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ABSTRACT 

The transformation from current to constituent quark basis states is 

discussed. Certain algebraic properties of the transformed vector and axial- 

vector currents are abstracted from the free quark model and assumed to hold 

in Nature. Supplemented by the PCAC hypothesis and assumptions about the 

identification of the observed hadrons with simple constituent quark states, 

the algebraic properties of the transformed currents are used to compute the 

pion and photon transitions between any two hadron states. General selection 

rules are stated. Many specific matrix elements for both meson and baryon 

decays are tabulated, and both their magnitudes and signs are compared with 

experiment. 
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1. Introduction 

122 For almost a decade, the constituent quarkmodel has givenus a very 

successful classification scheme of most hadrons. In such a model non- 

exotic baryons are treated as composed of qqq while mesons are qc, with 

internal orbital angular momentum between the spin+ quarks. As a result, 

particles fall in simple multiplets3 of SU(6) x O(3). 

A.t the same time there has been a considerable amount of work on the 

classification of hadron states under the algebra of chiral SU(2) x SU(2), or 

more generally, chiral SU(3) x SU(3). 4y5’6 It is clear that hadron states 

like the nucleon share single irreducible representations of the chiral algebra 

with many other states, for the nucleon and many higher mass N*ts are con- 

nected by a generator of the algebra, Q,, in the form of the pion field. Con- 

versely, the nucleon state is a complicated mixture of many irreducible 

representations. Although important progress was made in both the purely 

theoretical and phenomenological classification of hadron states under chiral 

SU(3) x SU(3) in the past7, previous work in this direction has suffered from 

being done on a case-by-case, somewhat ad hoc, basis, with each hadron (or -- 

small set of hadrons) treated separately. Little systematic connection between 

the classification of different hadrons was found. 

Recently, by relating these two classification schemes for hadrons, 

there has been what we consider to be major progress, principally due to the 

work of Melosh. 8 He approaches the problem by trying to relate two sets of 

operators: those of an SU(6)w of currents (including the SU(3) x SU(3) formed 

by the vector and axial-vector charges), and an SU(6)w of strong interactions. 
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However, we may equivalently consider the relation between their basis states: 

the irreducible representations of the algebra of currents (built up out of 

“current quarks”) and the irreducible representations of the SU(6)w algebra 

of strong interactions (built up out of “constituent quarks”). 9 Therefore, 

postulating a relation between the two algebras will give us the 

decomposition of physical hadron states, assumed to be simply identifiabIe 

with constituent quark states, into irreducible representations of the algebra 

of currents. A complete knowledge of the relation between the two algebras 

would then allow us to solve the problem of the classification of hadrons under 

the algebra of currents. 

We shall assume that a transformation between constituent and current 

quark basis states exists. Without a detailed dynamics we cannot completely 

specify the transformation. However, we shall assume certain algebraic 

properties of the transformed axial-vector charge and first moment of the 

vector current density. These algebraic properties are abstracted from the 

free quark model, following the work of Melosh. 8 As a result, we have a theory 

of the algebraic structure of weak or electromagnetic transitions between 

hadrons. This theory is (1) simple in its algebraic properties, (2) systematic 

in treating all mesons and baryons in a unified way, and (3) definite, in that 

the theory has a clear origin and structure, with the amplitudes related by 

Clebsch-Gordan coefficients, and the decay widths related to the amplitudes 

involved in the theory in a nonarbitrary, known way. 

Such a theory can be regarded as one more step in a program of abstracting 

algebraic properties from the free quark model, without necessitating either 

the reality of free quarks themselves, or of any picture of quarks bound in a 



I 
-5- 

“potentialt from which they cannot escape. Abstraction from the free quark 

model assures us that the assumed algebraic properties could be exact, and 

are at least consistent with relativity, invariance principles, etc. They are 

presumably the least complicated that one might expect to hold in the real 

world. The present theory greatly unifies the treatment of weak and electro- 

magnetic transitions with the systematics of hadron spectroscopy, and produces 

well-defined quantitative predictions. 

While vector current induced transitions are immediately testable 

through comparison with photon amplitudes, present weak interaction data 

are generally insufficient to provide a test of transitions involving the axial- 

vector current. To provide tests of this part of the theory at the present time 

we must assume the Partially Conserved Axial-Vector Current (PCAC) hypothesis, 10 

which relates matrix elements of the axial-vector charge taken between states at 

infinite momentum to those of the pion field taken between the same hadron 

states. With the assumption of PCAC, the theory becomes one of the algebraic 

structure of pion and photon transitions between hadrons. Expanding upon our 

previous work 11 , in this paper we investigate the general structure of such a 

theory and show what it predicts in detail for specific pion and photon transitions 

between both meson and baryon states. 

As a theory of pion transitions, the present paper has much in common as 

far as general algebraic structure is concerned with both previous relativistic 

quark model calculations 12 and certain broken SU(6)w schemes. 13 We in fact 

regard this theory of current-induced transitions, when supplemented by PCA.C 

and/or vector meson dominance, as providing a method of constructing a pheno- 

menology of purely hadronic vertices and providing justification for some aspects 

of these other theoretical schemes. 
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In the next section we discuss the transformation from basis states of 

the SU(6)w of currents to that of strong interactions, and what we abstract of 

the algebraic properties found in the free quark model by Melosh. 8 The 

applications of this algebraic structure to pion and photon decays, when sup- 

plemented by PCAC and assumptions on the identification of the observed 

hadrons with constituent quark states, is described in Section III. After 

stating general selection rules and comparing with other theoretical schemes, 

specific matrix elements for pionic decays of mesons, pionic decays of baryons, 

and photonic decays of baryons are tabulated in Sections IV, V, and VI res- 

pectively. Where possible a preliminary comparison with experiment of both 

their magnitudes and signs is made. We conclude with a discussion of the 

present theoretical and experimental situation and possible directions for 

further extension of the theory. 

II. The Transformation from Current to Constituent Quarks 

Consider the algebra formed by the 16 vector and axial-vector charges, 

Qa(t) and Q:(t), which are simply integrals over all space of the time com- 

ponents of the corresponding currents measurable in weak and electromagnetic 

interactions: 

Q@(t) = d3xVt(;; t) , (2. la) 

Q;(t) = d3xAo”(;;, t) . (2. lb) 

Here 01 is an SU(3) index which runs from 1 to 8. At equal times these charges 

commute to form the algebra proposed by Cell-Mann, 14 
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[Qo(t), Q’(t)] = ifaPY &Y(t) 

[&“(t), Q! (td = ifaPyQl(t) 

[Q%(t), Q[ (t)] = ifaPy QY(t) . 

(2.2a) 

(2.2b) 

(2.2c) 

This is the algebra of chiral SU(3) x SU(3), for it can be easily shown that 

Eq. (2.2) is equivalent to the statement that the right-handed charges, Qa! + QF, 

and the left-handed charges, Q”!- Qt, each form an SU(3), and that they com- 

mute with each other - hence, chiral SU(3) x SU(3). For Q! = 1,2,3 the Q*~s 

are the generators of isospin rotations: for CY = 1, . . . ,8, they are the 

generators of SU(3). The last of Eqs. (2.2), sandwiched between nucleon 

states moving at infinite momentum in the z direction, yields the Adler- 

Weisberger sum rule. 15 

Taken between states at infinite momentum, 16 the QQts and &its are 

f!good” operators, i. e. , they have finite (generally non-vanishing) values as 

P, - *a These values are the same as those of space integrals over the z 

components of the respective currents. If we adjoin to the space integrals of 

the time component of the vector currents and the z-component of the axial- 

vector currents, integrals over certain llgoodYr tensor current densities, the 

SU(3) x SU(3) algebra between states at infinite momentum can be enlarged still 

further to form an SU(6)w algebra of 35 generators whose elements commute 

like the products of SU(3) and Dirac matrices, ha/2, (ha//z) pox, (h?/z)p gy, 

(A%hJz. We refer to this algebra, introduced by Dashen and Gell-Mann l7 in 

1965 as the SU(6)w of currents. We denote these generators collectively by F1. 
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In what follows it will be convenient to label states or operators by their 

transformation properties under this algebra of currents. For this purpose 

we shall use just the SU(3) x SU(3) subalgebra of the whole SU(6)w algebra of 

currents to write 

(A., BJs , Lz , 
Z i 

where A is the SU(3) representation under Qo + Q50, B the representation under 

Qa- Q;, and Sz is the eigenvalue of Qi, the singlet axial-vector charge. 18 

The quantity Lz is then defined in terms of the z component of the total angular 

momentum J, as Lz = Jz- Sz. The 11 ordinary” (Qcr ) SU(3) content of such a 

representation is just that of the direct product A x B. 

With such a labelling it is clear that, for example, 

Qa+Q50” Qa-Q5” 
&5”= 2 - 2 

transforms as /(8, l)o, 0) - ] (1, S),, 0 1 , while Qo transforms as 

j(8,Uo4 + ] (W,,O;. Representations of SU(3) x SU(3) can be built up 

from (3,1)~, (1,3)-49 
2 

Cl,z)g, and C~,l)-- 1 which we define to be the current 
2 

quark and current antiquark states with z spin projection rt 9 . Therefore, if 

a nucleon at infinite momentum with Jz = 3 acted under the algebra of currents 

as if it were simply composed of two current quarks with Sz = i and one quark 

with Sz = -i in a symmetrical wave function, we would have 

IN> = I 
I 

(6,3),,Ol > . 
z I (3.3) 
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However, the SU(3) content of (6,3)+ is just that of an octet (including 

the nucleon) and a decuplet (including the A(1236)). Since Q5” is a generator 

of SU(3) x SU(3), it can only connect this representation to itself, i. e. the 

nucleon to thenucleon or to the A(l236). Furthermore, such a classification 

of the nucleon gives gA = 5/3. The nucleon cannot be in such a simple repre- 

sentation. This is already apparent from the Adler-Weisberger sum rule 15 

itself, for it shows that the nucleon is connected by a generator of the algebra, 

the axial-vector charge Qz (in the form of the pion field through the use of 

PCA.C), to many higher mass N*‘s. Thus the nucleon and these N*‘s must be 

in the same representation of SU(3) x SU(3). Conversely, the nucleon state 

must span many different representations of the SU(3) x SU(3) of currents. 

An attempt 19 to describe approximately the nucleon state in terms of a 

sum of irreducible representations of SU(3) x SU(3) yields 

I N > = cos6 I \(6,3), H ,0 1 > + sine sin@ I [ (??,3)%, 0 1 :, 
I 

+ cos$ I [(SJ),, -1 
5 

> + sin+ I 

(2.4) 

where 13, # and 3 are parameters to be fitted phenomenologically. It is clear 

that parametrizing states in a manner resembling the complicated nucleon wave 

function in Eq. (2.4) is not the way to proceed in order to understand systema- 

tically the pionic decays of higher resonances. The number of phenomenological 

parameters would increase so as to render the approach essentially useless. 

Instead, one may assume 8,9,20 that there exists a unitary operator, V, 

which transforms an irreducible representation (I. R. ) of the algebra of currents 

into the physical state: 
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I Hadron > = V I I. R. , currents > . 

The state I I. R. , currents > is chosen as that irreducible representation of 

the algebra of currents which corresponds to baryons being built from just 

three current quarks and mesons from quark-antiquark. Thus, for example, 

the complicated nucleon state in Eq. (2.4) is rewritten as 

IN> = Vl{(6,3),, 01 >. 
B 

(2.5) 

(2.6) 

All the complicated mixing of the real hadron states has been subsumed in the 

operator V. 

In the following we will be interested in evaluating the hadronic matrix 

elements of a current, say $9. Using Eq. (2.5) we have 
R 

< Hadron’ I QF I Hadron > = < I. R.‘, currents I V-l Q50V I I.R. , currents > . (2.7) 

The complications of hadronic states under the algebra of currents have now 

been transferred to the effective operator V -1 CY Q5 V which may be studied as 

an independent object. Moreover, if the operator V -lQFV has simple trans- 

formation properties under the algebra of currents, the way is now open to 

systematically evaluate the matrix elements of Qt between any two hadronic 

Such is indeed the case in the free quark model as shown by Melosh. 
8 

states . 

The operator V serves another useful purpose. It is easy to see that if 

we define a new set of generators 
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Wi = &,T-1 , (2.8) 

then the w” also form an SU(6)w algebra and furthermore, from the definition 

of V in Eq. (2.5)) hadron states transform as irreducible representations cor- 

responding to the naive constituent quark model of hadrons. We therefore call 

the basis states of this new SU(6)w “constituent quarks” and identify the algebra 

withthat of the SU(6)w of strong interactions 21 . Eq. (2.5) can therefore be 

rewritten as 

I Hadron > = I I. R. , constituents > = V 1 I. R., currents > , (2.9) 

while Eq. (2.7) becomes 

< Hadron’ I Q50? I Hadron > 

= < I. R.’ , constituents I Qf I I. R. , constituents > 

= < I. R. ’ , currents I V-l QFV I I. R. , currents > . 

In the free quark model, the SU(6)w of strong interactions would be 

identical with the SU(6)w of currents if the quarks were restricted to have 

momentum purely in the z direction (p, = 0). It is the transverse momentum 

of quarks which is the reason for breaking the identity of the two symmetries. 

This is intuitive if we keep in mind that the SU(6)w of strong interactions was 

conceived as a collinear symmetry. 

In the present paper we will be primarily concerned with applications of 

the algebraic properties of the transformed axial-vector charge, V-$FV, 

where Q, is defined in Eq. (2.lb), and the transformed first moment of the 

vector current, V-l D*‘V, where DF is defined as 

(2.10) 
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Di” = ld3x[y] V,T;;,t). 

Taken between states at infinite momentum, commutators of Qf lead to Adler- 

Weisberger sum -rules, 15 while commutators of D: lead to Cabibbo-Radicati 

sum rules. 22 Their properties under the algebra of currents are that 

(2.11) 

Qt transforms as I 
(8, l)o- (1, 8)o, 0 1 (2.12a) 

n” transforms as [ (8, l). (2.12b) 

In a free quark model at p, = 00, either V-l Q5@V or V -’ D o% must con- * 

nect only single quark states to single quark states; they thus have the general 

form: 

V-‘QaV or V-‘DoV = 5 f . d3xq+(x) @(a,, yi> g q(x) , (2.13) 

where @ is some function of the transverse derivatives (a,) and the gamma 

matrices ( yi). An explicit form of 0 was determined by Melosh’, while Eichten 

et al. 23 argue that a large class of such functions exist. Without having a 

detailed dynamical formalism we are unable to make use of an explicit form, 

even if it were given. What is important for our purpose is that the operator is 

a ‘1 single quark” operator; i. e. it depends only on the coordinates of a single 

quark and it does not create connected qq pairs. 

It is this property that we abstract from the free quark model and assume 

to hold in Nature. In general, we assume that: 
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The operators V-l QfV and V-l D*% have the transformation properties - 

of the most general linear combination of single quark oper&.ors consistent 

with SU(3) and Lorentz invariance. 

Exactly this is verified in the explicit free quark model calculations. 8,23 

24 As SU(3) is assumed conserved there, we have V-l Q”% = Qa. The operator 

V-l Q50V, with Jz = 0, contains two terms which transform under SU(3) x SU(3) 

I ‘1 as I (8, l)o- (1, 8)o, 0 j and (3,z)l, - 1 
I 1 1 

- (3, 3)-l, 1 and behave as components 
i 

of 35’s of the full SU(6)w of currents. The operator V -‘Do% with J + , =l is z ’ 

slightly more complicated, with three terms which transform as 

i \ (8, Ilo + (1, 810, 1 1 , [ (3,z)l,0 1, and [(z,3)-l ,2), again in35’s of the SU(S), 

of currents. 25 Thus, in spite of the enormous complication of V itself, we 

abstract these remarkably simple algebraic properties of V -’ Q50V and 

V-l DFV from the free quark model and postulate them to hold in the real 

world. We proceed to apply this hypothesis to transitions between hadrons. 

III. The Application of the Algebraic Structure of Transformed Currents to 
Photon and Pion Decays 

To carry through this application of the algebraic structure of transformed 

currents to photon and pion decays of real hadrons, we need several additional 

physical assumptions. First, to relate matrix elements of Q5 between states 

at infinite momentum to matrix elements of the pion field we need the PCAC 

hypothesis. 10 Explicitly, for CI! = 1,2,3 we assume 

(3-I) 
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where AZ(x) is the axial-vector current and f, = 135 MeV is a constant 

related to the charged pion decay rate. The decay rate for Hadron’ - 

Hadron + r- can then be computed in narrow resonance approximation in 

terms of matrix elements of -$(Q;- i&t) between states at infinite 

momentum as 

I’ (Hadron’ - Hadron + n-) 

1 Pvr = M2,“c (Mv2- 
(4n f,“) 2J’ + ’ Ml2 h 

I < Hadron’, h I 1 (Qi - iQi 
a 

) I HadronJ > I 2, 

(3.2) 

where p, is the pion momentum and the sum extends over all the possible 

common he1 ic ities, h , of the hadrons. The total width, l?(Hadron’ - 

Hadron + n), may be obtained from Eq. (3.2) by adding the n+ and 9~’ widths, 

which are related by isospin Clebsch-Cordan coefficients. Eq. (3.2) may also 

be obtained in a more clearly covariant way by considering the narrow resonance 

approximation to the Hadron’ intermediate state contribution to the Adler- 

Weisberger sum rule obtained by taking Eq. (2.2~) between Hadron states at 

infinite momentum. In either case, we see that the width for Hadron’ - 

26 Hadron + 7r is directly fixed by matrix elements of Q,, up to the validity 

of PCAC. As a result, there are no arbitrary phase space factors in the 

calculation. 

For photon decays we need no additional assumption to relate the width 

to the matrix element of the DF operator of Eq. (2.11) taken between states 

at infinite momentum. We have directly that in narrow resonance approximation 
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l?(Hadron’ - Hadron + y) 

:g-&c 
P-3) 

=- I < Hadron’, h I D+” + -?- D,” 
$3 

I HadronJ - 1 > I 2, A 
where e is the proton charge, p 

Y 
the proton momentum, and the sum extends 

over all possible helicities A . Note that although the definition of DF in 

Eq. (2.11) involves only a first moment of the current, between states at 

infinite momentum all multipole amplitudes consistent with the spin and parity 

of the states enter matrix elements of D+“. Eq. (3.3) may also be obtained 

from consideration of the narrow resonance approximation to the Hadron’ 

contribution to the Cabibbo-mdicati sum rule 22 
on Hadron states. Again 

we have no arbitrary phase space factors. 

In this paper we shall use the narrow resonance approximation expres- 

sions, Eqs. (3.2) and (3.3), for pion and photon decay widths in order to make 

a comparison of the theory with experiment. For broad resonances in the 

initial and/or final state, or, for decays of resonances where the physically 

available phase space is small, such an approximation introduces non-negligible 
27 errors. However, we view the present comparison as being sufficiently 

accurate as a first test of the theory, particularly in view of the experimental 

errors on values for pion or photon decay widths. When the situation warrants 

it, the values of I < Hadron’ I &5” I Hadron > I 2 and I < Hadron’ I D+” I Hadron > I 2 

should be determined irrespective of any approximation in terms of contri- 

butions to Adler-Weisberger and Cabibbo-Radicati sum rules, respectively. 

Second, we need to identify the observed (non-exotic) hadrons with con- 

stituent quark states. 3 In other words, we assume that there is a portion of the 
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physical Hilbert space which is well approximated by the single particle 

states of the constituent quark model. For baryons, composed of qqq, we 

have the familiar SU(6) representations 56, L = O+, 70 L = l- , 56 L = 2+, 

etc. , where L is the internal quark angular momentum. For mesons we 

have correspondingly the q5 states 35 L = O- , 1. L = O- , S L = l+, etc. 

Third, we assume that states with different values of the quark spin 

as well as Lz and Sz are related as in the constituent quark model, i. e. by 

the SU(6)W of strong interactions. This will allow us to relate different 

helicity states of a given hadron to each other. 

Our calculation then proceeds as follows. The matrix elements (between 

states at infinite momentum) of Q5a or D+” which we wish to determine are 

those which enter the expressions for widths in Eq. (3.2) and (3.3). In either 

case, we transform to an SU(6JV of currents basis as in Eq. (2.10), so that 

V-l Q5?!V or V-l D+” V are taken between irreducible representations of the 

algebra of currents. Now recall that we assume that results for the algebraic 

structure of V-l &5” V and V-l D&o V which are found in the free quark model 

are also to be found in Nature. More specifically, we assume that these 

transformation properties are respectively: 

V-l Q a! V transforms as 5 (3, l)o- (1, Wo, 0 (3,z)l, - 1 - (3, 3)-l ,1 i i 

and 

V-l D+” V transforms as 
I (8, U. + (1, 8Jo> 1 

1 
i’ (3 -4) 
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All these operators transform like components of 35’s under the SU(6)W of - 

currents. We then know the algebraic properties (under the algebra of currents) 

of all terms of a transformed matrix element. Therefore we may use the 

Wigner-E&art theorem and tables of Clebsch-Cordan coefficients to carry 

out the calculation from this point onward. Note that SU(6)w invariance of the 

transition operator under either the algebra of currents or of strong inter- 

actions is not assumed - only the transformation properties of the various 

terms are needed in the calculation. We make no additional assumption in 

this paper that the (8, l)o- (1, 8)o, 0 -’ Q5o V is related to Qt, as 

in Ref. 28. 

More explicitly, for a given matrix element of Q50 we write the initial 

and final hadron states with Jz = h in terms of states with definite quark Lz 

and Sz. This involves coupling internal L and S to form total J for each hadron. 

After transforming to an SU(6)w of currents basis, the matrix element of the 29 

(8, l)o- (1, 8). or (3+ - (3, 3)-l term in V-l &50! V can then be written by the 

Wigner-Eckart theorem applied to representations of the SU(6)w of currents 

as a reduced matrix element times the product of quark angular momentum, 

W6)w, SU(3), and W-spin Clebsch-Gordan coefficients. 30,31,32 For example, 

suppose we were calculating the matrix element of the (8, l)o- (1, 8). piece of 

V-l Q5” V between initial and final states with common helicity A, total 

angular momentum J and J* , internal quark angular momentum L and L’ , 

quark spin S and S1 , SU(6) representation R and RP , and SU(3) representation 

A. and A’ respectively. Then we have that 
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I 1 < R’,A’,L*,S’,J’,A, currents I (8,l) -(1,8) 0 I R,A,L,S,J,h,currents> 
I 0 09 

= c (L’L;S’S; I J’h)(LL& I JA) (R’ I 35 i R) 
szs; ~ <- 

quark angular momentum 
Clebsch-Gordan coefficient 

SU(6)w Clebsch- 

Gordan coefficient 

(3.6) 

(A’ 18 I A.) (1 0 wws I W’Wi) 
- - 

< R’, L’, L; II (8, l)o- (1, S), II R, L, Lz > . 

SU(3) Clebsch- W-spin Clebsch- Reduced matrix element 
Gordan coefficient Gordan coefficient 

The W-spin Clebsch-Gordan coefficient follows since the (8, l)o- (1, 8). operator 

has W = 1 and Wz = 0. For any state, Wz = S . z For baryons, % =$ while for 

mesons we have the conventional correspondence 21 

IW=l,Wz=l> = lS=l,spl> 

IW=l,Wz=O> =-lS=O,Sz=O> 
(3.7) 

IW=l, wx=-1> = -IS=l, sz=-1 > 

IW=O, wz=o > = -IS=l, S/O> . 

The signs which result from using Eq. (3.7) to convert from quark spin to W-spin 

are understood to be included in Eq. (3.6) in the SU(6)w Clebsch-Gordan 

coefficient. 

The reduction of the (3,3)1- (3,3)-l piece of V-l Qs” V proceeds just as 

I above, except that from Eq. (3.7) it transforms under W-spin as W = 1, Wz= 1 
1 

+ 

W=l, wz=-1 As a result, the sum in Eq. (3.6) is replaced by two sums 
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involving the W-spin Clebsch-Gordan coefficients (11 wWz I WlW;) and 

(1 - 1 WWz I WlW;). For photon decays we need only recall that 

(8, l). + (1, 8). is a W = 0, Wz = 0 object, while (3,3)1 and (z,3)-l transform 

I as (W=l, W, = 1 
1 1 

and - W=l, Wz= -1 . Since thenet Jz initially and 
I 

finally must be the same for either Hadron’ - Hadron + x or Hadron’ - 

Hadron -t y decays, and since the net value of Wz = Sz must also be the 

same by the W-spin Clebsch-Cordan coefficient in Eq. (3.6) and its analogues, 

it follows that Lz = Jz- Sz must also be additively conserved between the 

initial and final state (including the pion or photon operator). 

The general algebraic structure of the results is now apparent. 33,34 

All the Q50 matrix elements taken between hadron states in two given SU(6) 

multiplets with given Lz and LH are related to at most one non-zero independent 

SU(6)w reduced matrix element, corresponding to the (8, l). + (1, 8)o, O!, 
i 

1 

i (3,3),, -1 ,or- (3,3)-I, 1 
1 1 

1 pieces of V-l Q50 V. Similarly, there is at most 

one independent SU(6)w reduced matrix element for photon decays between 

states in two given SU(6) multiplets with given values of Lz and Lk. If L is 

zero, as is the case in essentially all cases of physical interest at the present, 

then of course L, = 0 and the LB dependence of the SU(6)w reduced matrix 

element becomes trivial (in particular, the 
i 
(3,z)1, - 1 and - i (3,3)-I, 1 

1 I 1 
pieces of V-l Q5?- V, with L; = - 1 and + 1 respectively, have the same 

reduced matrix element). In such a case (L = 0) there are at most two independent 

reduced matrix elements of QF and three independent reduced matrix elements 

of; taken between two given SU(6) multiplets. 
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Instead of describing pion decays in terms of the matrix elements taken 

between states with given helicity h, one could describe them in terms of the 

orbital angular momentum, I, between the final hadron and pion. To carry 

through an identification of the Q waves present, note that all the A dependence 

of the decay amplitudes is given explicitly by the SU(6)w reduced matrix 

element and the product of three Clebsch-Gordan coefficients in Eq. (3.6) and 

its analogue for the (3,T)l - (3, 3)-l term. From this we can deduce the 

Q-amplitudes involved in the decay. In particular, the W-spin Clebsch-Gordan 

coefficient implies that in vector form 

3’ = G+i, 

which is the same as 

F =S+i 

for baryons. Angular momentum conservation for the total decay and for the 

internal (quark) angular momentum and spin of each hadron are respectively: 

and 
-Lz+-t, 

(3.3) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Simple substitution of Eqs. (3.9), (3.11), and (3.12) into (3.10), together with 

the laws of addition of angular momentum give the result I L-L’ I - 1 5 Q 5 

L +L’ +1. IfL’ #L, then I L-L11 -1 = I IL-L11 -1 I. Sinceinthe 
35 case L= L1 , parity forces Q 1 1 = I I L-L11 -1 I, we canwrite in either case 
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I IL-L’I-lliQ5 lL+L’+ll, 

for pion decays of baryons. The same result in fact holds for mesons. 36 

In the particular case L = 0 we have 

IL’-11 sQ5 IL’+11 

and parity then forces the non-trivial result that the decays proceed only 

in the two partial waves 

Q = Ll-1 and L’+l, 

(3.13) 

‘j 

- 

(3.14) 

(3.15) 

where in principle other values could be present. Thus, in the particular 

case L = 0 there are the same number of Q values and reduced matrix 

elements. In general this is not true. 

Direct manipulation of Eqs. (3.6) may be used to show that if Lr = L, 

and the reduced matrix element in Eq. (3.6) is assumed 37 independent of 

Lx = LH, then the decays through (8, l). - (1, S), proceed entirely in p-wave 

(Q = l), although all waves from Q = 1 to Q = 2L + 1 are expected from Eq. (3.13). 

No such simplification holds for the (3,s).i - (3, 3)-l piece of V-l Q5” V in 

general. 

Similar results may be derived for photon decays if we simply replace T 

by the photon’s angular momentum 7 
Y’ 

which is formed from the combination of 

its spin and orbital angular momentum. Thus we have in general that 38 

I IL-L’l-11 5 j 5 lL+Lr+ll, 
Y 

(3.16) 
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for photon decays between multiplets with internal quark angular momentum 

L and Lr respectively. 

The general algebraic structure of the theory presented here has much 

in common with relativistic quark model calculations, such as than of Ref. 12. 

In fact, the results of Ref. 12 may be cast into a form which permits the 

complete identification of certain parameters there with the reduced matrix 

elements discussed here. However, the assumption of a llpotentialYr in the 

quark model calculations yields definite predictions of the reduced matrix 

elements themselves as they depend on masses and other parameters of the 

model, which is something we do not obtain using purely the algebraic 

structure discussed in Section II. Also very similar in algebraic structure, 

at least for decays to L = 0 hadrons, are some broken SU(6)w schemes. i3 

The relation of such schemes, and in particular Q-broken SU(6)w, to the present 

theory is discussed in detail in Ref. 33. The results of unbroken SU(6) 
W 

for pion transitions correspond to retaining only the 2 (8, l)o- (1,8)o, 0 j 

term in V-I Q5”V. 

IV. The Pionic Transitions of Mesons 

With the basic features and assumptions of the theory described in the 

previous sections, we are in a position to apply it. We begin with the pionic 

decays of mesons. Only non-strange meson decays will be discussed in detail 

as all the corresponding strange meson decay rates are related to those we 

calculate by SU(3). At the present time they add little to the experimental 

tests of the theory. 

In the case of pion transitions among the lowest lying mesons, those in 

a 2 of SU(6) with quark angular momentum L = 0, the situation is particularly 
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simple. ForI,’ =0 - L = 0 transitions only the (8, l). - (1,8) ,O term in 
i 

I 
0 j 

V-l Q5o V can contribute and is purely Q = 1 in character. This single inde- 

pendent reduced matrix then forces a relation between the Q5 matrix elements 

for the two non-strange transitions p - 7r and w - p . Extracting these 

matrix elements 39 from I’ (P - nr) and from I’ (w - 7ry ) plus vector 

dominance, respectively, we find good agreement between theory and 

experiment. 40 

The pionic transitions from 35 Lr = 1 to 35 L = 0 are more complicated. - - 

From Section III there are in general two independent reduced matrix 

elements41 , which we write as < L ’ = 1 II (8,1) o - (1, S), II L = 0 > and 

< L' = 1 II (3,$ - (3,3)-i II L = 0 > . The coefficients of these two reduced 

matrix elements, calculated according to Eq. (3.6), for each possible non- 

strange decay are presented in Table 1, together with the possible hadron 

states which correspond to the constituent quark model states. 

In Table I we list the amplitudes for the specific decay: Hadronl(Ll = 1) - 

r- + Hadron (L = 0). We have assumed that the ?l and H are purely 

octet in character, but have taken the w , 0, and f to be ideally mixed 

combinations of singlets and octets, which results in their being composed of 

only non-strange quarks. For decays involving the h = 0, w , (T and f mesons, 

Zweig’s rule’: has been invoked to relate the decay amplitudes which originate 

from the SU(6)w 1 and 35 parts of their constituent quark states. 42 This 

gives a factor of $3 in the decay amplitudes over what is calculated under 

the assumptions that the w, (T and f are purely octet in character (and purely 

in a 35 of SU(6)w). - 



-24 - 

For experimental reasons it is also useful to represent these helicity 

amplitudes in terms of amplitudes which correspond to definite angular 

momentum properties between the final hadron and pion. Recalling from the 

last section (Eq. (3.15)) that only Q = 0 and 2 are allowed here, there turns 

out to be a linear relation between the two reduced matrix elements and the 

two amplitudes with definite Q properties, which we call S and D. 43 We 

choose the normalization such that 

< L’ = 1 II (8, l)o- (1, S), II L = 0 > = 3 L (S f 2D) 

< L’ = d-2 1 II (3,~)1-(~,3)-1 II L=O > = + 7(S-D) , 

and therefore S = D = < L’ = 1 II (8, l)o- (1, 8). II L = 0 > if 

< L’ = 1 II (3,Z)1 - (z,3)-l II L = 0 > were to vanish. The representation of 

the helicity amplitudes in terms of S and D is also given in Table I. Finally, 

for completeness, we list for each decay the quantity 

g2 = 1 
2J9 + 1 c Q! A I < Hadron’, h I Q5” I Hadron, h 

, 

2 
>I , 

Hadron > is where the charge state of I Hadron’ > is fixed, but that of I 

summed over along with the index a! corresponding to the pion charge. Eq. 

(3.2) shows that g2 is the total pion decay width except for a factor 

(p, (M’2- M2)2/ (4nffM12)) which depends only on masses and the PCAC 

constant. As parity conservation establishes that the helicity f h matrix 

elements have the same magnitude, we need only calculate the h 1 0 matrix 

elements, as in the table, to carry out the sum over h in Eq. (4.2). 

(4.1) 

(4 *2) 
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A, comparison of the results of Table I with the present experimental 

situation is contained in Table II. For this comparison we have used 39 

I'(A, - np) = 77 MeV and 44 I? &&B - nw) = 0 as input. This latter con- 

dition is in agreement with experiments which see a dominantly transverse 

decay and corresponds to setting 45 < L’ = 1 II (8, l)o- (1, 8). II L = 0 > = 0. 

All amplitudes are then multiples of < Lr = 1 II (3,z))1 - (5,3)-, II L = 0 >. 

Predictions of particular interest are: 

(1) I? (B - nw) agrees within errors with TTW being the dominant (and 
39 so far, only observed) mode out of a total B width of 100 5 20 MeV. 

(2) r(f - XT ) is in excellent agreement with experiment. Use of a 

d-wave phase space factor (and relating the coupling constant to that of 

A2 --L 7rp as in Table I) instead of the PCAC dictated factor changes the pre- 

diction by more than a factor of 2, destroying the agreement. 

(3) I’(A2 - r n) is in excellent agreement with experiment. 

(4) We predict a relatively narrow A.1 - np with a dominantly longi- 

tudinal character. This is obviously not the non-resonance observed 46 in 

Tip-L (3@*p, and there is no established state with which to compare our 

prediction. 

(5) I?( 6 - x q) agrees with the roughly known 3g total width. 

(6) We have somewhat arbitrarily assigned the c a mass of 760 MeV. 

While it is gratifying that the resulting r(a - TT) is broad, the uncertainties 

in identifying the non-strange quark state with an observed J PC= 0++ 

hadron are very large. 
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Overall, we find that experiment and theory compare very favorably 

for Lf = 1 - L = 0 pionic decays of mesons. Encouraged by this, we consider 

L’ = 1 - L = 1 transitions. A list of the possible transition amplitudes 

appears in Table BI. We note that including the dependence on L; and Ls, 

there are three possible independent reduced matrix elements 47948 two 

from the (8, l)o- (1, 8). term and one from the (3,3)1- (5, 3)-1 term in 

V-l QF V, respectively. Of all these transitions only D - x 6 is both kine- 

matically allowed and presently observed. 39 Both future partial width mea- 

surements and the extraction of coupling constants from exchanges in two 

body scattering amplitudes may permit experimental checks of these relations 

in the future. 

Of more relevance to present experiments are the pionic decays 

il_L’=2 _ - 35 L = 0. The decay matrix elements are listed in Table IV, 

both in terms of the reduced matrix elements 4g< ti=2 II (8, l)o- (1, S), II L = 0 > 

and < L’ = 2 II (3, g)l - (3, 3)-1 II L = 0 > and in terms of amplitudes P and F 

corresponding to values of Q = 1 and 3. Their relation is 

< d = 2 II (8, l)o- (1, 8). II L = 0 > = &2P+3F) 

< L’=211(3,3& - (3, 3)-1 II L = 0 > = 15 2J6 (P-F) . 

Again, the quantity g2 is given in the last column of Table IV for the various 

possible decays. 

There is a paucity of detailed information with which to check these pre- 

dictions, but some preliminary indications are available. For example, we 

(4.4) 
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predict I’(g - nn)/l? (g - nw) = 1.5, while one analysis 50 gives 1.4 f 0.7. 

Similarly, experiment 39 for r(g - YRT) and Table IV give I’ (w3 - ‘lr p ) N 

120 MeV, while it is known that ‘rp is the dominant decay mode of the ~(1675) 

with a total width of 141 f 17 MeV. 

A. problem of current interest is the classification and decay modes of a 

second I = 1, J PC =1-- vector meson, the p ‘(1600). It may be either a 

member of a “radially excited” 35 L = 0, part of a 35 L = 2 (see Table IV), 

or some mixture of the two. The most surprising experimental observation 

concerning its decay modes is the lack of a strong p’ - ~YT amplitude 

(P’ - p ‘UT is dominant). 51 As no other p-wave decay of the type 35 L’= 2 - 

35 L = 0 has been observed, we cannot predict I’(p l - nn) from Table IV on 

the assumption it lies in the 35 L = 2 multiplet. However, whether the P ’ and - 

its w ’ partner are in a 35 L’ = 2. or in a 35 L’ = 0 “radial excitation, I’ the - 

smallness of r(pf - nn) and the theory forces I’@’ - np) and l?(p ’ - nw) 

to be small also. 52 Observation of any two of these decay modes could pro- 

vide an interesting test of the theory and of the classification of the cor- 

responding states. 

While we have calculated other meson decays, e. g. 35 L’= 2 - 35 L = 1, - 

nothing particularly simple or presently testable emerges from the straight- 

forward calculations. The overall situation, however, is quite encouraging. 

Not only is there general success for 35 Lr = 1 - 35 L = 0 decays, but con- - - 
45 sistency with < L’= 1 II (8, l)o- (1, 8). II L = 0 > = 0, so that only one reduced 

matrix element describes adequately all such decays. For 35 Lr = 2 - 35 L = 0 

there is consistency with the meagre available data, all on Q = 3 decays, but 

no check on the Q = 1 decays, which would allow us to fix the ratio of the two 

reduced matrix elements. 
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V. Pionic Transitions of Baryons 

In our discussion we will concentrate on the transitions between the 

70 L = 1 and 56 L = 2 to the ground state 56 L = 0, although we will also - - - 

mention briefly the transitions inside the lowest multiplet. As in the meson 

case, we discuss mainly the non-strange baryon decays. Cur choice of 

multiplets discussed is motivated by the fact that they are the only ones 

where a fairly complete experimental comparison can be made. In par- 

ticular, we will examine three points: (1) Decay widths into xN and nA, 

(2) phases of amplitudes in nN - N* - rA, and (3) F/D values. 

For transitions of the type 56 L’ = 0 -L 56 L = 0, only the 
i 

1 (8, l)o- (1, 8)o, 0 1 

term in V-l Q5a V contributes. The two predictions made by the theory are: 

(1) F/D = 2/3 for the baryon decays. This is tested directly by the axial- 

vector contribution to the weak leptonic decays of the baryon octet, without 

need for PCAC. This prediction agrees with experiment. 39 

(2) < A’, h = i-iQt)lp,h=i> = 

-c n,A=+ I $ (Q; -iQ;)l p,h= ; >. This prediction also agrees with 

experiment. 53 

For 70 L’ = 1 - 56 L = 0 transitions there are two independent ampli- - 

tudes. Table V gives the results for a neutral resonance in the 70 L1 = 1 

decaying into n-A+ and r-p in terms of reduced matrix elements of the 
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(8, l)o- (1, 8). and (3,;;i), - (s,3)-l terms in V-‘Q,o! V. Since experimental 

phase shift analysis results are usually presented in terms of amplitudes of 

definite 8, we also use these. The relation between the two sets of reduced 

matrix elements is given by: 54 

< 2_0 I,’ = 1 II (8, l)o- (1, 8). II 56 L = 0 > - = $(S+2D) (5.1) 

< 70L’=1~l(3,~)l-(~,3)-111~L=0 > = &S-D). - (5.2) 

Eqs. (5.1) and (5.2) define the normalization of the reduced matrix elements S 

and D. These matrix elements are not to be confused with those appearing 

in Section IV in meson decays. Note that in principle a g-wave could also be 

present here, but we predict its absence by Eq. (3.14). For convenience we 

have also listed in each case the number g2 defined previously as 

g2 = (ZJ’: 1) h a! c I < Hadron’, h I Q50 I Hadron, h > I 2 , 
, 

which is related by only momentum and mass dependent factors to the partial 

width for Hadron* - Hadron + ‘r (see Eq. (3.2)). We have expressed g2 in 

terms of S and D in the table. 

Table VI gives the above quantities for the 56 Lr = 2 - 56 L = 0 transitions. 

In this case, 54 

< 56L’=211(8,1)0-(1,8)011~L=O~ = 5 L (2P + 3F) - (5.3) 
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63 <~L’=211(3,3)1-(3,3)-111~L=O~ = -+P-F). 

The h-wave amplitude which could also appear is predicted to vanish by 

Eq. (3.14). 

Before comparing the experimental partial widths with theory, we must 

note that mixing is possible within the 70 L = 1 multiplet. 55 
- In this multiplet 

there are two D13 resonances, with S = l/2 and S = 3/2, mixtures of which 

may form the physically observed states. Similarly the two observed Sll 

resonances may be mixtures of S = l/2 and S = 3/2 states in the 70. To - 

eliminate the complications posed by the mixing, in this paper we will compare 

with experiment only the sum of squares of reduced matrix elements (g2) for 

two resonances which may be mixtures of the quark model S = l/2 and 3/2 

states. This quantity is independent of the mixing angle. By using this we 

do, however, pay the price of losing some information, and a later, more 

complete fit will have to deal with mixing. 55 

The manner of comparison of the theory with experiment is made unam- 

biguous by the use of PCAC 26 which connects the partial width for Hadron’ - 

Hadron + r to < Hadron’ I &5” I Hadron >, as in Eq. (3.2). Usual comparisons 

of symmetry predictions with experiment introduce ad hoc barrier factors -- 

taken from non-relativistic potential theory. Typically these factors are pro- 

portional to p 2Q+ 1 . Particularly if phase space for a given decay is rather 

small, the difference between the use of PCAC and a barrier factor pre- 

scription can be significant. As a fairly extreme example, consider the A(1950) 

decays into nN and nA. Since the A(1950) has Jp = 7/2+ we are treating 

(5.4) 
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f-wave decays. If we were to use our results for g2 (Table VI) as the 

coefficient of a barrier factor (p7) or in the PCAC expression for the width 

we find that: 

1 N 2 8 P(A(1950) - nN) . 
2Q+l 

P 
I(A(1950) ,I - YTA) PCAC 

(5.5) 

Similar differences can appear in evaluating the relative contribution of two 

partial waves in the same decay. While at present uncertainties in the data 

are in many cases even larger than the differences discussed above, in 

principle we are forced to use the PCAC expressions and future experiments 

should permit a discrimination between the different results for widths. 56 

Table VII compares the experimental partial widths 39,57,58 of the 

30 L = 1 and 56 L = 2 baryons with theory. We have chosen to fit the S, P, 

D, and F parameters to certain decays rather than doing an overall least 

squares fit. We observe that the agreement of experiment with theory is only 

qualitative, and that large experimental errors in the matrix elements are 

involved. One of the strongest disagreements is in the decays of the D15(1670), 

which cannot be mixed within the 2_0 L = 1 multiplet. The disagreement is in 

fact sharper than is apparent in Table VII, since the errors quoted on the 

nN and rrA width are correlated by the reasonably well-known inelasticity. 

While the theory predicts that less than 20% of the width is due to the ‘lr N 

decay, experiment indicates a 40% branching ratio. 
39 

We must emphasize at this point that a large ambiguity exists in evaluating 

the partial widths of resonances even when phase shift analysis results are 
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known. In the case of strongly inelastic resonances, different ways of 

extracting resonance couplings may be used such as: extrapolations to the 

pole, K-matrix fits, Breit-Wigner fits, etc. These give widely varying 

estimates of partial widths. For example, the width of the D13(1520) 

decay to nA changes from 24 to 53 MeV depending on whether one uses 

coupling es.timates from the Argand diagram or a T-matrix pole fit. 58 

In addition to predicting relative magnitudes, the theory also predicts 

relative signs of amplitudes for inelastic scattering. For the reaction 

nN - N* - nA we can compare our predictions to recent isobar model 
57,58,5 phase shift analyses. !r able VIII lists the theoretically predicted phases 

coming from the (8,1)o-(1,8)o and (3,T)l-(z,3)-l pieces of V-1Q5aV and 

the experimental results. 57,58 The theoretical predictions are of two kinds. 

First are those involving amplitudes with the same (Q) partial wave in both 

the incoming and outgoing channel and which are therefore proportional to 

squares of matrix elements. These have well-defined signs regardless of 

the relative magnitudes of the reduced matrix elements of the (8,1)o- (1, 8). 

and (3, 3)1 - (3, 3)-1 terms. The second kind of sign prediction depends on 

this relative magnitude 60 , and may help us in deducing which term is dominant 

for pion decays from one SU(6) multiplet to another. 61 

At present the experimental situation disagrees with the theory even 

for predictions of the first kind as seen in Table VIII. We note, however, that 

the only disagreement is between the D13(1520) couplings and all other couplings. 

This sign cannot be changed by mixing the two D13 states. If the sign of this 

resonance can be reversed, one would have complete agreement between 
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theory and experiment. We note that the analysis on which we base our 

comparison suffers from the lack of data between 1540 MeV and 1650 MeV, 

i. e. between the D13(1520) and the other resonances in the 70 L = 1 and - 

56 L = 2. The relative phases of amplitudes above and below the gap are 

determined by continuity and K matrix fits. It is not inconceivable that a 

different solution across the gap may still be found which will reverse the 

sign of the D 13 (1520) relative to other resonances. If the present solution 

persists then our results along with other quark model and broken SU(6)w 

resultssl are in very serious conflict with experiment. 

If a new solution, with reversed sign of the D13(1520), were to exist 

it would have a (3, z)l - (3, 3)-l dominated transition for the 70 L = 1, and - 

an (8, l)o- (1, 8). dominated transition for the 56 L = 2. - This would agree 

with the solution to be discussed in the next section resulting from an analysis 

of signs in pion photoproduction. Such a solution would be consistent with 

the approach taken in this paper since we may have different terms dominate 

different transitions. 62 The presence of just the (3,z)l - (5, 3)-l r educ ed 

matrix element could fit the data on decay widths of baryons in the 70 L = 1, - 

just as it did for mesons in the 35 L = 1 (see Section IV). In that case we - 

would have s2 = 4D2. Holding the d-wave widths as they are in Table VII, 

this would bring the S31 and D33 predictions into agreement with experiment 

while worsening the Sll and D13 agreement. 63 In the case of 56 L = 2 

baryon decays, the presence of only the (8, l)o- (1, S), reduced matrix 

element results in P = F, which is consistent with the results presented in 

Table VII as it stands. 63 
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Finally, we mention F/D ratios. Unlike meson decays where F/D 

follows from charge conjugation, the baryon F/D values are predictions of 

the theory. Given the nonstrange baryon decay amplitudes and F/D ratios, 

all strange baryon decays are predicted up to questions of mixing and SU3 

breaking. Both the (8, l)o- (1, S), and the (3,T)l- (3, 3)-1 terms have 

identical F/D ratios, since both belong to the W = 1 part of a 35 repre- 

sentation. The predicted values for F/D are 2/3, 5/3, and - l/3 for the 

56 W = l/2, 70 W = 3/2, and 70 W = l/2 states respectively. The 56 L = 2 - - - - 

prediction agrees with the experimental value 64 , while the 70 L = 1 - 

situation is complicated by the mixing discussed above. 55,64 

In all our discussions we have neglected possible mixing between dif- 

ferent SU(6 j multiplets. 65 While such mixing may modify some of our pre- 

dictions which disagree with experiment, it does so only at the expense of 

considerably complicating the simple quark model picture. 

VI. Photon Transitions 

In Sections II and III we have discussed the kinematic and algebraic 

properties of the first moment of the vector current with Jz = f 1, 

Di” = ,d3x[T (yiy)] V,O!i;f,t) , 

taken between states at infinite momentum. In particular, as shown by Eq. 

(3.5), all helicity amplitudes for real photon transitions are proportional to 

matrix elements of D,” + l/$3) D,” between states at infinite momentum. ( 
Such matrix elements of D+” are equal to those of the three terms in V -lD;V 

(6.1) 
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found in Eq. (3.2) taken between those irreducible representations of the 

SU(6)w of currents which correspond to forming baryons out of qqq and 

mesons out of qs, In this section we discuss some of the results obtainable 

in this way for 56 L’ = 0 - - 56 L = 0 and 70 L1 = 1 - 56 L = 0 baryon - - 

transitions, presenting many of the general features of photon transitions 

in the process. We leave a complete discussion of both baryon and meson 

photon decays to another paper. 38,66 

In Table IX we present the results for matrix elements of the rotated 

dipole operator for 56 L’ = 0 - 56 L = 0 transitions. 67 - Only the term in 

V-l DF V (see Eq. (3.2)) which transforms as ((3J)I’O} can make a non- 

zero contribution, for Lz = 0 in both the initial and final state. All matrix 

elements are therefore proportional to the single reduced matrix element 

< 56L’=OII(3,~)l 1156L=O>. For transitions between two octet members - - 

of the 56, this term is characterized by an F/D value of 2/3. 

In physically interpreting the matrix elements in the Table, there is a 

slight subtlety. A. direct evaluation of the matrix element of D+” between 

one nucleon states shows that the result is proportional to the anomalous 

magnetic moment (in fact < N, A = 8 I D, 1 N, h = - * > = - 42 pA at infinite 

momentum). However, as shown by Melosh8, a careful calculation of 

V-l D+” V between one nucleon states at infinite momentum gives a result 

which has the transformation properties of Eq. (3.2) minus a term which is 

exactly equal to the Dirac moment. Therefore, adding the Dirac to anomalous 

moments to form the total moment, we see that the terms in Eq. (3.2) are 

to be interpreted as being proportional to the total moment when taken between 

the same initial and final state. 
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With this in mind, we see immediately that Table IX gives 

~Ttn)/~TtP) = - 2/3 ) 

the old SU(6) result which is rather close to experiment. 39 Furthermore, 

the ratio of & between the h = 3/2 and l/2 amplitudes for A - yN cor- 

responds to a pure magnetic dipole transition with 

if we use the relation < A, h = 3 I D, I N, h = -4 > = /.4*/h and the 

relation between < N, h = g I D+ I N, A = - 8 > and the magnetic moment of the 

nucleon given above. A phenomenological analysis 68 of the data for pion 

photoproduction gives a value for p*/pT(p) which is 1.28 f 0.03 times the 

right hand side of Eq. (6.3). However, this is the result of finding the resi- 

due at the A pole in yN - nN. In our approach one should evaluate p* 

by taking the A contribution to the Cabibbo-Radicati sum rule (see 

Section III). This results in a value 69 of p*/~,(p) which is 0.9 * 0.1 times 

the right hand side of Eq. (6.3)) i. e. in quite satisfactory agreement with the 

theory. Eqs., (6.2) and (6.3) are standard SU(6) results, as is to be expected 

since the (3,8)I term in V -1 01 D, V has the same transformation properties as 

the magnetic moment operator 70 used in SU(6). 

The decays from 70 L’ = 1 to 56 L = 0 (we consider only the nucleon in 

the 56 here) 38 are somewhat more complicated. We first of all note that 

although the I@, 3)-1 , I 
1 

2 1 term in V-l D+V cannot contribute because 

I ALZI I 1 for L’ = 1 - L = 0 decays, both the 
1 

(8, l)o+ (1, 8)o, 1 1 and 

terms do contribute. Hence, everything depends on two reduced 

(6 -2) 

(6.3) 



-37- 

matrix elements, whose coefficients for the various decays are presented 

I in Table X. Second, the (8, l). + (1, 8)o, 1 
1 I 

term is purely electric dipole 

in character if analyzed in terms of multipoles, as can be proven directly. 38 

The [(3,x)l, 01 term is not simple in this way. Third, we note that the 

Moorhouse quark model selection rule 71 forbidding yp - N*, where the N* 

has quark spin S = 3/2, is correctly reflected in the Table. 

In fact, there is a one to one correspondence between Tables IX and X 

and the results of quark model calculations: 72 the (8, l). + (1, S), term in 

V-‘DFV corresponds to the photon interacting with the convection current, 

while the (3,z)l term corresponds to the interaction with the quark magnetic 

moments. Of course, explicit quark model calculations with, say, harmonic 

potentials give the reduced matrix elements as well, something we do not 

obtain at all with the theory under discussion. 

For 56 L’ = 2 - 56 L = 0 decays all three terms in Eq. (3.2) can con- - - 

tribute and the situation in general becomes more complicated than the quark 

model calculations referred to above. We defer a detailed discussion of this 

and the comparison of decay widths to another publication. 
38 

Just as for pionic decays, the relative signs of the amplitudes for 

photon transitions are an important test of the theory. The signs of ampli- 

tudes in yN - TN have already been compared with certain quark model 

calculations 73 and found to be in agreement. The correspondence in general 

algebraic structure of these models with the present theory leads us to 

immediately conclude that the signs are consistent with this theory. In fact, 

since yN - N* - RN involves the product of the yN and nN couplings, 
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information on both kinds of transitions is obtainable. A, detailed analysis 74 

shows that all the observed signs of amplitudes for yN - nN involving inter- 

mediate N*‘s in the 70 L = 1 multiplet are consistent with the theory if the 

signs of the S and D amplitudes of Section V are opposite, i. e. if the ampli- 

tudes have the signs given by the (3,z)I - (3, 3)-l term in V-l Q5aV. This 

lends further support to the existence of a solution to the nN - 7rA phase 

shifts with this property, such as that discussed in Section V. The signs 

of amplitudes for 56 L = 2 intermediate states in yN - nN is consistent with - 

the present theory, but as only f-wave ?TN resonances have established yN 

couplings, we are unable 74 to conclude anything yet on the relative signs of 

P and F, as defined in Section V. 

In general, photon amplitudes provide a particularly clean test of the 

theory with no use of PCAC being necessary. A,s such, the good agreement 

found is expecially significant. The agreement of signs in -yN - nN therefore 

lends strong support to the theory in general, and to the nN (and 7rA) decays of 

the 70 L = 1 baryons being dominated by the (3, s)l - CL 3)-l term of 

V-l Q5? V in particular. 

VII. Summary and Discussion 

In the first few sections of this paper we have indicated how the intro- 

duction of a transformation, V, from current to constituent quark basis 

states helps unify the discussion of finding the decomposition of hadron states 

at infinite momentum into irreducible representations of the algebra of 

currents. While no one has yet been able to completely specify this trans- 

formation because of the lack of a detailed dynamics of hadrons, it is possible 

to guess at certain algebraic properties of the transformed currents. 
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In particular, following the work of Melosh8, we have abstracted from 

the free quark model the algebraic properties (under the SU(6)w of currents) 

of the transformed axial-vector charge, V-l Q50 V, and the transformed 

first moment of the vector current, V-l D+” V. These transformed operators, 

taken between known irreducible representations of the algebra of currents, 

are equal to the untransformed operators, Q5a and DF, taken between 

hadron states built out of constituent quarks. With the use of PCAC, matrix 

elements of Q50L are related to those of the pion field. Matrix elements of 

DF are proportional to real photon transition amplitudes. As a result we 

have an elegant and beautiful theory of the algebraic structure of pion or photon 

transitions between hadrons based on the one assumption of abstraction of 

certain algebraic properties of the free quark model. We stress that at this 

stage it is worthy of being called a theory, and not a phenomenology, in that 

the algebraic properties assumed have a clear origin and could be exact, 

and in that our basic assumption is consistent with relativity and invariance 

principles . In the resulting theory, as applied to actual physical transi- 

tions, amplitudes are related in a straightforward way by Clebsch-Cordan 

coefficients, and decay widths are in turn related to these amplitudes in a 

non-arbitrary, known way. 

When the theory is applied to the pionic decays of mesons, the results 

of a comparison with experiment are very encouraging. Both for 

35 L’ = 0 - - 35 L = 0 transitions, where only the (8, l)o- (1, S), term in 

V-l Q50 V contributes, and for 35 L’ = 1 - 35 L = 0 transitions where both _ 

the (8, l)o- (1, 8). and (3,34- (3, 3)-l terms in V-l &5”V cancontribute, there 
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is good agreement with experiment. In the case of 35 I,* = 1 - 55 L = 0, - 

moreover, the experimental results suggest the dominance of 

< L’ = 1 II (3, 3)1-(3,3)-1 II L = 0 > over < L’ = 1 II (8, l)o- (1, S), II L = 0 >, 

there in fact being consistency with the vanishing of the latter reduced 

matrix element. For 35 L’ = 2 - - 35 L = 0 decays present data are rather - 

sparse, but what does exist is also quite consistent with the theory. Further 

experiments on 35 L’= 2 decays (especially p-waves) would be of considerable - 

interest in this regard. 

The situation for pionic decay widths of baryons is not quite so 

encouraging, there being failures by factors of two to three in our comparison 

of theory and experiment. However, given our assumption of simple identi- 

fication of physical states with those of the constituent quark model (no 

mixing of different SU(6) multiplets), the theoretical use of the narrow 

resonance approximation in computing decay widths, and the experimental 

difficulties in assigning widths to broad, inelastic resonances, the present 

situation with regard to baryon pionic decay widths is reasonable. 

Of more crucial importance is the situation with regard to the relative 

signs of resonant amplitudes in TN - rA. The present experimental 

analysis 57,58 of nN - nnN produces relative signs which disagree with 

those predicted for baryons in the 70 L = 1. If this situation persists, then - 

we will have to face at least one of the alternatives: (1) there is large 

mixing of different SU(6) multiplets, thereby invalidating our identification 

of the observed hadrons with simple quark model states; or (2) the use of 

the full SU(6)w x O(3) to relate different quark spin states is invalid, and 
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only a weaker set of relations holds, such as those following from chiral 

SU(3) x SU(3); or (3) the algebraic properties abstracted for V-l Qf V from the 

free quark model do not hold in the real world. None of these possibilities is parti- 

cularly appealing, nor does any of them explain the success with meson decays 

or the agreement of theory and experiment for the signs found 74 in yN - nN. 

c On the other hand, suppose that another solution to the nN - nA phase 

shifts is found which gives relative signs in agreement with the theory. Pre- 

sumably this must come from reversal of the D,,(1520) signs relative to 

those of other 70 L = 1 resonances above the I1 gap” in the data. - The resulting 

situation would then indicate dominance of the < L* = 1 II (3, z)l- (3, 3)-1 II L = 0 > 

reduced matrix element, in agreement with the photoproduction results. 74 

With more than twenty signs of resonant amplitudes in yN - nN and nN - nA 

in agreement with the theory, there would then be strong support for the theory 

as a valid description of both photon and pion transitions, as well as for the 

identification of the observed hadron states with those of the constituent quark 

model. 

As such, we would possess a viable theory of weak and electromagnetic 

current induced transitions between hadrons at q2 = 0. With the identification 

of the observed hadrons to good approximation with constituent quark states 

and the use of PCAC, a powerful approximate theory of all pion and photon 

decay results. This approximate theory can then be extended to include vector 

meson transitions if we make an additional assumption, that of vector meson 

dominance. Demanding consistency between the two ways of treating A2 - TP, 

for example, then leads to connections between the reduced matrix elements 
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involved in r transitions and those in p transitions. However, inasmuch as 

the longitudinal and transverse electromagnetic currents have independent 

reduced matrix elements in this theory, the h = 0 and X = f 1 helicities of 

the vector meson are not necessarily tied together for us in the way that they 

are in a model which starts with the strong interactions being symmetrical 

under SU(6)w (and then breaks the symmetry in some way) and for which the 

A = 0 pion and h = 0, f 1 rho are related. 75 Therefore, although we can 

duplicate such models by making additional assumptions relating various 

reduced matrix elements, we are not forced to do so. 

This brings us to one of the important extensions of the present theory. 

Namely, one might construct a phenomenology of purely hadronic vertices by 

I1 tieing on” the phenomenology at points of overlap with the present theory 

of current transitions plus the assumptions of PCAC and/or vector meson 

dominance. 76 One could provide justification for some of the broken SU(6)w 

schemes that have been devised, and in the process see clearly the level of 

approximation and additional assumptions necessary to obtain their results. 

In this way it might be possible to construct a full phenomenology of purely 

hadronic vertices, including, but not restricted to, those involving pseudo- 

scalar or vector mesons. 

Other directions for extension of the theory include an investigation of 

the predictions for strangeness changing pseudoscalar meson decays and the 

use of kaon PCAC. At the same time, the phenomenological analysis should 

be extended to cover the pionic decays of strange particles. 

Of more fundamental interest is an investigation of mass formulas within 

this theory. Such an investigation has already proven very interesting and 
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profitable in the framework of the previous work on finding the representations 

of current algebra exhibited by hadrons at infinite momentum. 77,78 A pre- 

liminary look at this problem in the present framework indicates that it may 

be rather complicated. 7g 

Finally, of major interest is the extension of the theory to values of 

q2 # 0. For single currents, this permits the interrelating of resonance 

weak and electromagnetic excitation form factors. For products of currents, 

the bilocal operators are candidates for investigation 80 , their matrix elements 

being measurable in deep inelastic scattering. Clearly, a large class of 

problems of great interest involving the structure of hadrons as probed by 

weak and electromagnetic currents is investigatable from this new point of 

view. 
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TABLE I 

Decays of non-strange 35 Lt = 1 mesons by pion emission to 35 L = 0 

mesons. The o, g, and f are assumed to be ideal mixtures of SU(3) singlets 

and octets so as to be composed of non-strange quarks. Zweig’s rule2 is 

used to relate decay amplitudes involving the 2 and 1 parts of the h = 0, w , 

o, and f. The 97 and H are assumed to be pure octet. The reduced matrix 

elements are defined in the text. 41 

A2(1 = 1, Jpc= 2++) 

‘-L 7r- p+, h = 1 

B(I = 1, Jpc= l+-) 

+n-wO,h=O 

h=l 

Al(I = 1, JPc= l++) 

-4pf,A=0 

A=1 

A2(I = 1, Jpc= 27 

-G7j0,A=0 

6(I=l, Jpc=Ost) 

“clr-q, A=0 

0 -&S +2D) S2 -I- 2D2 

- T$ (S - D) g6 

3-6 
$3 
12 ts - D) 2S2 + D2 

$6 &S+D) 48 

& -zs 

D2 
240 

S2 
56 
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TA.BLE I - continued 

Decay (A)+ tW** td Wtt 

f(I = 1, Jpc= 2++) 
-+ 

-7r 7r ,h=O 

1 
‘;? -&p $D 

~(1 = 0, Jpc= Off) 

- -lr n- +, A=0 
3s2 
64 

H(I = 0, Jpc= 1 +-) 

-n-p+, h = 0 0 g (S + 2D) S2+2D2 
h=l 

0 
1 d-3 
if 24 ts 

96 
- D) 

* (A) Coefficient of < Lq = 1 Il (8, l)o- (1, 8). II L = 0 > 

** (B) Coefficient of < L’ = 1 II (3,5)1- (3,3)-l II L = 0 > 

j’ (C) Q-amplitude representation 

tt (D) g2 
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TABLE II 

Comparison of predictions for 35 L’ = 1 - 35 L = 0 pionic decays from - - 

Table I with experiment. The predictions in the table correspond to S = 2D, 

i. e. , the vanishing of < L’ = 1 II (8, l)o- (1, 8). II L = 0 >. 

IJpredicted) 
Decay (IkIeV) 

A2(1310) - nP 77 (input) 

B(1235) - ~TW A=0 0 (input) 

B(1235) - TW A=1 76 1 

Al(1070) -7rp A=0 52 

Al(1070) - np A=1 26 

A2(1310) - nq 17 

fs(975) - n-q 37 

f(1260) - 7rr 118 

a(760 ?) - TT 234 

I?(experimental)3’ 
(MeV) 

77 * 20 

dominantly A= 1 
100 * 20 total width 

? 

16 f 4 

-60 total width 

125 f 25 

Broad? 
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TA.BLE III 

Transitions of non-strange 35 L’ = 1 mesons to other 35 L = 1 mesons - 

by pion emission. The notation for labelling the states is as in Table I, with 

the 0, D, and f assumed to be ideal mixtures of SU(3) singlets and octets so 

as to be composed of non-strange quarks. Zweig’s rule2 is used to relate 

decay amplitudes involving the SU(6)w _ 35 and 1 parts of the h = 0 f, D, and c , 

and the h= 1 f and D. The reduced matrix elements are defined in the text. 47 

Decay 

B - 7r- 6+, A = 0 

B-M-A ;, A=1 

AZ -v-B+, A=0 

(a) (b) (cl 

1 6 0 + 42 

0 - $6 +j 43 

- &I2 0 1 
z 

A=1 0 -$& +3 

D - n- d+, h = 0 0 - $2 1 
4 

D-YT A. ;, A=1 

D-n -<,A=0 

A=1 

A. -7r-o,h=O 1 

f- R-A;, A=0 

A=1 

f-a-AZ+, h=l 

h=2 

H-&B+, h=l 

$3 

0 

-93 

0 

0 

0 

1 -- 
6 

0 

1 -- 
6 

$46 

- $2 

0 

1 -- 
4 

- $42 

0 

-; 46 

0 

0 

(a) Coefficient of < L’ = 1, Lk = 0 II (8, l)o- (1, S), II L = 1, Lz = 0 > 

(b) Coefficientof < L’=l, L~=lll(8,1)o-(1,8)olIL=1, Lz=l> 

(c) Coefficient of < Lt = 1 , L; = 1 II (3, T)l - (5,3)-l II L = 1, Lz = 0 > 
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TA.BLE IV 

Decays of non-strange 35 L* = 2 mesons by pion emission to 35 L = 0 - - 

mesons. The w, w3, D2, and w ’ are assumed to be ideal mixtures of SU(3) 

singlets and octets so as to be composed of non-strange quarks. Zweig’s 

rule is used to relate decay amplitudes involving the 35 and 1 parts of these 
-49 

states. The reduced matrix elements are defined in the text. 

Decay (a) (b) (cl W 

g(I = 1, Jpc= 3- -) 

-7i- 7r - +, A=0 

g(I = 1, Jpc=3--) 

-7r w - O,h=l 

Fl(I=l, Jpc=2--) 

- 0 -7r w ) A=0 

A=1 

p’ (I = 1, J PC-l--) 

-klrf,h=O 

p’(I=l, J PC= l- - ) 
- 0 -710, h=l 

A3(I = 1, Jpc= 2- +) 
- + 

-lr p, A=0 

h=l 

-$I5 

-&I30 

0 

-+o$5 F 

-$30 F 

$3 (P-F) 

+0116 (3P+2F) 

&-i30 P 

-& J-301? 

F2 
140 

4 
105 

3P2 +2F2 
300 

P2 
90 

P2 
180 

-+. 43 (2P+ 3F) 
2P2 +3F2 

-+. (P-F) 150 
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TABLE IV - continued 

Decay (a) @) (d) 

w3(1=0, Jpc=3--) 
- + 

-71 p, A=1 $30 &/-3OF F2 
35 

D2(I = 0, JPc= 2- -) 

-u-p+, A=0 0 -$o,4P - F) 3P2 +2F2 

A=1 -96 -; -$j d6 (3P + 2F) 100 

w’(I=O, J PC =I--) 

-NT-p+, A=1 $30 

(a) Coefficient of < Lt = 2 II (8,1)o- (1, 8). II L = 0 > 

(b) Coefficient of < L’ = 2 II (3,Z)l- (3,3)-l II L = 0 > 

(c) Q-amplitude representation 

w g2 
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TABLE V 

Decays of non-strange I_0 L’ = 1 baryons into 56 L = 0 baryons by pion 

emission. States in the 3_0 L* = 1 are labelled by Jp and [SU(3) multiplet]2S +l , 

where S is the quark spin. The reduced matrix elements are defined in the text. 54 

Decay (a) (b) (c) (4 

D15 
-r-N+, A=; 

5/2- [814 

- a-A+,h =+ 

A=; 

D13 
-&+,A=; 

3/2- [814 

-+&,A=; 

A=; 

Sll 
-q-N++=; 

l/2- [814 

- a-A+,h =+ 

D 13 
- n-N+,h = f 

3/2- [8-j2 

-n-&A =; 

^=$ 

%l 
- n-N+J =+ 

l/2- [8]2 

-c n-A+,h =; 

-&lo &rlO -+0&O D 

-&.I15 go4 15 $15 D 

-&I5 &J5 -&,J5 D 

+&ho 

$10 
1 

-18 

$410 

&j&o 
1 -7 
9 

+ &,d 10 (5S-4D) 

$,/lo (5S+4D) 

53 -18 

&f/z 

$42 

1 -- 
9 
0 

1 -- 
9 

$2 

1 
-18 

1 -- 
6 
2 -- 
9 

+(S +D) 

-+8 (S-D) 

$44 D 

$45 D 
D2 

360 

7D2 
is 

D2 
2160 

25S2 -I- 16D2 
540 

S2 
216 

D2 
108 
D2 
Ei 

S2 + D2 
54 

S2 
54 

D2 
432 
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TABLE V - continued 

Decay (a) (b) (c) N-0 

D33 
-&N+,h=; 

3/2- [lOI 

-&$+,A=; 

A=; 

S31 
--w n-N+,h =; 

1/2- [lOI 

+ n-A+J =; 

-$2 D D2 
432 

2 1 -- -- 
9 9 

0 1 -- 
3 

1 1 
36 18 

-$ (S + D) 

-5 (S-D) 

&P 

5(S%n2, 

s2 
432 

5 J-2 5D2 
108 

(a) Coefficient of < L* = 1 II (8, l)o- (1, S), II L = 0 > 

(b) Coefficient of < L’ = 1 II (3, Z)l- (3, 3)-1 II L = 0 > 

(c) Q-amplitude representation 

0% g2 
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TABLE VI 

Decays of non-strange 56 L1 = 2 baryons into 56 L = 0 baryons by pion - 

emission. States in the 56 I? = 2 are labelled by Jp and [SU(3) multiplet]2s + ’ , 

where S is the quark spin. The reduced matrix elements are defined in the text. 54 

Decay (a) (b) (cl w 

F15 
+n-N+J=; 

5/2+ [812 

+ n-A+,h =; 

A=; 

?3 
-.+ n-N+,A =; 

3/2+ [8j2 

+ r-&h =$ 

A=; 

F37 
- n-N+,A =; 

7/2+ [lOI 
+ 1 -n--A ,h=- 2 

2 
5 $3 F I? 

52 

-&J2 -&46(3P+2~) 16(3P2+2F2) 

--$3 -& (P - F) 
3375 

; 46 
p2 
54 

-& 421 &“i7 F 

8(P2+9 ) I? 
3375 

4F2 
525 

g5J42 -+14 F 
2 

$5 4210 -$5d70 F 70 
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TABLE VI - continued 

Decay (a) (b) (cl W 

F35 
-r-N+,+ 

5/2+[1014 

-L n-&A =; 

pi 

P33 
-a-N+,h=$ 

3/2+ {lOI 
+ 1 -r-A ,A=- 2 

A=; 

P31 
-q-N+,h=$ 

1/2+ [lG4 
+ 1 -r-A ,h=- 2 

-&&2 

A.\121 

&d14 

-32 

2 
z 

2 
-15 

$2 

2 
-45 

-&42 F 

A,/21 (21P - 16F) 

& 414(7P+8~) 

-$I2 P 

-& (4P-9F) 

-& (4l?+F) 

$2 P 

2P -45 

8F'2 
4725 

147P2+128? 
9450 

4P2 
675 

16P2 +9l? 
1350 

8P2 
675 

P2 
270 

(a) Coefficient of < L’ = 2 II (8, l)o- (1, 8). II L = 0 > 

(b) Coefficient of < L’ = 2 I[ (3,5))_ - (5, 3)-1 II L = 0 > 

(c) L-amplitude representation 

w tz2 
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TABLE VII 

Decays of 2 L’ = 1 and 56 L’ = 2 baryons into 56 L = 0 baryons by pion - - 

emission. All rates are fixed by the D13 and Sll decays to nN for the 70 LT = 1 - 

decays, and by the F15 and Pgl 63 decays to TN for the 56 L1 = 2 decays. For 

two states which may be mixed, a combination of widths which is independent of 

mixing is used and listed under I? (predicted). 

Decay 

D,,(l=o) - bN)d 

D13(1700) - bN)d 

D13(1520) - @a), 

D13(1700) - (‘a), 1 

s11(1535) - @a), 

s#715) - bA)d 1 

D15(1670) - (“N)d 

D15(1670) - @a), 

S31(1640) - (rhd 

D33(16g0) - bN)d 

D33WW - @‘%d 

Sll(1535) - ms 

Sll(l715) - (Ws 1 

D13(1=0) - (+ 

D13(1700) - (MS 

S31(1640) -L (~9 S 

D33(1690) - Wls 

I’(predict.ed) 
(MeV) 

I’(1520) + 0.50 I’(1700) 

r (experimental)” $57 
(MeV) 

= 79 MeV (input) 79 f 20 

r(1520) + 0.243 r(1700) 

= 30 MeV 

r(1535) + 0.264 I’(1715) 

= 35 MeV 

21 MeV 

82 MeV 

81 

19 

55 

r(1535) + 0.505 r(l715) 

= 116 (input) 

I’(1520) + 0.243 r(1700) 

= 46 

18 48 f 9 

61 172 f 60 

10 i 6 

not seen 

56 f 14 

84 rt 21 

52 f 20 

32 rt 9 

not seen 

116 f 55 

19 f 10 
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TABLE VII - continued 

Decay 

F15(1688) - WN)f 

F37(1950) - (‘rqf 

F37(1950) - (a4, 

F35(1880) - (Wf 

F35(1880) - Wf 

p33( ) - @a), 

F15w38) - (“4f 

P13(1860) - w)f 

P31(1860) - bqp 

P31(1860) - MA), 

p33( ) - wlp 

p33( 1 - w, 

F35w30) - mp 

P13(1860) + (xN)p 

P13 (1860) - oap 

F15(1688) - (KQp 

I’@redicted) 
(MeV) 

84 (input) 

74 

65 

14 

77 

12 

57 

r(experimenta1) 39,57 
(MeV) 

84 zk 25 

92 f 20 

37 f 18 

36 f 18 

16 f 16 

? 

not seen 

not seen 

75 (input) 75 f 25 

8 not seen 

? 

? 

not seen 

75 f 25 

not seen 

22 * 7 

44 

118 

5 

15 
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TABLE VIII 

Signs of resonant amplitudes in nN --+N*-nA for N*‘s in the 7OL=l and 56L=2. - - 

The S11(1550) and D13(1520) are taken as dominantly the quark spin S=1/2 states, 

while the S11(1715) and D13(1700) are assumed to be dominantly S =3/2 within the 

70 L = 1, The arbitrary overall phase is chosen so that the DD, ,@670) amplitude is negative. - 

D B 

+ 

+ 

+ 

+ 

DS13 (1520) 
DD13 (1520) 

+ 
+ 

\ 

SD,,(1550) 

SD,,(1640) 

? 

7OL=l DS33 (1690) 
- DD33 (1690) 

+ 
+ 

+ 
? 

I DD15 (1670) 

DS13 (1700) 
DD13 (1700) 

SD,,(1715) 

l- 

? 

? 

FP15 (1688) 
FF15 (1688) 

PP13 (1860) 
PF13 (1860) 

FF37(1950) 

FP35 (1880) 
FF35(1880) 

PP33 t 
PF33 ( I 

PP31 (1860) 

+ 
? 

? 
% 

+ 
+ 

+ + 
56L=2 - 

? 
+ + 

? 
? + 

? 

A - Amplitude in rN+nA. The first letter refers to the nN partial wave, 

the second to the 7rA partial wave. 57,58 

B - Theoretical sign from (8, l). - (1, S), term in V-lQ:V. See Ref. 59. 

C - Theoretical sign from (3,3)1 - (3, 3)-1 term in V-l&: V. See Ref. 59. 

D - Experiment (Ref. 57 and 58). 



-67- 

TABLE IX 

Photon transition amplitudes for 56 L’ = 0 -+ 56 L = 0. - Matrix elements of - 

Df+ --t- 
& 

Dt are considered (Jz = +l photons), and h denotes Jz of the de- 

caying N or A. See text. 

Decay Coefficient of <L’ = OII (3,;?jl I[ L = 0> 

N+ +yN+, h= l/2 (- 2/15)& 

NO - yN”, A = l/2 (+4/45)& 

A+ -yN+, A=1/2 (- 2,‘45),,‘i?j 

A = 3/2 (- 2/45),/% 
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TABLEX 

Decays of non-strange 70 L’ = 1 baryons into neutrons and protons in the 56 L = 0 - - 

by photon emission. States in the CL’ = 1 are labelled by Jp and [SU(3) multi- 

plet] 2s+1 where S is the quark spin. A denotes the helicity (J,) of the state in 

the 70. - The photon has Jz = +l, corresponding to the operators Dt + -&- D; . 
Jz 

A B C 

D15 --+ r N+, h = l/2 0 0 
h=3/2 0 0 

5/2-[814 

4 yN", h = l/2 0 (l/30) 4% 
h=3/2 0 (l/30) m 

D13 -.+ yN+, A = l/2 0 0 
A=3/2 0 0 

3/2-[8,4 2 

-+ yN", h = l/2 0 (-l/90) s 
A=3/2 0 (-l/30) Jiz 

Sll --+ yN+, A= l/2 0 0 

l/2- [814 

+yN",A=1/2 0 -l/18 

D13 +N+, A=1/2 (- l/12)& (l/6)8 

A=3/2 

3/2- [812 
(- 1/12)S 0 

- yN", A = l/2, (+ l/12) 45 (- l/18) 45 

h=3/2 (+ l/12) fi 0 

Sll 
+ 

+-IN t x=1/2 -l/6 -l/6 

l/2- [812 

-+ yN", A=1/2 +1/6 +1/18 
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TABLE X (cont’d) 

A B C 

D33 - yN+, h = l/2 (- l/12) Jz (- l/18) & 
A= 3/2 (- l/12) & 0 

3/2- [lOI 

YN’, A = l/2 (- 1/12)&i (- l/18) fi 
A=3/2 (- l/12) hF 0 

s31 ---, y N+, A = l/2 - l/6 l/18 

1/2- [lOI 

--+ yN”, A = l/2 -l/6 l/18 

A -Decay. 

B -Coefficient of <L’ = 111 (8,1). + (1,8)ollL = 0> . See text. 

C - Coefficient of <L’ = 111(3,3)1 IIL = 0> . See text. 


