) with $ and $ set equal to 0. Using the 

differential relation (A. 6) given in Appendix A, we carry out the integration on 

the right of Eq. (2.13). We obtain, 

. 
(2.16) 

The angle f3” 
YP 

appearing in the integral can be written in terms of the variables 

Ptt or P” 
P Ye 

Eq. (2.16) provides us with the relationship governing the multiplica- 

tion of two operators represented in the JMXk’ basis. It is important to keep 
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in mind that the angular coordinate system used in the representation of M 
@P 

and N 
Y6 

depends on the indices c+ and ~6. 

Let us proceed to obtain our equivalent of the Omned equations. Once we 

have (2 0 16) we may write down by inspection the forms (1.2) take. Thus, 

x q2+q2 - z) (2.17) 

A similar equation holds for the second form of (1.2) 0 

The matrix element TiMh h, 
; 

is defined by an equation analogous to Eq. (2.11)) 
o!! 

TJM a.h A’ Pa; P$ z) 
‘o!a! 

(2.18) 

where Ta appearing in the inner product is given by Eq. (1.3). Because the 

two-body potential vcll (ya) is spherically symmetric, the related t-matrix, tc,, 

has the expansion, 

One may exploit this rotational invariance of the tQ! to calculate5 the integral in 

(2.18). The result is 

TJM a.h h, Pa; Ph; z) = 6A A, T;; h (Pai Phi z), 
‘CXCY ck!o! o! 

(2.20) 
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where the T”,; h is given by, 
CY 

T”,. h (p 
’ o! 01 

; p;; z) = 2r’tpa2- “I 

X c G 
Qo! I2 

&la; s;; z -ii) yQ h was 0) y; A tqp) (2.21) 
ao! a!cY 

Some simplification of the integral equation for M 
JM 
oq3;h A’ 

QP 
substitute the relation (2.20) into (2,17). We have then 

P&i z) - QpT;+ 
’ o! 

(Pa; P&i z) 

takes place when we 

r 

(s’2 + 2;” - z)-l dp” 

(si2 + s” _ z)-l dp” (2.22) 

Equations (2.22) represent our final form for the Omnes equations. These 

differ in structure from the original Omnes equations by the presence of the 

functions occurring in the kernels. Also, of course, the meaning of the 

JMh amplitudes differ here. It is seen from Eqs. (2.19) and (2,20) that spheri- 

cal symmetry of vQ! 
JM 

has led to an invariance of the amplitudes Tcr. hhl in the M , 

index, This in turn means that dM o!p;h A’ 
will be M independent. We have 

o! P 
accordingly simplified our notation for Eq. (2.22) 0 This M independence is due 

to the rotational invariance of the entire three-body problem. 
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We note in conclusion of this section that our equations (2.22) in the Jm 

basis have transformed the six-dimensional momentum space integral equations 

into coupled integral equations in 3 continuous variables. In the next section 

we will further simplify these equations so that they are reduced to integral 

equations in 2 continuous variables. 

3. TWO VABIABLE EQUATIONS 

In this section we study several inter-related problems. We first introduce 

a set of basis functions which permit a reduction of our integral equations to 

two variables. In this basis set we investigate the behavior of the primary pole 

representation (1.4) 0 From this we can extract definitions of the partial-wave 

forms of X 
a!p 

and +X’ 
w 

We then can obtain the integral equations that these 

forms satisfy. 

We now consider the appropriate basis of functions for a two variable reduction. 

If one substitutes one form of (2.22) into the other and uses the representation 

(2.21), it follows that the amplitude &ape A h, has 
‘Q!!p 

variables Fa! and I” which may be summarized by 
P 

an explicit dependence on the 

MJM ,@. A A’ tpa; ‘b; ‘) = 2n c Ai;; Q 

‘QP Q Q’ 
A Q! @;Q;$ (p,qQ, ; Pb 4;; z) 

aP 

‘Q A tra’ ‘) ‘; h’(r;so) l 

o!a! 
PP 

(3.1) 

If this expansion is considered together with that of Eq. (2.10) it follows that 

J 
&crp;Q A ;I’ A’ is the matrix element of M with respect to the functions 

o!Q! P P ai3 

Q iMh defined as, 
o!o! 
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These Q are orthonormal relative to the differential d4Qa E d cos IILYd$ a 
dcos Bad$crO So we have 

dblJM a!p;Q h ;I’ A’ 
cfo! PP 

(P, q,; Pbqb; z) 

(3.3) 

In this formula the vectorsFa,Tl and 3 3 are given in terms of (2.4) and 
P’ P 

(2.5) ., In writing the argument of Q we have used the fact that knowledge of 

ea!, B Q!, #a!, Far implies the orientation of p, , &. 

JM Furthermore the set of functions QQ A 
CYO! 

(Baja) are complete on the Hilbert 

space related to pQ! and qor, i. e., that space associated with the inner product 

appearing in (3.3) O The only open problem here is showing that QfMA span the 
o!ck! 

space D This is verjfied by noting a simple connection between 

YLaMatB,) Y~amat~(y) ad our Q’S* Using the relation (2.4) one may show, 

YLaJi@cY) yQ m tea) 

o! o! 

J,Nl,+m, A WaQaJ; Mama, WaQaJ; 0, Aa) QQ A (P,A,)* 
CYO! 

(3.4) 

The C are the Clebsch-Gordon coefficients in Rose’s notation.’ Equation (3.4), 

tells us that each YL M (p,) YQ m (6,) is a linear combination of the Q’s. 
o! o! CL! o! 

Since the pair of YLM functions are complete, then so must be the Q’s. 
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The indices that Q possess all have a simple meaning. Of course, J and 

M represent the total angular momentum and its projection along a spatially 

fixed z axis. These two quantum numbers are eigenvalues of both the exact 

Hamiltonian, H, and the channel Hamiltonian, H, LI The internal angular 

momentum of the cluster Q is Qo,. Finally, it follows from the definition of the 

rotation operators that Aa! is the projection of the angular momentum Qa on the 

fixed-body axis. In this case the fixed body axis points in the fiol direction. So 

hor is the projection of Qa onto the fia! direction. It is easily seen that both Qa 

and hQ, are eigenvalues of Ha. The operator Ha! leaves the direction of Fa 

unchanged, so Fa may be regarded as a fixed vector in the CY channel. Then Aa! 

is just the component of Qcr in this fixed direction. 
JM Finally, we note that we have three distinct QQ h , one set for each 
o!o! 

asymptotic Hamiltonian, Ha!. It is also clear that these three sets of functions 

of four angular variables do not span a common four dimensional subspace of 

T,z This is in contrast to our three sets of GJm (Ra), all of which do span 
cl! 

the same space. Thus no unitary transformation between the three Q’s exists. 

This is one of the reasons why the derivations in this section must be somewhat 

more lengthy than in the previous section. Specifically, for the Q’s there is no 

multiplication law similar to (2,16). 

Now let us obtain the two-variable integral equation for A8 ap;Q h ;Q’A’ a 
ao! PP 

If we substitute (3.1) into the Omnes Eq. (2.22) and equate the coefficient of 

yQ h tr,,w;hltyp) wehave, 

CYO! PP 
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J 
&(Yp; Q A . Q’ Al (P, q,; Pi q;; 2) = $$jh& 

(VP@ -Pzy) 
p2 t; (4,; 4;; % -Q 

aa’ PP o! o! 

-c c 
yfa! PA” 

YY I 

6(Pa -Pi, t; (4,; s;; 2 -T, 
o! 

p2&2 + $2 - 2) 
2nYX A (I’;, 0) d;l ,,,V 1 yQ,, ,,,Cr;t 0) 

act! aY ya YY 

J 
dyp; pr A”. Q’ A’ P” y y, p p( y41; ; p;39;3; 4 dp” (3.5) 

This is a coupled two-variable integral equation for &‘. By using, 

dP” = p;’ dp; q$‘” dq; d cos I?; , one may integrate out the COST”’ dependence Y 

in the kernel of (3.5) and further simplify the equation. We defme 

ps I +1 
= (27r) 

Pt! -1 
NPo - p;)~; h (r;,o) dJh ,,,p )y~rrh”(r;ll’o)dcOsr;:. Y Z Q!. 

o!a aY ya YY 

(30 6) 

In the Appendix B we evaluate this integral and provide an explicit algebraic form 

for it. 

With this definition, now Eq. (3.5) becomes 

J 
Jltcq;P h - Q’ h 

c! a P 
t(P,,q,;P’lg 
P 

p ;; @ = $+A& 
6(Pol -Ph) 

p2 t”d’ &la; s;; z -7;) 
01 o! 

J 
divyp; Q,, hf1.Q’ A’ (Pj;, q ; Pi* qp’ 

Y Y’ P P 
’ s z) pl;dp”g;l,dg;: (3.7) 
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The term occurring in the kernel of (3.7) is purely a universal kinematic 

factor common to all three-body scattering problems. Such a factor is endemic 

to all the angular momentum reductions in the literature. 8 

As far as obtaining a two-variable integral equation is concerned Eq. (3.7) 

provides the desired form. However, as emphasized in the Introduction, (3.7) has 

several drawbacks. First, it contains the primary-pole structure implicitly; nor, 

it is an equation for observable multichannel amplitudes. We proceed now to 

develop such physical integral equations. The first step is to analyze the 
JM primary-pole decomposition when represented in the Q1 h basis. This will 
o!o! 

give us the definitions of the partial-wave observable amplitudes. Once we have 

these amplitudes it is a simple matter to obtain the integral equation they 

satisfy. 

Let us take an integral of the primary-pole decomposition for M cup, Eqo (1.4)s 

with respect to 

Our s-wave bound-state assumption means the vertex function $p may be written, 

-l/2 A 
The (4~) is the value of Yoo(qp). All the integrals are trival and one obtains, 

6 Q 0 %', 0 9:(qa) 6Q, 

P 

0 $ 

P 

0 

o! 01 

$;I@$‘* 

+ 2 -2 
z+x, -P, 

-,2 l 

z+x;-pp 
(3.9) 
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The partial-wave amplitudes in this expansion are: 

(3.10) 

and St,; Qolha!; Qbhlk is defined as .//dzF. Q h ; Q, h, in (3.3) but with respect 
‘o!!Q! PP 

Let us examine .%$in detail. First we know that the amplitude, r% JM 
a@ ’ 

is independent of M since A JM 
o$; BaAa; I’ A’ is so. This fact, combined with 

PP 
definition (3 o 10) means ,X’ (5 ,T ) 

a!p Q! P 
is a function only of the variables p,, pb 

and Ga! 0 6’ p. Or mathematic ally, 

+1 
= 2n 

-1 
c%&+Pa; pi+ coseap) pJ(cosBa& d cos cap (3.13) 

and correspondingly, 

(3.14) 
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Thus we shall be able to parametrize the on-shell &? J 
QP 

by a phase-shift repre- 

sentation. This simple expansion of L% 
aP 

owes its existence to two circum- 

stances. The first is the M independence of the amplitudes, The second is the 

definitions of the angular rotations, (2,4) and (2.5)) introduced in Section II. 

The remaining amplitude of physical interest for us is the partial-wave break- 

up amplitude. The breakup amplitude is a linear combination of L%? JM and 
w 

JM *Q 0% 0 (po,(q,) 
%@;Q A (P,q,;p&) = %$;Q h (p,q;; Pb) + reJM 

ao! CYCY 
@ (P, ; Pb) f 

(3.15) 

where %ty Q A is defmed like . C!!Siy Q h . in Eq. (2.11) but with S 
‘o! CY ‘ac!! ai3 

replacing 9 
4 

From the definition of SzF Q A . 
‘a01 

it follows that 3Loa may be 

represented 

(3.16) 

As with our other amplitudes, the breakup amplitudes will be M independent. 

We would like to find the geometrical invariance LX up (sa7&;T3) will possess 

as a consequence of this independence. Using Eq. (3.2) we have 

= Jg 

o!o! 
(vr’2 'Qah/& ‘) &$; Qaha (Pa 4,; P;’ Y;$(Ro, i’;3) 
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This can be further simplified by choosing the z axis along the p’ direction. P 
h 

Then R p’ = p,, so 
QP 

(3.17) 

From examination of the right hand side of Eq. (3.17) we see that X&(~Q~q,;$) 

has no dependence on the azimuthal angle of SQ! about the pal direction. Equi- 

valently, any rotation about the direction po leaves the amplitude invarient. 

We proceed by giving the integral equations for XJ 

and YeJ 

a@; Qa$ 

~$2 Q& ’ 
We desire these equations because their amplitudes are the 

multi-channel partial-wave observable amplitudes. The equation for XJ 

is obtained from that for ~$4~ 

@; Qaha 

a/3; Qaha ; Q&A;’ Eq. (3.7), by equating the coefficient 

of the singular factor 6 Q, o6A, o @;(qb)*(z + xi - 3@2)-’ which appears in the 
P P 

primary-pole expansion (3 O 9) O By inspection we deduce from Eq. (3,7) that 

J 
%q3; Qaha, a (Y (p q ; pb; ‘) = x;;. Q A , o1 4,; P&i z) 

(3.18) 

This above equation still is characterized by singular solutions as can be 

seen from examining representation (3.15) for 3 i? 
a@; eolhcy ’ 

If we introduce Eq. 

(3,15) into (3,18) and equate the residues of the singular term 
2 

(Zf x, 
-2 -1 - p,) CjQo 06A o$l(qa) then we derive, 

o! 
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-c c 
y#a Q”A” 

YY I 
~~~~~)*d(~Y~P~9j;)0,0;Qt~h” 

YY 
712 
pY 

+qz 
xJ yP; Qtt htf (P; $; Pi; z)p;dp;9;: dgi; 

YY 

(3.19) 

and 

q,; Pi+ z) 

c c 

yf 01 Q”h” 
YY 

J 
sfy6; Qtt Av (p;q!$ P;; z) p;: dp; q; dg;: 

YY 

where we have used the pole-decomposition of ty 
cl! 

t; (+q; ;z)=6Q 0 

CY a! 

(3.20) 

(3.21) 

In solving these equations one must employ Eq. (3.15) to insert 2[J and 
@P 

$2 
J ~!p. Q h on the right hand sides of (3.19) and (3.20). These equations will 

‘ck!o! 
share nice mathematical properties of their momentum-space analogs, Eq. 

(1.13). These essential properties are that “e,B, $?&; Q h are singularity 

free Holder continuous functions. Although, we have not przvtd it, we think 

it is clear that the operator associated with the kernel of (3.19) and (3.20) will be 

compact in an appropriate reduced Banach space, so that these equations will 

then have unique solutions, Finally, these equations should be attractive to 

physicists since the unknown functions ZJ 
w’ 

and n 2 q% Q& are observable 

partial-wave amplitudes. 
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Our description of these equations will be complete when we have given 

formulae for the driving terms. These terms are computed just by taking 

matrix elements of (1.15) and (1.16) with respect to the correct angular func- 

tions . We shall just quote the result of these straight forward evaluations, 

ye;Jp(Po! 9 
s 

p;3; 2) = - * I 
1 

) 
_ -1 

P J(~~~ 8 ” 
Pa 

(3.22) 

The term OJ 9 cxp; Q,h,! ls’ 

q (4 4;; z -Q 
y; h 

= -s O! c2 
W;, 0) djl o(e;;cy) $(cl;;) 

01 
f-J O! 

p: 

dcos et, 
I papp P 12 Pa 

21.1+ cos et’ + .p -z 
P “Y Pa 3-4 o! 

‘. 
-. 

(3.23) 

Earlier in this section we have studied the properties of our amplitudes that 

stem from the rotational invarience inherent in this problem. We would like to 

consider here the invarience properties associated with parity and time reversal. 

Let us consider parity first. 

We shall denote by 9 the parity operator, The parity operator effects the 

transformation zQ - -<o ; yo - -Ta and c - -?;a ; y -. -2 
o! c!! 01’ Parity commutes 
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with the three-body potentials, since they are spherically symmetric, viz. 

(3024) 

Parity also commutes with Ho, so we may conclude that [M @, 91 = 0. 

Invariance due to parity comes from evaluating this last commutator in the 

JMA basis, For example the 9M 
@ 

leads to the integral, 

/ iijJ; 
o! 

(RJ Map (P,~R$ q,BR~Ry(P& -$,$’ %&., (R’ ) dRadR& . 
P p 

(3.25) 

One computes this integral by using the fact that 9commutes with all rotations 

to write (say for the second argument of M 
OJP 

) , 

9Ra!Ry(Pcr)z = R,Ry(Pa)(-i) = RoRy(Po)Ry(?‘i$ = RaRy(“)Ry(PQ)g 

(3.26) 

Thus we define a new rotation, RT, by RT = RoRy(Q and use dRo, = dRTO Now, 

the integral (3,25) becomes, after using the group property (2.15), equal to 

In a similar fashion the matrix element of M arp 9 is determined to be, 

(-l)J+hti JJJf” 
Qfp; $8 -A I P,, pb;z) (3.28) 

P 

Because [M 
@’ 

91 = 0 these two expressions, (3.27) and (3.28), must be equal. 

So we find 

d” @; $$P$ p;3; 2) = l-1) 
$+ha 

(3.29) 
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We can easily translate this result into a relation which applies to ~~ 
Q!p 

and % 
@’ 

For “/Lop we have 

(3.30) 

For 9%’ 
QP 

there is no restriction on the amplitude. This is because our bound 

states are s-waves, 

Finally, we turn to the effect of time-reversal invariance. The time- 

reversal operator as defined by Wigner lo is denoted by a0 Its effect on any 

element in our momentum Hilbert space is, 

(3.31) 

According to assumption (R) of Faddeev’ the two-body potentials satisfy 

va! t-Q = v;(q,,. This immediately ensures that [ @ , Vo] = 0. Now let 

us examine the effect of @ on Map(z) as defined by (1.1). Because @ is 

anti-linear, @ G(z) = G(z) @ 0 So we have 

@ Map(z) = Map(y) @ = M;Jz) @ 0 (3.32) 

This relation is the fundamental operator consequence of time-reversal 

invariance. We shall now compute the result Eq. (3.32) implies for our matrix 

elements. Let f, q be arbitrary elements of our Hilbert space, then 

(f, M&zk) = t @ f, @ M&g)* = ( @ f, M&&z) @ g)* 
= tMpJz) @ f, @ g)* = t @ g, Mp,(z) @ f). (3.33) 

The above equation is also valid for the inner products associated with gJm 

functions. -’ 
Let f be g”?Y a 

(R ) and g be Sk, (R, )Q 
P p 

We need the effect of @ 

-J on gMA. Recall that @ reverses the direction of all the momenta. With the 
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convention given by (2.4) we have, e.g. 

@T’, = ‘;4, = -qaRaRy(ra)~ = qaR,Ry(r,)Ry(~)~ = qaRaRyt*)Rytrcy)Z 0 
(3.34) 

Thus, 

0 -J 
H gMh(R) = gMh -‘* (RRy(-r)) = q GJ&,(R) d;l’+Q l (3.35) 

J using d&-x) = (-1) J+h 
5, -A’ and GJ;(R) = (-l)-“+A G!,-,(R), Eq. (3.35) 

then becomes 

0 H ‘&h(R) = (-l)J-M 5-Jm(R) o (3.36) 

Substituting this result into (3.33) gives us 

or 

(3.37) 

where we have used rotational invariance to replace -M by M. In general this 

result implies relations between X 
aP 

and &? 
Pa’ 

However, it has a simple 

form for L%e 
cw 

namely 

x&(p,; Pb; 2) = cYz$o(P;; P,; z) l (3.38) 

This is useful in deriving the off-shell unitarity relation LX 
afl 

satisfy. 
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4. WAVE FUNCTIONS,CROSS SECTIONS AND PHASE SHIFTS 

Throughout this paper we have repeatedly stressed that jrip J w 
and .9ZJ W; $ha 

possess interpretations as observable partial-wave amplitudes. In this section 

we give the various representations which support this view. We obtain explicit 

forms for the asymptotic behavior of the coordinate-space wave functions, 

written in our partial-wave form. We also give the formulae for the various 

partial-wave cross sections, find the related form of the optical theorem, and 

obtain a phase-shift parametrization of the observable amplitudes. 

We consider the wave-function properties first. In Ref. (4) it is proved 

that the form the exact wave function, JI(+)(ya, Ta;p’p), has in the limit 

I Fa I 
- 

- O”? Y, = const is given by, 

(40 1) 

where p’, is defined by (1,8), the coordinates za, ya are defined in Section 1, 

and E is the incident scattering energy. ~,6~ is the unit-normalized bound state 

of the Hamiltonian qE/2pru + va! 0 The terms on the right are the leading terms 

in lxlyl -1 and higher order terms are omitted. 

The partial-wave version of Eq. (4.1) is given by substituting expansion 

(3.14) for Xoa and using the spherical-harmonic expansion of e 
iT$o ybo One 

JM* c- 
then takes the inner product of Eq. (4.1) with respect to Q Q h (x,, y,) and 

o!cY 
YJM($) to obtain, 

(+)J 
@Q A (x,Y,; Pb) = J CYO! 

Qiy* (xay,) $(+)(To,y(y;$B; E + i0) YJM(p&)dxadyadpi , 
o!o! 
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(+jJ (x y - p’ ) 
‘Q& Q! a’ P za 

o! 

f ip x 
.J. 2eaa 

6ap4n1 JJ(p;jx& - n,(2n) xa! .3Z’&(pL; pb; E + i0). 
i 

(4,2) 

Here, lii,h? = (479 
-l/2 0 ~‘6 Q!(y) defines a normalized Qa = 0 wavefunction #E 0 The 

j J are the customary spherical-Bessel functions. As is expected the xol, ya 

dependence on the right-.hyd side of Eq. (4.2) occurs only in the Bessel function 

and the radiation term e lb!xa 
x l 

Clearly XJ has the interpretation of the 
o! 

QP 

partial-wave amplitude of total angular momentum J. 

Now let us discuss the breakup asymptotic limit. As explained in Ref, (4) 

the contribution of the exact wave function to the breakup is given by the limit 

lst,l -co, I;;‘, I - = with the condition that I? 117 1-l 
P P 

remain constant. The P P 
leading contribution in this limit is, 

lYp “Yp’ 
-1 = const 

4t2rJl/2 ,3/z p3/2 E3/4 
d-- e1 E ’ P P ps/2 E f i0) 

where .“Aoa is given by (1.11) 0 The invariant metric, F, is defined as 

F=(2n x2+2 2 l/2 
PP %v ’ 

/3 = 1,2,3 

(40 3) 

(4.4) 

In this case we want to take matrix elements of Eq. (4.3) with respect to 

5 JNIh (R 
P p 

) and Y JM(pb) 0 We note that in order to carry out the evaluation of 

this inner product that all the terms X 
@ 

appearing in 578 
OP 

must be expressed 

in the same coordinate system. Here we have selected the coordinate system 
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with unrotated 5 oriented along z to be the common coordinate system. Our 
P 

Euler angle representation of LX 
0 

is 

where, 

To obtain the representation in the R P 
basis for all Q! we use Ra! = R R (8 

PY alp 
) and 

the group property of the CZ functions. 

We may now substitute Eq. (4.7) into (4.3) and form the inner product with 

respect to GJ* (R ) and YJM($). We obtain, 
9 @ 

*J-- 
~~~J~~~s yps rp’ P~J - 

4(2njl/3 .3/z p3/2 E3/4 e1 E ’ 

P \x,I -03 
P P p5/2 

1x$ I yp I -IL = const 

x[- c dJ 
o!h A h 

Pa 
(ea!p) Q! (P;9qp, rp; Pg; E + f0) 

o! 

(4.9) 

The physical meaning of our integration over R P 
is to average over all orienta- 

tions of the plane formed by rl,F2,c3 with a weigthing factor GJ 
mB” 

After this 
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average is performed then the only independent coordinate variables left in the 

mixed representation above are the distances x , y and I’ 
PP P 

- the angle between 
- 
x and7 

P P” 
We note the term in the first curly brackets, which in this breakup limit 

represents the radiation condition, is independent of all our integration variables. 

If we want to display the dependence on the F’s we can introduce (4.6) into the 

right-hand side of (4.9) 0 

We shall now consider the various partial-wave cross sections that exist 

in this problem. Let us take up the elastic and rearrangement cross sections 

first. By combining the general cross section given by (1.7) with the representation 

of 3~~ found in (3.14) we find 

!5$#!Q = (2~)~ n n “, 
I 

C q Jezp(pfk; p;3) PJ(io 0 pb) 
2 

QPP’ 
(4.10) 

f; o! P J 
In the above and following formula we shall omit the common energy argument, 

E = 32 
P 

- x 5 + i0. If we construct the total cross section by integrating the 

differential cross section relative to dslx , we have 
o! 

From Eq. (4.11) we can read off the partial-wave cross sections, oJ 
W’ 

where, 
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‘_ 
j. 

Equation (4.12) is an explicit verification that XJ 
@ 

is the physical partial- 

wave amplitude 0 

Next we must determine the partial wave forms of the breakup cross sections. 

We start with the general breakup cross section given by (1. lo), Into (1.10) we 

insert the form of LX 
@ 

given by (4.7) D We have then 

(4.14) 

One can show using the results of Appendix A that 

dQ;2^ d% q2dq = = dpadpydRP 
“p Yp P P Pp 

(4.15) 

Before integrating (4,14) with respect to 

axis to lie along? so, 
P 

we simplify it by choosing the z 

‘MO’ The mtegr at ion gives 

c 
2J+l - 47T J$ 

2 
(P SP SP ; P’) ,,I23 P 

(4.16) 

The partial-wave cross section is clearly 

J 

& = PJ+l) 2 p @f n2 !!kX!k c 
2 

Q! Y 
pt 

I3 P 

c dft A (0 ) 3~:~ A 
A’ aha p o! ap ; o! 

(P,, P2’ P3; Pb, 

(4.17) 
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and 

We will now employ our partial-wave cross sections in the unitarity relation 

to obtain a partial-wave version of the optical theorem. The off-shell unitarity 

relation is given in Ref. (4) and is 

- 2in ‘z 
Y 

J- *GQ(Ty; ;a; Eb+iO) 6 ($G2 -x$ - Eb) ;ye,P(Fy ; ;;&; Ebf i0) dry 

(4.18) . 

Let us now integrate this with respect to Y?&(pQ) Y (p’ ) dpo dp JM P P . The left- 

hand side is 

z’$(P~; P;; Eb + i0) - s’$(P~; pb; E;3 - i0) (4.19) 

Let us compute the second term on the right of (4.18). Using the expansion 

(3.14) we find at once that the term is 

- 2i7f E;j+iO)6(p?j2-x2- y E’ ) XJ (p” , p’ ; E’ + i0) py2dp: 
P YPY P P 

(4.20) 

Finally we must evaluate the first term on the right of (4.18). Analogous to 

(4.8) we define the matrix element of Sop with respect to 5 J& (R 
P I3 

) and 

’ JM$) s viz ’ 

(4,21) 
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I 

And given BJ 
op; hp 

we have the representation for B 
W’ 

‘Pappy; P;; ‘1 y;Mti$) t402’) 
P 

putting (4,22) in Eq. (4.18) and integrating with respect to the YJM’s and c%& 
P 

yields, 112 I,2 
- 2ni S3~~iA 

p OJPY 
(p” p”p”; pa;E;3tiO) 6 &C&E’ 

P YP 

J 
Bop; A 

P 
(P; , P;, P;; I$; E& + i0) pbl, dp21, pi dp; ~1; dp; (4.23) 

Equating the term (4.19) to the sum of (4.20) and (4.23) gives us the off-shell 

partial-wave unitarity relations for ZJ 4 
In fact, because of the time-reversal 

property of X 
ayP 

demonstrated in Section III and Hap(z) = Xi,(Z) the term 

(4.19) can be written as 2i Im g8$(pol; pb; E;3 f i0) D 

Specializing to the case where 01 = p, putting the relation on-shell by setting 

pp = pb, we have 

2i Im z+@&(P~, P&; E;3 + i0) 

= -2ni 
2 

J 
Bop;h 

P 
(P;, pi;, PI;; P;; E;3 + i0) I 

p; dp; p;; dp;; p; dp; 

-2ni J 
2 

reYp 
(p”. p’ . E’ + i0) 

Y Y’ P’ P 
I 6(p7j2 - x ; - E;) p;’ dp; (40 24) 

To obtain the optical theorem we substitute the partial-wave cross sections 

(4.12) and (4.17) into (4,24) and perform the indicated integrations. 
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We obtain, 

F Im xJ (p’ ; p’ ; E’ ) = 
PP P P P 

(4.25) 

If one replaces the transition amplitude, tiJ PP’ 
by the traditional scattering 

amplitude, fJ where 
P’ 

one obtains that 

J 
cTOT = 

We conclude this paper by giving a phase-shift parametrization of our reduced 

(4.26) 

(4.27) 

amplitudes. The most direct approach is to parametrize the S-matrices. Thus 

we consider the multichannel unitarity relation 
194 in its operator form 

The operators in this relation have the well known kernel definitions 
1,4,11 

sap(~,;j$) = 6mp6(Fa -$)-2*ib(Ea - Eb) X&(~~;~P; Eb + i6) 

sop(F, 3;3@) = - 27ri 66’ +<2 - E;3) Bop (F, “;-i;b; E;3 + i0) 

-2 -2 
Spo(i$;P, 5 = - 2ni 6(p + q - Eb) C%Po$;p, G Eb + i6) 

2 
where Eo =<z - x, andEb=;;b2 -x;o 

In terms of these kernels the relation (4.28) becomes, 

(4.29) 

(4.30) 
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The partial wave two-body like S-matrices are defined by 

The associated breakup partial-wave S-matrix is 

SJ op;hp(p; $1 = / GJ; (R 1 S 

p P OP 

tp q-p')Y tI;')dR/$$ :-P-/J JM ,j 

The definitions (4.31) and (4.32) imply 

6(P0 - Pb) 

12 
pP 

- 2ni 6(Ea! - Eb) G’Z$(pQ; pb; Eb + i0) 

and 

SJ ops A (P; pb) = - 2ni S(T2 + c2 - E;3’ 9$@. h (P; p&; E;3 + i0) 
’ P ’ P 

where J 3 op; h is given by (4.21) 0 
P 

(4.33) 

(4.34) 

Now if we integrate EqO (4,30) with respect to YJ”M(pol) Y (p’ ) JM P d&d”;3 and 

use the representations that follow from (4.31) and (4,32) we obtain 

6 
6(Pa - Pb) 

aP 12 
pP 

= X,&P;; pcy) S$(P;; P&) P;” dpy 
Y 

+ c/ d! A (P”; P,) 
J 

% ’ P 
Sop,A 

P 
(P”; P&) dp” 

(4.31) 

(4.32) 

(4035) 

Because of the presence of the energy conserving &-functions the partial-wave 

S-matrix forms (4.33) and (4,34) are not suited for a phase-shift representation. 

We therefore factor out these 6-functions and define an appropriate reduced 
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S- matrix, sJ 
QfP 

as follows, 

where it follows from (4.33) that sJ ’ ap lS 

s$+~~; P;) = $ - 2ni(nQp, nBp$‘2 G+$,~(P~; P;; Eb + i6) (4.37) 

(4.36) 

The choice of factors in the square root here have been determined on the basis 

that sJ 
@ 

should share the time reversal property that d 
QP 

possesses. If we 

insert (4.37) into (4.35) we get for the case where Q! = p, 

l/2 

i 

(4.38) 

Equating coefficients of the 6-function gives 

1 = 2 s$(P;’ 2 
y=l I 1 I 

$$P;, P;, P;; P;’ 2 P; p; dp; dp;: 

(4039) 

In the first term on the right we indicate just one momentum argument for sJ 
YP’ 

We have used the on-shell energy condition<f y = (gfi2 - x i + x 2$1’2 to eliminate 

the pb dependence. The second term on the right may be expressed in terms of 

the breakup cross section. Using (4.17) one has for this last term 
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The final form (4.39) takes is then 

3 
l= c 

y=l 

This result justifies a phase shift representation for sJ 
w” 

a! = 1,2,3 all p’ 
P 

we may introduce 

a = 1,2,3. 

where 6 J is real and the absorbtion parameter 77 J . 
QP a!p lS 

l,lJ < 1 I p o! - 

(4.40) 

Specifically since 

(4.41) 

Using (4,37) one finds that the transition amplitudes are parametrized by 

J 2iSJ 
%2pe 

w 
SJZ?$(P~; pi; Eb + i0) = - f l/2 O 

27f itnp&Q 

(4.42) 

(4043) 

(4.44) 

(4.45) 

The parametrization given in Eq. (4,44) is the usual elastic channel phase-shift 

representation. One could also obtain this phase-shift representation starting 

from the asymptotic wave function form (4.2) 0 In this alternate approach 

j J(pb x& is expypyifor large xbO The resultant coefficient for the term with 

the behavior e 
“p 

is proportional to the elastic channel S-matrix. The 

result is identical with (4.37) for Q! = p0 However, this wave-function approach 

does not give one any guidance about how to construct a reduced S-matrix 

appropriate for rearrangement scattering. 
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One final observation about the unitarity representation (4.40) is that it 

gives a unitary bound on the partial-wave breakup cross section plus rearrange- 

ment cross-sections, namely 

(4.46) 

& obtaining this result from Eq. (4.40) it is necessary to use Eq. (4.44) and 

(4.45) together with the partial-wave cross-section definitions (4.12). 
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APPENDIX A 

We give here some of the Jacobians that are useful in our angular 

momentum reductions. Consider first the integral 

with our convention for vectors 

so 

d6 
PO! 

= d cos ecydia! 

d& ,. 
gf2! PO! 

= d cos rQ1 de, 

Thus the integral (A. 1) becomes, 

(A-2) 

(A- 3) 

where dR,, = d$a! dcos 0odr$ e o! One may obtain another form for this integral 

by using (B04) to show 

aces ra 2Lps 
ap P Pa810r po! pQqck! 

y dR pcL!qa dpcY dqo! Ppdpp p 01 o! 

Now if one takes the partial derivative of the energy relation 

(A. 4) 

q2 Pi PE! Q!+-=- 
21.1, 2na, 2ma +g+$- 

P Y 
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for fixed p,.pp one has 

%! qadqc, = rpdp 
po!sp, 

Y yy 

Thus the integral can be written 

(A. 5) 

Further by comparing (A, 5) with (A, 3) it is clear that our three coordinate 

systems pa, q,, cos r a! where Q! = 1,2,3 have an invariant measure, i, e., 

~1~2~3 dpldp2 dp3 = P: dpQ qi dqa d cos pa!, o! = 1,2,3 o (A. 6) 

: - 
:.; 
,’ 
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APPENDIX B 

In this Appendix we give an explicit algebraic expression for the kinematic 

kernel VJ which appears in Section III, The kernel in question is 

y#a* (Bo 1) 
In the integral of (B, 1) we must express all the angle dependencies of I’:, I? Y 

and efr ya! as a function of the variables (p,, p;, “i;)* Further in order to exploit 

the 6 function in (B, 1) we need the Jacobian relating pz and cosl?; for fixed 

We examine first some of the kinematics needed for this calculation. The 

internal momentum of cluster Q! is ca and is defined by 

;;& = 
mF -mF 

“p+my ’ 
a! = 1,2,3; p # 01 (Be 2) 

If we use Fa +j$+Fy = 0 to re-express the momentum <p in (B, 2) we find the 

following representation for Y&D 

-4-, = qa*l * “cl!*1 
+m - -;;,P a! = 1,2,3 o PO 3) 

ma+l cl!+1 

Equation (B. 3) represents 6 relations between the ;;& and Ta D The convention 

for the right-hand side is that either all the upper or all the lower signs must 

be used together, Furthermore the indices on the masses and momenta are 

understood to be cyclical over (1,2,3) ., If we take the second term on the right 

of (B. 3) to the left and square that equation we have, 

2 %YpcY 2 
Pa*1 = 9; + “(r+l 

( ) 
i: 2 

b! - p,q, cOsra! o 
“Gl 

tBo4) 
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From (B,4) it is easy to show that, 

p:-9:*1- 
“aPor*l 2 

00sr or+1 = f ( ) ma+ m Gl 0 m 
2 c! 

( i 
ma+m Gl po!*1%!*1 

(B. 5) 

If in the integral we specify p’$ ‘L;: and p, ” = p, then these three variables fix 

the momenta variables p’;,pg and pi and all angles associated with these vectors, 

. rff i.e,, eycy, yo Let us denote the so determined angles by 0”’ rol’O We 
aY’ Y 

evaluate (B. 1) by using, 

/ 

b 
W(x)) g(x) dx = c 

g<“i> 

a i 
l--T- % x-x ’ - . 1 

where xi E [a, b] and are such that f(xi) = 0. Here we have, 

ap; mQ! q;*lp;*l 
a OOsr;*I OOsr;,I = 00sr~& = (mcy+mai l)p, 8 

where, 

OOsr”If a*:l E [- 1, 11 

(J3.6) 

(B. 7) 

This last condition implies the 6 function integral is zero unless the constraint 

m m o! cl! 
Pa - mol+m O!il 

P;*l L 9;*1 <, Pa! + mo+m Pi*1 (B. 9) 
ail 

is satisfied. So our expression for VJ- IS, when (B, 8) is satisfied, 

VJ (P$ PZ*1’ q;*l)f 
01 o!’ a*l’%l 

h . 111 

(B. 10) 

otherwise the value of VJ- is zero. 
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The only remaining problem is to determine the three angles I’~~,, I’zl, 

e:;, o!O The expression (B,4) immediately gives the first angle, viz, 
, 

P: - 4;:. - [map&/(mor +ma&l 
2 

c~s r”II = f 
Crhl 

o (Boll) 
2q;*lP;*l(mor+m@; 1) -‘rn a 

Next, let us consider the angle e”$l o. We recall the formula relating 

sin2e and ’ 5 
YQ 

sin2FY derived by Omnes, 

'4 
14 

a*1 
sin2ebt,kl a! = sb"Jf& ___ 

, Pi2 
(B, 12) 

This relation gives us sine I1 
cY*1, Q! 

in terms of pGhl, qg,l and pa0 

Finally we need to find cos I’:‘. From (B.4) we have 

(B. 13) 

We note that q’& occurs on the right hand side of Eq. (B. 13). This must be 

expressed in terms of p,, p; + 1, q’d, * 1. This can be done by using the 

condition associated with energy conservation, viz. 

(B. 14) 

Substituting (B, 14) into (B. 13) give us a closed expression for cosl?:’ in terms 
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FIGURE CAPTION 

1. Angular Conventions for Three Body Momentum Variables. 
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