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ABSTRACT

An invariant regulator field method is applied to the construction of vector
current vertices in a dual resonance model. If it is not required that the regu-
lators be fully conformally invariant, but only that they have the invariance
required for duality, Gaussian factors can be eliminated consistently from both
the elastic form factor and the deep inelastic structure functions. This method
introduces new ghost states which can be pushed to arbitrarily large mass by
judicious choice of the reguiator parameters. However, there are still ghosts
at low levels from the basic dynamical oscillator field, as in the Veneziano
model with intercept @(0) # 1. The structure function sz does not scale in

the model. The physical interpfetation of this result is discussed in detail.
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INTRODUCTION -

‘In spite of the great progress mads in recent years in understanding the
structure of dual resonance models (DRM) that stem from the Veneziano formula
and its generalizations for hadron-hadron scattering amplitudes, it has not yet
proved possible to construct a comparably consistent dusl theory of current-
hadron interactions, The basic entity in terms of which the theory of the DRM
can be most c¢learly formulated is the Nambu-Susskind ”s'tring”.1 There is no
doubt that the classical problem of the radiation of a violin string on which
charge has been distributed is well-defined and can be solved., It is much more
difficult to decide whether the analogous fully relaﬁivistic, quantum-mechanical
problem is even well-defined, let alone solvable in full generality, We will not
do this in this paper, and the title is to be taken as a real question, not a
rhetorical one,

Our aims in this paper are much less ambitions, Two principal strands of
development2’3 in the theory of "dual! currents will be interlaced in such a

- 1
manner that at least formally the requirements of duality+ are satisfied in a

.model for the vector current, The model will then be used to calculate the

elastic form factor of the ground state of the string, and the baéhaviour of ths
deep~inelastic structure function W2 in the Bjorken limit., The results of these
calculations have been published elsewhere?. In this paper, we elaborate the
arguments leading t8 the results, and hopefully clarify some physical points,
It must be pointed ocut that we accept at the outset shortcomings of a very serious
nature in the formafism, such as the occurence of both tachyons and negative
metric ghosts, Remarkably, in spite of this, the physical intefpretation of our
results is not implausible, _

Some of the principal problems to be faced in constructing a dual theorv of
currents can be understood by first examining a single harmonic oscillator in

three dimensions, The Hamiltonian is ( in appropriate units )
2q0t* ¢ 3
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The current in this theory has components (in momentum space)
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where use has been made of a well~knowm identity to pass to "normal ordered!
form.



One problem is that if, instead of a single niode there are an infinite
number of modes as in the string, there is a divergence in passing from {1.2a)
to (L.2b). This problem with going to the continuum limit has been stressed by
Nielsen and Susskind.b They argue that is is not reasonable for current probes to
really "see" a continuum in the string, hence there should exist a maximum mode
nunber corresponding to a minimum spacing of constituents of the string. Not
unexpectedly, a careless implementation of this proposal leads to a bresking of
duality. When the infinites are removed in such a manner as to preserve the duality
properties of amplitudes involving currents, it is found that there are still an
infinite number of modes in the problem., The details of this "dual" method of
removing infinities, due to Drummond and to Rebbi, are discussed in Section IT.
It is found to be much like a field-theoretic "regulator"_method.7

A second problem-facing us in constructing dual current theories is how to
generalize Eg. (l.l). It describes the current of a single particle in a harmonic
- well. The method of constructing the current at a space-time point (Xu) due to the
motions of the constituent particles on the string has been given by Nambu?L'Thig
formalism is also reviewed in Section IT. One is still left with the problem of
decid ‘ing how the total charge carried by the string is to be distributed. This
distribution must be specified in such a manner that duality is not violated,
yet gauge invariance holds. A model for this distribution is given in Section III.

Section III also contalns a discussion of a new set of "fields" which have the
invariance properties regquired for duality. We have found it convenient to introduce
these new fields because, even after a model for the vector current is introduced
using the formalism of Nambu, and rendered finite by the methods of Drummond and
Rebbi, the string is found to have an unpleasant Gaussian elastic form factor. This
is the last remnant of the single oscillator Gaussian evident in Eg. (L.2). The
new fields which are introduced, and are applied as "regulators", allow us to
eliminate this Gaussian, leaving power—law.fall off for the elastic form factor.
This is demonstrated in Section IV. In this manner, it is seen that the string
model is indeed capable of reproducing the quéiitative behaviour of the

"electromagnetic" hadronic wavefunctions.
A third major obstacle in generalizing the single three~dimensional oscillator
to the string model is that, for relativistic covariance, a fourth oscillator in A

timelike direction is usually also introduced. Much of the recent progress in the



DRM has consisted in demonstrating that, in the "manifestly covariant" formulation,
ther%are enough subsidiary conditions to completely eliminate from the physical
states all bad, negative-metric states created by the tiﬁelike oscillators.
Unfortunately, these conditions are only satisfied if the (mass)2 of the patticles
involved in the scattering process have fhe spectrum -1, O, 1, 2, , n,. ... .

: T
The problem of ensWiing positivity for processes involving currents remains unsolved,

ghost -killing gauge conditions fin the
although some attempts to preserve the VirasoroVWconstruction of the currents have
been made.“ai reserve to the conclusion discussion of these attempts.

In this paper, no attempt has been made to ensure positivity of the norms of the
states. On the contrary, our philosophy has been as follows. Since regulator
fields are used, which by necessity introduce infinitely many ghosts that cannot be
eliminated by Virasoro gauge conditions, it is unnecessary to require the regulators
to be fully “conformally invgriant". It is sufficient that they be "Mobius invariant”
in order tha£ the theory be dualf' This freedom is what permits us to use a set of
regulator fields that eliminate the Gaussian behaviour of the elastic form factors.
The procedure is not as crazy as it might at first seen, becaﬁse one is able to
show.that the net results, both for the elastic form factor and for Vg, are
remarkably insensitive to the precise manner in which the regulé%ors are chosen.
Thusuthe bad effects of the regulators can be pushed t%afpear at arbitrarily high
masses, while the good effects are present by mere virtue of the fact the regulators
-have been Iintroduced. 'The hope is, then, that the regulators mimic the properties
that a correctly cut-off, positive definite theory might have, at least for certain
matrix elements!l'Some of these points are illustrated in Section VI

Finally, it i1s appropriate in this Introduction to discuss why the structure
function W, should be studied in the DRM at all. One can reasonably expect that a
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string picture will be totally anti-thetical to current explanations of the scaling
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Ofy’%z! From a partda point of view,“ét is predictéble that the string model

will fail to scale because the motions of the constituents of the'string can never be
considered to be free. From the light-cone considerations{d;ne might expect VWZ_

to be nonscaling in ﬁhe string model if one believes the "fishnet" argument that IV DRK
the constituent propagators are Gaussians, and hence have no light-cone

singularity.

On the other hand,'the work of Bloom and Gilmén4élearly indicétes that duality
is a notion that is relevant to deep~inelastic processes. Furthermore, several
authors have constructed pure resonance models which exhibit scaling behaviour.lL
The question is whéther the DRM in its present form realizes duality‘in a manner
that is applicable to a discussion of these processes, or wﬁether it really does
fall prey to the diseases naive considerations lead us to expect.

Section V contains an analysis of W, in the model, We find that Wz_does no%
scale in the-Bjorken limit for the reasons suggested b& the parton model concepts,
namely, there is never a "time" scale so short that parton-parton forces can be
neglected. Consequently, the "partons” of the striné model have structure. There
is a contribution toywz‘from the string's partons which falls off; this is related to
the"convective" form factor of the partons. But there is another contribution
which grows, due to a "megne tic" parton form faétor. Physically this is similar
to a parton model in which the partons are quarks endowed with an anomolous
magnetic moment. It is Xnown that in such a case, W: scales rather than VWi:
CONSTRUCTION OF THE VECTOR CURRENT

In.this section we briefly review the construction for the vector current
proposed ﬁy Nambu?‘ We will see how the sum over the infinite number of modes of
the string produces a divergence, and introduce the Drummond-Rebbi prqcedure for

eliminating the infinity. The invariance properties required in DRM for the current



to be "dual" are alsoc discussed. N

First recall the amplitudes of oscillation of the string in Minkowski space
are described by the field 7L
{a) o) (o) Y e ( Lhr 3 _-L‘ T of
S e P Z .
\///\ (e,7) = T +ﬂ§~ 1o+ Z:n:lj/% s m b 07—;,“6 +/n/ )
Here £ is the length parameter along the string, and T plays the role of a time
variable. The string sweeps out a world sheet with parameters 795>0,60 Yy —0a.
ICSCENY, BT S
The osc1llator variables satisfy the commut?tlon relations "%tkl)éeiﬂté]z"d;&*V hin o
% (6,7)
If these modes of oscillation were absent,lwould describe the position of a classical
(o) ) 0
free particle that was at )9 at'27=-43 and which has velocity//{“/ . Because
¢
of a conventional choice of units, 6Zi~ is actvally the center of mass

monmentum of the string.

This suggests that Eg. (1.1) be generalized to

st |
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where Js %% = Jo S 7 ;r’lf,a/s: i
The statement of current conservation, Eyké/f(x) =0 is satisfied if
the internal current is conserved, gd,:rd =0 ; if the component of

the internal current normal to the boundary vanishes at the boundary;

snd if the integral in (2.1) is well defined] andcé;rface terms vanish.
. 111
Unfortunately, as it stands Eg. (2.1) is not well-defined. We see this

heuristically through the formal express:LonJ
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For, passing to normal ordered form,

(2‘2) gﬂi/%vm__ e “Z%Vﬁq’ [JXF /—-/j Z:O = Mﬁ)]
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The sum in Eg. (2.2) is infinite, so the expression € ™ makes sense only for
The crucial observation tha&allows contlnuatlon of this line of development 1s'

(a.~
that the infinity in the sum in Eq. (2.2) can be cancelled if in addition to\/



one uses a second field in Eq (2.1).
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The new b-set of oscillators obeys the same commutation relations as the a-set,

and a- and b- sets are independent. The relative factor "i" between the sets of

modes. enables the infinities from the sums (2’ 72:/ ces. 2 n 6‘ )

(2 I’l.-, sSin, 2 n Q) to cancel.
One then obtalns —~ -q%
Y = etk (2sin8)78
(2.3) € t
The nontrivial factor (2 SN 6) ZJ which appears in this expression is
responsible for the properties of the elastic form factor to be discussed in Section IV.
Although there is no purely "constant" infinite factor left in (2.3), we see that
as approaches O ¢t 7T) the expression is still divergent for % .
This is not the same type of problem as was the overall infinity, however, for =
- e
these divergences show up as a series of poles for integer values of q.. Thus
the currents in this type of model are particle - dominated in the timelike region.
The properly "regulated" current (2.1) can be used to discuss photon-hadron
interactions by use of the phenomenclogical ILagrange density

K= e gul) A ),

Where Ap (x) is a fixed external photon field. Then the single current vertex in -~

momentum space is v (6 ’T‘) ¢ V
’(e.h) —E(g) ggd@dffv T(,((e"\)g , € Z

We must now consider the requirements of duality, which place constralnts on the
possible forms of J;( (G,T) ) and on the candidates for regulators
to be -used in \/ (9 ']/\

. /A- )

In the DRM, a minimal requirement for duvality of an amplitude is the invariance
of the operators used in the construction of the amplitude under Mobius transforma-

tions. In the operator formalism, this requimxement i1s that
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where L are generators of SL (2, R). To focus on the required transformation properties

of the fields, it is useful to express our conserved internal current in the form

(2.6) Jx (B,7) ° 6(;4/3& f(fﬂ 7)), Gx/a “A""E/Sx

In terms of the dens1tz;0 ( the current vertex Eq. (2. 4) can be w ritten

(29 Tugp) < % ffd@dfr- za(f» ), cg-\/

o (8, 'r)
+0B aHP 63 zZ, )
where Z = @ , and UHP is the upper half complex z-plane. The condmon

(2.5) is satisfied if

S (z) ~ kel
ba) ek 2w PAVES ACT ARt

where

<z.?a)z':"% ) Ap - 88 =].

The real parameters <X, 5 d; J are easily related to the parameters ¢£ ¢ in(2.5).
The invariance is then satisfied by virtue of the manifest invariance of Eq. (2.4) under
arbitrary coordinate transformations on 9 and T~ with non- singular Jacobian.

We conclude this section with three observations on the gauge invariant, dual vector

current above:

1) Inserting Eq. (2.6) into (2.1), one has formally

(2-9"/«(«):‘2 fgdf(/\//u,g@ \/))2

This is of the form of the current due to a collection of classical particles, with charge
density f . The inter actlond/c /4 thhj/«@f the above form gives rise to the
Lorentz equation of motion (without radiative reaction). Thus, the formalism proposed

for the electromagnetic interaction of the string parallels the formalism of the free string

in physical mterpret'ltlon

2) .However, if @ aﬂéT$0 the cur renUf\%ontams a term mvolvmg@/ﬂ_ /&9

This term has ne analogue in a minimally coupled classical theory, for which 4 ) 9N /.A""

Thus, in general, our theory is not minimally coupled, and one may antlcxpflte effects

much like those due to an anomalous Pauli term. We will see such effects in W.

7



3) At first sight, it appears as though Eq. (2. 8) cannot be satisfied for any non-
trivial choice of for This stems fror the conventional use of so-called
multiplier representations of SU(1,1), or of the isomorphic SL({2,R); We will see
that if the duality invariance group is realized in a slightly different space from the one
conventionally used, Eq. (2. 8) can be satisfied in a variety of ways.
the next section.

This is the subject of



(3.1)

(3.2)

(33)

et

' equatxons have also been given by Sakita, 'and by Susskind,and Kogut.

INTRODUCTION OF NEW FIELDS

"A." Invariant Equation

v

The Lagrange density of the free V}fa)(z) field is

() )

Z(&) - N (3\//‘ ) ( av(“ )

4 2% 3%
- PR IR S \y(a)/_\ wmdkdafdlar +ha antlara ananradann
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in the z- domam Eq. (3.2) is well-known to be conformally invariant.
.In add1t1on, it has been established that, with i (a) , use of

NBther's theorem leads to the full set of Virasoro gauge operators',qwhich

‘arise as generators of infinitesimal conformal transformations. In

particular, the Gliozzi operators ~ Lve_generate infinitesimal Mobius

transformations, and it is known that

(Lo (%) AL (4
€ V. (=) ¢ = Vo (21,
where z' is given by @;86) ' ° A

However, the Laplace equatwn is not the only equa’uon invariant
under Mobius transformations. The equation

25 A(z—f)
2z 2% (# - z)

s the most jge'nerﬂ _ homogenecus second order differential

- 3 . zo
equation left invariant under the transformation (2. tH . First order Dirac - like
22
N



(3.5)

(3.6)

(3.7)

(3.8)

form after rotating T-ri¢a

i

Eq.i (3.4) is the Euler- Lagrange equation resulting from variation of-

) -
'_"Z’M = [ 92)‘;;'%—;1)‘)1 g ]

The action

Jd"z ZP2,7)
is unchanged under real MSbius transformations on the integration domain
z, so quantized solutions of (3.4) are likely candidates for operators
that transform covariantly under SL(2,R). )

In part B of this section, normalizable solutions of (3.4) will be
displayed. Generators of the group in the quantized theory are constructed
in part C, and special properties of the o (z) field are treated in
part D. The connection of these results to the representation theory of

SL(2,R) is discussed in Appendix A.

B, Solutions in the Strip Domain

In the Nambu-Susskind strip, the action (3.6) takes the following

?.ffz a_(iz -}\(%“') z
"‘”J@M’[ 96)‘(9’1’) *?‘JFTC—"J-
The equation of mﬁtion in the strip ié

2 2 xO=D) ‘ S |
(?0‘ 57*  SIN‘e )Lf (’r» =D =0,

Normalizable solutions have the very simple form, for 4-vector ?‘s)
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G.oa) f, (67) =m,__Z )[——(L o L,;)T'e "7) ¢ (6)

S ) : m (- ’ 7
(3.9b)° ‘f,.,o\ (6) = (2 s 9)87‘()0 [——(——-—2— ]l C:/\ (cos @) ;

QT THmt))

- )

B [0 B = Gar, (Ay 1)

Here C:-A are Gegenbauer polynomials as defined in Ref. W 23.

The boundary condition ‘fﬂ (1,0 = &, (T)97)= 0 is sufficient for
nor'ma'lizabih'ty if Re AY0 . If the b.c. is taken to be -

(‘f 3% )9 oon =0, the case X\ = 0 can also -be included.

' By use of the 1dent1ty Lion (,\—70) T()\)C,\ (cos®) = (A’-/m)dd.\'né m.;la)
it follows that (Jo (5) = (Z/ﬂ') Cosm6& ,  Similarly,

5’(')/9)— {-’/7#‘) snm@ . Since for these values of &, (3.4)

becomes the Laplace equation, any other soTution of the Laplace equation

can be added onto these, provided the boundary conditions- are also satisfied.

The inverse of the differential operator D(M ~is the Green's

function 6N which satisfies SN

| | ; o
g DT(emy GUraryar) = b SE-6Y) Slr-1),

In physical terms, K, represents the strength of the source. This
Green's function is constructed in Appendix B, where the boundary condition
is also discussed. The result for AP0 is

(3.”») G-(}‘)(e”l“; 6: ’T')' . »QA_, (coS(T.-T') - :?z@ec?sé >,i

Sin ©




where@ (w‘)is the Legendre function of second kind, andC is normalized so as to agree with
the special cases )\ O { , which are e'lsy to evaluate straightforwardly.

Upon reversion to the elliptic (”\' @s’domam the argurment of the@/\ function in g i)
may be transformed to the upper half- plane:

st (1) —eosBe0s 6 . L |u-7[* +la-v]®
W = Sin @ sch 8’ - f (Imw) (.Im\/)

where L= ef}"-u,é Ve ET*‘GThls is invariant under real Mobius transformations on
u and v,as required.

%

An jmportant reason for using the strip domain is that canonical quantization of the

&s’)’()”"‘;{, é‘fﬁ‘(

fields /g‘< may be performed using V' as the tl%e coordmate (see next section, )
£T

From (3 7), the canonical momentum conjugate to

For Lorentz vector flelds the canonical commutation relation

(312 ):——-—“(@ 7) 39"“)(9 7)]-4 o & (6 -6')

follows at once from the completeness of the functions ﬁh( (6) provided the

expansion coefficients satisfy the commutation relation

.19 [ by () y(,:?,:)/ T - -c§/~y5mm San’;

and that all other commutators of the coefficients vanish.

For such quantized fields 39/4 ( o, I) the /¥ ordered two- point function is

G149 <§°0‘)(@’r) jo(‘\)(e 7)) = ‘3/‘“’5 N @)

A
where G()‘) is given in (3 }4). This is easily established using (3 .13), the
property of the vacuum b O\ O> (O . and examination of (B, 4.

)



C. Generators in the Quantized Theory

From Eq. (3.7), identify

as 2™ () [ G 252 6°]

°oT SIN® &

and introduce

(N s L™

| 3 %
. rx)
(3.00) IQP 2 mgp L1 5( a‘?h )

2 5p

P

where 5 o Ty 0 5 Qe s

"2""‘" ! )' 39:"3!0:0'

2
consiDER two independent components %f Txp )

g9 T = A= (o) [(Uor) # (%20 )4 20 G ]

_.(//Vwr)[ ¢+ ! + 4 (8) ‘301]

7 = -ctem) 19, A

3.18) T,

3

Caution has been exercised in w_ri'ti—ng Tm because of the non-commutativity
L 4 . /
of (f» mth b

: Fia) e :
According to an argument by Nambu,glf these densities are smeared

with test functions, an interesting and non-trivial algebra ensues It
is just the algebra of the Virasoro operator;s For brevity, we indicate

only the operators with direct application to our work

s : - ” .

‘- .,9) - - - + '

. G19a Lo = zfdéﬂ L Z B

(3-l9b) :o /5/0 [c’asé’j‘/-f-t J/A/a ﬁs],no

o e F [tmen) tm-aend]™ LT 4
A

(3.1_9c) '

u

T

3 - [ 76 [cos 6 T = swoa 7]7.-
g F [ eanm-aen]? 1T

LT Y ’ i
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The action of the operators Li on the fields q;* may be

‘computed using the fully integrated expressions and the commutator
(3 Fg), of course, the same results are obtained directly using the

integral representations and the canon1ca1 commutator (312):

' | ) » ) ¢8|
- (3.204) [L°)3; (8rT3] = - or S (8,7 3‘
(3.20b) . [L*_., (_f/“'\ ("T)] = ec'f' (".i Cose D + SiN8 de ) ‘f)‘ (o,7) 5
- > Cirr s 5y O
. (3.200) [ L-, 9. (a,'r)] = € (—ccosé&r —IS/MS » ‘f# (6,7) .

Thus, as indiceted in App. A, the Li-generate'infinitesimal real Mobius

transformations on ‘fL(AJ after a change of variables to the

complex z-p1ane.

The SL(2 R) a1gebra

(320 ,[L+,L ] c2ke 5 [l Lel=4 L, 5
'may also be checked with the usual proviso that the signs in (3.21)
appTy for the space11ke osc111ators.

Evidently L » the generator of T d1sp1acements, is the Ham11ton1an
operator in the theory, Note that all fields are taken to have the same
sign for the energy, regardless of whethe} fields of different i enter

in the constructipn of Vu with relative "i" factors between them. An
+

alternate approach would be to absorb. the "{" into the b#, b

giving them a wrong-sign commutator. We prefer to keep the non-hermiti-

city in the interaction.

=



D. The Quantized p Field

v

. The constructions of the last two paragraphs may be carried
over to the case of the.y field introduced in ( Z-6) by deleting
" u -indices, and replacing 9 by {-1). One further point

requires explanation, however.

' The charge carried by the internal current through the Nambu-

Susskind strip at any "time" is defined by
. T . ‘
(322 € = ﬁ £8 T (8,7) = pemY = fpeod

“Since the functions &.9) vanish at the.boundaries for x $ 0,
they cannot contribute to the internal charge ¢ . On the other

‘hand,'cosiﬁe mode solutions, which.dccur for » = 0, do not
vanish at the boundary, but give_ri§e to an unsatisfactory

{ -dependent ¢ .

Thus, in order tqkdescribe a charged particie, j? must
include a zero-mode part, in analogy to the terms (:5: + F; )
- in Vﬁé); which are the net "center-of-mass" Eoordinéte and
momentum of the particle. The ana1dgy is Very close, for it 1is
> necessary fhat under Mobius transformations, the zero-mode and
excited ("dynamicaj") modes get mixed together in such a way

that the entire.f is form invariant.

. Consider as an example



(3.23

(3.24e)

(3@%) |

(3.24c)

from = 2+ 7 Z (3, gl ™) sw e,
el ’

Aside from being the simplest p utilizing the A=] eigenfunctions,

an added appeal of (_;’, 23) has been pointed out by Tze?%ho

derived it from the Sakita-Gervais current!q Ju = ¢ ¥ oyl M
This model for p transforms accordingité (3.,20) provided, the

generators L, are modified to include €, 1in a manner reminiscent

of the Gliozzi operators:

T =~ (&/2¢ +2 n ?I
. nsl

2 ;
T, = - (egi/m + 3 /neen gla.)

nel

’E- - - (eo?‘l/’lf + aZ: V?‘l(/n-/-l) ?:?a.}-/),

Here [%'n, %:] s g’h% | m;l,z)... ;211 other commutators,

including those with €g , are zero.

Since only a sing]_e zero mode is required to close the algebra

. of the L]., and it commutes with all operators, it is not jtself an

.r

" act. It may, however,

operator in the Fock space in which ?“, %

be treated as an isospin component, €0 —7 'Ts R which

- may always be diagonalized within an SU(2) representation, regardless

of its multiplicity. Analogous comments apply for SU(3), in which case
€o is the operator -ré -+ (3{/2,) ]

For the remainder of this paper, incoming and outgding particle
states will tacitly be understood to be eigenstates of the charge operator,

but this will not be written explicitly.



Note that in (2.24) o has been normalized in such a manner that,

by the above discussion,

€ = < pmi- peoy)

The connection between the internal and external charges will be established
in the next section; with this normalizaticn, "e" is what a real phofon
- (qz?O) measures in the elastic process Y | + particle % particle.
" Since p is a dynamical degree of freedom, it contributes to the

total Hamiltonian of the system. .The zero-mode part can be used to
shift the trajectory intercept, so that, in general, it will depend
on the quantﬁﬁ numbers of the trajectory. There is always an arbitrari-
ness in the intercept to start with, unless sfronger gauge conditions
jmpose a specific choice for the external masses. Since such a
restriction is unsatisfactory for off-shell currents; in the remainder
of the paper we always write "dsﬁ with aS(O) arbitrary, and discuss
possible effects of specific s-channel intercepts wherever appropriate.
For the simple Compton amplitude we compute, the t-channel intercept
is completely determined by the model from the s-channel 1nput

However, the situation regarding the energy of the exc1tat1ons
- created by %?j: is not entirely sat1schtory As a1ready mentioned,
these do not contribute to the internal charge flow. They may, there-
fore, be thought of as closed charged loops within a complicated Feynman
diagram.

The prob]emiis that particles with different numbers of charged
loops have different masses. If these states wére exotic, this behaviour
‘wou1d be grat1fy1ng But any normalized excited state, Zih‘ b(,“ <?j: [of?;
:E7n | dam \ 3 has the same net internal quantum

numbers as the unexcited state, as measured by the current at q =0,



’

The formalism using the field f is, thefefore, oﬁ1y a partial
solution to the problem of incorporating charges in the dual model.
Deviations in "mean-square-charge" are allowed for, but these cannot
be summed over to produce a “"physical® particle state of a given mass.
In this sense, our particles seem "bare". However, the (Thirring)

Tow energy theorenff7 provides an operational definition of the
physical (charge)z; we find in Appendixé}that "e' in (24) °

is indeed the physical charge.



ELASTIC FORM FACTOR.
A. THE MODEL

In this section, a specific model for the Lorentz vector field
v, (6,71)  will be constructed so that the elastic form factor of
the ground state particle has no Gauésian in q2. (By "tha" elastic form

factor one means the convectivé (p11 + pu') F(qz), such that F(0) measures

the total charge. ) .

As discussed in the preceding section, the "particle" will be
taken to be a state of unit charge, with no internal excitation of
any kind. Thus, only the zero mode of p contributes. For the vector

- field v, write |
(o)
4.1 ' =

o AR N

2y
o P

where Vﬁa) is given in { ); and the values of /9/\ and A are yet to

- be de_termined.

The matrix element of the vector current is .

Wy M. o= st (pegep) <pILT (31717
= (e/m) § (prgep) Slapgrg) (et
B ZR O ALRID N RO

! The second line is obtained from the first by performing the « integration,

which gives s (2/33. +%z) from the zero-mode parts;
and from use of (2.4) and (3,23 to account for "J,.r .



The form factor is , _
T ‘o O
w3 F(a?) = f 46 <ol 5°?W6"0) lo7

since <ol e ‘?’V o7 =1,

arises from passing to normal ordered form. Let us express this step

the sole q2 dependence

as :
gV _ . i V(eo) ~
(44) e t ’ = ? ’ ‘m exi> (%z F(a,éa’)) :
" oo -
?(@ o) = E €05 M8 ¢os my’ l
-) - Ny m 2)\#0 /9), @A -] (MJ ('r:O))
Since the argument of the Legendre function is apprdximate]y equal to 1,
we obtain
[ 1: F(e, 8') = |im [ ('/l) (Z)\ P; -1) L SING
- 6->! o-ys'! ‘ »
(45

= (U4) (Zy 3 +1) Lo (1= cosce-on)
- (,/2_) (ﬂ,‘z + Z)\ P; 1]"(1)"‘{/(/) ZXIB;-)

+ (nz/4) (Thpi -0 1



Inspection of Cfgf) provides the following set of constraints

for a well-defined form factor with the desired propertiés:

1) Cancellation of infinite term:
' 2

2 Pxo=-1.
: %
Thus, all /?X cannot be real, and we will have ghosts;
2) Cancellation of all constants (which give rise to Gaussian behaviour):

x

Z A1 Y(2) = -Y0)- 2 bz |

A¢o
3) Coefficient of surviving Tn sin 8 (responsible for off-shell

behaviour);

L 2 N oo
(?\Z#/B)‘ - 1) = b

by the first condition, and so is not independent.



~

Conditions 1) and 2) above may be satisfied simultaneously Vlrith a single extra
field with)&'L? ; or for an infinite number of N values less than zerc. TFor
negative N, the fields ?('x) are not representations, however, so they will not
be considered. In any case, an unpleasant feature of having a solution with only
a single value of A is that it is noninteger. Thus the poles due to this field
appear at positions displaced relative to the positions of thefl-modes. Another
possibility is to choose more then one auxiliary field. If this is done, integer
values of N can be used. Indeed, there are an infinite number of possibilities
in that case.

For the elastic form factor, it makes no difference how the constraints are
satisfied. Provided they do hold, one obtains

1 -2 -3 L .
. Fgn =) do (sind) ¥ B(F 7)

o

B. Discussion

We will now discuss the properties of this form factor, the modifications
needed to produce more acceptable behaviour, and comment on the physical interpre’cation
of the results. A |

Pirst, F(j, 2) has a series of poles for %2 = /,3,5, e (20’1. +! ) . These
poles arise from the endpoints of the integration, near which the integrand behaves
like d@ / 63/2' . The position of the lowest pole can be modified ir jD (6),
Eg. (2.23), has a zero-mode dependence proportional to 9 o< .I., ‘ , rather than
6 . This effects the\‘nodifica’cion 2> 2 - oL , so the (mass)2 of the lowest
pole moves higher or lower, depending on whether X is positive or negative.

o
However, for the chifge to be finite we must restriect o« > "I . Susskind has

argued that this may have an intima'te%‘elation to the Feynman (xddx) "wee"

parton distributions responsible for Regge behaviour. Indeed, for oL = — ’/2

one would have the lowest pole at thifmesc'; [ng'sslénd, identifying the O

of the dua]T theory with the Feyman o( , the Regge intercept would be + 1/2.

Unfortunately, we can say no more about this tantalizing possibility based on

functions satisfying Eq. (2.14), since they cannot have a zero-mode of the desired

form. It will be interesting to see if the\/ozl(or equivalently:,g( (e;}:\ uncti.ons in
2

2!,
 the "massive Dirac" two-dimensional theories allow this behaviour without violating



- the invariance needed for duality.

Consider next the 'asymptotic behaviour. It is controlled by the central

‘region of integration, as can be seen by the replacement

= /4
e =¥+r .

e 4 o o | 02
Then jd@ Gin8) Fs (g9 (asp)?
0 77

“J Y et P foe lage g*-

Angles ?} up to 6( 7/ / ) contribute, the net result being a power-law fall-off
{ul I" , 85 can also be seen from the Beta function in Fg. {3.6).

Thus, the oscillator model can give rise to power law behaviour, provided
there is a sizable concentration of the charge density in some "central x'egion.lg
‘Note that at each value of 9 , one has the characteristic Gaussian behaviour

< 3—* . It is by being able to add up the contributions from a neighbor-‘
hood for which ? (G) /fn Sth 9' O that one gbtains the
slower power-law decrease.

The precise power with which F(q2) falls off asymptotlcally can be modified

if J? 9) is such that J.;, (‘2{)) 2 'IJ)'BJOQ, '2});};0 . Then
Fa)~ [dv Ve B ~ 131

Not uﬁexpectedly, F(qa) falls off faster if the charge dehsity is depleted toward
the important central region, by having P)f.). One must be careful, however,
because the integration regilon is even in ? , 50 odd 1nteger

- forbidden. To obtam/;/hq ; €.8., We must chooseJ:r (?P)N /?)/ Th-
need for such non-analytic behaviour will reappear when we study ‘e)Waln the Bjorken

limit.



V. DEEP INELASTIC SCATTERING
A. Results of this Section

We define the structure functions for deep inelastic scatterlng

in the standard form,

e ~(qpv- BB W) g 777 (B széé‘
(/u»‘o) \N,/z (S'X,)

The dlfferentlal cross sectlon for the process is

. e
R e gt 2]

Here é} is the lab frame scattering azgle; E and E' are, respectively, the electron

(5.1)

initial and final energies.
The most remarked feature of the structure functions W;, which are in principle

functions of both invariamts s and q°, is that for
V=P4/m = $-9%=P* Jop — oo .
925 - w ; with  w= Ev/}z = constant
(Bjorken limit), the dependence is only on the ratio of the invariants,
W, — F, (w) ;
vW, = F; (») .

The hypothesis that this should occur (Bjorken's scaling hypothesis) is

(5.3

supported by experiment  for W2’ even with surprisingly non-asymptotic s and q?;
it is widely believed that wl also scales, though'all doubts have not yet been
removed z 1 |

) Both structure functions can be calculated in the present model. However, it
;s well-known that Wy 1s very sensitive to the spin of the particle. From the
vertex,——7_7 ( ) , it can be argued that the photon field couples to elementary
vectors, 1n the sense that every excitation crezted byéz nﬁh%éﬂ*flls independent
of all the rest. (There is no coupling of modes.) Thus we expect Wl to reflect
this choice of vector excitations, and not to scale properly. We will not deal

with it here.



~

On the other hand, it is possible to hope that the Wp function calculated in

the model could have the gross qualitative features of the true hadronic WL' Parton
model calculations typically indicate that, provided elementary coupling of the
partons to the eiectromagnetic field can be enforced, gualitative scaling of VWo
will result irrespective of other detalls of the constitution of the hadron state.

2
We find that in the Bjorken limit(wd% Q Swo? >G , our model gives

'Uwz_f\‘: {IQI-I -?/aom zeao' m?de o-)c J‘jé(g’r,\«) 3
19) b §° feom. f = excrfations

We will indicate how these results are derived in the second half of this.section.
In the remainder of this half, we will simply state heuristic reasons  for these
results, and attempt to make contact with Parton" rhetoric.

First, the (1/Ay) factor in W, stems basically from an interaction "time"
of(y' y Z))' We stress this is a result of the model, the dominant contribution
to the integral arising from this region; it is not an ad hoc assumption. ' In
spite of this short life of the relevant intermediate states, we never couple to an
element of the string in point-like Ffashion. "Parton" rescatterings occcur in this
model on time scales much smaller than ZI"/ , hence only dressed partons are
observed. Nielsen and Susskind have stressed it is natural to expect this in any
theory that achieves duality by being the limit of the "fishnet" Feynman graphs.

We have a mathematical realization of this idea though we ao not start from fishnets;

it ;hOWS that even after eliminating the infinities due to the infinitely rising
spectrum, one does not cut off the interaction. There is-no "minimum" wavelength”
beneath which one sees the discret%parton lines.

Froﬁ the zero-mode part 2£)f)(ét’r9,'we find the parton form factor is simply
related to that of the hadron &s a whole. We will say more about this later, at
which point it will be more clear. In brief, as for the elastic form factor, it is a
region of .<7 I”{)separation between the points Whefzthe current acts that gives rise
to the/%l'4 fall-off szjVZi "Point-like" coupling would correspond to having a |

delta function in this separation, rather than a small spread.



on physical grounds, one can anticipate 'bhat"l:he "excitation" part oi‘f e,z;l)mll
enhance W?_relative to the zero-mode part. For, as discussed in Section IIIfex (QT
contributes only to the mean-sguare~charge, a quantity that Vzlcertainly measures.
The idea is to bolster the dt dependence by increasing the mean-sguare-charge the photon
enéounters) (Fig.6) Alternately, one can conceive of the zero-charge-flow excitations
as being magnetic dipoles. It is known that in a parton model with quarks endowed
with an "élementary" anamolous moment, it is W, that scales, and notuUWs. While
‘we do not have quite this situation, the coupling, Eg. ( 2.7 ), is non-minimalif
.Séx }£{C) . Thus the basic mechanism causingyWp to grow can be saild to be comprehensible
although the law of growth cannot be téken seriously from this model.

Let us now proceed to the quantitative verification of these observations.



’

- B, Czaleuvlation of the Structure Function ho?

We first write the contributon from Fig, t to the forward Compbton amplitude:
(Te) fan for [0
v =( N J;g,.
Lo -00 o

<plfzoMe P L i Loy, e 8 fr 1-2)

The structure fuv\éi:mvv I&c:m bn p'LMfu out fron this expression as the wmglr\arj

(5.1)

part of the coefficient of,p,/,t

(5.2) W’«Z Im M dqv ea(‘jr ffa/dol@
<‘(JT Cg'v)a"ﬁ ( € g:v)(@’o))

(We have simplified the expression by removing the & function associated with ensrgy
conservation, and usi.ng only the relative "time" variable, which we now call 7~
I‘t_, has been WicK-rotated, in accordance with the usual procasdures in dual theory.)

The ordared n“oduct factorizes into two parts, 2

'
(5 3&) E(w)‘___ < a‘ 87') a (é O)) 7\.“7_ {.a%-‘—@, ’é}wﬂ(‘f‘v’)‘ :
. usmj &; (§ zt{) }@f&(% ,7_,)) o ) gé’ Q ( )
Here '
' P “ o=l (e - ,[
N(’?’@'&) -f"ra/ Te “’“‘”“'e ¢

is the Green'!s function of the u°ua1 V., (a,) DRM field,

It is convenisnt to note that

(5.4) coshT-cos Gegs &' _ cosh’l\-605<9‘—casg
MW= Scn & stn G/ - Cos & -cos O

with o= 01‘0; 5’6-8 I. Thus iff> O, g*.@ W=/, [Care is required if& 2@ also;
We will returp to this] We first study this region, verifying it gives rise to
the behaviour discussed in earlier paragraphs, Afterward we will show it is really
‘r;he dominant region.

In the rangs of (7, 6,8’) for whichw=| is valid, the functions Q>. (W)
may be approximated as followss

Q) 55 - & o) ¥ [ 23+ ¥(]

Then, by virtue of the constraints following Eg, (4.5), remquired so the elastic

form factor has no Gaussian term, one obtains simply

(5.5) ‘ 5,
W, 2T, 0¢ f(/fw o G ¢ Cfﬁﬁ@d 6! (wel)™® O




Note it is independent of the manner in which the constraints are satisfied.
~ Let us treat the constant part of @(&u) first. We evaluate the asymptotic value
of thdImaginary part by the so~called "Statistical Method". For, note that in the
approximation 7‘5310 ggo, we may write 2
? b 8
(5.6) ~@%  A-Q3 T+
(Wl ) a2 Rexp (@ ) 2 o

~ 43tn =z /"
Sinceo<S +Q‘§o< v -}-@ONS‘/:), we take the limity-—> - ©< (and in this sense{average
over S-channel poles), @&9 +Ool -Ui Q?«fixed. Since, for nonvanishing(ﬂng},we
can effectively extend the g integration froméoa toG oo) , introduction of the
new variables o/ ‘ S

™= -l

/
. §'= VgB § - , 2
gives us ) >0 7" a/g - (g‘ yS’c’l’Z 2o

e e 2

5.7) @ 7 T'e |
( \A/Z ~ IU//QI A d -

There are three points to observe ]
: s . s n PP . &' -/
1) As claimed, the "interaction time" of any significance is Jd o).

This just gives the U'/ fall-off of Wp;

2) The relative "spacelike" variable between points where the current acts is
. Only separations of order g’\' /Q/_J count. The Bjorken conditioﬁ
[‘Ul Ql= fixed 1s essential in order that ’f’z<< 82‘ , and only the term
linear in fJ~ contributes; '

3) Even after making these approximations, there is considerable " phase-
space" embodied in the remaining integrations, so the numerical coefficient
of the leading term is of @» (1). It is instructive in this regard to
note that from the region@k"@”l‘% one obtains a confribution to Wo
that goes like /U /- . The U -/ arises from the ?’ integral as before,
and (Q‘a )-, is clearly the product of the form factors associated with
with the interactions of the two photons in the Compton scattering. By
integrating over all possible regions @‘R"@', we pick up an extra factor
{ Q! . This is clearly a phase space effect, changing the behaviour from
a 2-dimensional Gaussian in(gldj , to a single Gaussian in 6‘ . But
in parton terms, one would have to sa; the number of partons the photons

see grows at least like [QI in the model.

Next, examine the contribution of the denéity excitations. We have



| +
(58>w(b) "f’l‘ew fd@o’é Fw) a@ag L&J_—T )

WhereF&,;);s the integral in By. (5.5 ). It is clear from this expression that we

must be very careful in seeing whether we encounter a singularity asW-»] . Note
that(Iér}Jk(o%is just the propagator of the internal current; one might well
expect such a Green's function to develop its singularity. However, the derivatives
actually alter it sufficiently that there is no contribution to the Im part. (See
however, Appendix C).
T To prove this, 1ntegrate by parts once: g,. a
~ . rmam——
{ 7 w+l - : -
W, = 2 are g[fde E 3 b F (u a'-0,77 dode 39 w-}ae-
In the surface term, F(0O) = F(x) O, since u_aaa forgao x! and -
)\@O)-)O Also, . ;
a son O : seh
6& wel o 22 ) -t 5 GOSA T
5 o - cosh T-cos o ¢os

~ shows this term is O for 8 O
All of this is true except EJ?. the points (6,7%) = (O O) (qr, 0) s

which are included in the remaining integrations in the surface term. In any

neighborhood of these points, the surface term integrand is strictly zero., Thus

the regions where the integrand is infinite have zero measure, and do not

contribute to the value of the integral except in a délta function sense. Since no

further integrations on internal variables remain to be done on W,

57 the surface

term is safely zero. .
Flyo’
Passing to the remaining integrals, note that a a Q immediately brings
2 ' .
down one power of @ . It is necessary to check that these integrals are convergent.

After a bit of arithmetic

2 O
(5.9) Wa = lezQz e""”‘é)ﬂdo-dg (w+l [c?sm& o (cos 2 e

fon L Y q S(.ﬂ 2.

9 , + 2¢c6t°% > (72 e)g,L ik Lol

' (144 +é"+’?’“ ¢sm Z(5%r* ) 24§,
(Terms llnear in integrate to zero). No piece of this expression is singular, .

Eg"glﬂ‘ zn.(f‘ )may be expressed in polar coordinates as cosl¢ln r. Since the area

- element contains r dr, there is no proble'n asa-;q‘:] Two integrals are interesting:

(5.108) o pr  §2\"Q@F consT.
I ﬁ're ((:IO'JC{ ?g_ ("'l‘ 48(.: “ﬁF) N (‘US \/._@?:— J

2

2\~ | +tdsinE G
(5.100) . T SdTeng\dﬁng‘+T (/‘LT{?,TS‘;?> . 7252
_ B (cousT)}?MQz/ 7\




These estimates can be established by straight forward calculations wmch
' -

3t L
we need not repeat here, Heuristically, we just have gain"i““v‘/v 5”’

./

It is also easy to check that other terms in Eg., (5.9) fall off faster than this.

For completepess, we wish to note two distinet regions in the ('/"'; (9"@")

integration space not covered in the above discussion, If, in addition to 5’/‘\“0,
is also small, & and (,&/mu_s't separately bes small, We must then a2lso worry about
the fact O and 5 are not independent intepgrals in this neighborhcod becavse

of the wedged nature of the domain. (Ses Fig, 8), For convenience, introduce
polar coordinates & = reos % &= s/n;/’ Neglocting 7% we find W & C’GC&-S*?g
Ir & and @“ aﬁv*‘cac}{zcro together, i,s., é ’7‘5, one finds the behaviour is
qualitatively similar to Eg. (5.7) or (5.10), but with a very small coefficient
corresponding to Lhe negligible available phase space, If, on the other hand,

ﬁ is near C or '/4 ¢ can be qulte large, The essential point then is that

the careful ciancellation of 2 4 that was maintained for L{_“/ breaks down,

and the contributions are expongnti ally damped., This is generally true for all

the regions of the integrstion dom.,m wh re WY | . The integral approaches

f(ﬁ, 61/7"jfc/él¢/@ gw)



| VI. Pole and_Asymptotic Structure of Two Current gmplitude
" We have seen in the previous sections that the elastic form factor and W9 do not
depend on the way in which the regulator fields 99 - are chosen. In this section we will
briefly examine the properties of Ti’ whose 1magmary part for forward Compton scattering
is WJJ in order to illustrate what effects the regulators dg have.

The contr utlon of Fig. lto this amphtude IS )'—;
6y T =(dx x==="1 ((gode’ (scn©) ~§7 (sin &

° e"/’[i% (e (%8,6°) +265° Q‘”)(w)]

whereN()f,&,@)is the Green tion of \! @), given in’the previous section; and W is
defined in Eq. (3.1l). The usual variable X % e-Thas been introduced. Figure 2 gives a

contribution T&(Sﬁa), where s (P + )
¢ (p 5 )
a = ( )’-

1t will be useful for later reference to m‘croduce the notation

VTS [ ol Fye (o a7 oo Pl

21

n

.We will not enter into much detail to establish some of the properties of T, we list below,”

since the methods used are fairly couventional and well-known to workers in this field,

Al Current Line Poles.

The amplitude T has an infinite number of poles for q2“ and qA/ ?—equal to positive
integers, start ing at A= I . These arise {rom the endpoints in the 6 and 6’ in such a way
that poles appear at even as well as odd integers., This is independent of the values of A .
,\—/?The residues in the § (t) channels ame polynomials int (s), correspmding tO\a maximum
W9 spm:]- A (O(tg and all daughters but with no ancestors . We will prove this for the

g sVP S g channel case, taking for deﬁmﬁness

z I
2"-:' J FI 32"2,«-2"/)

<
7‘2:2, D) \/32_ = "‘Z/“"l'

(6.3)

v

Using the generating function for Gegenbauer Eolynommals , this is

6. F(x6,67)a 3 m, b X MLC 2 (“’S(G*OP,))
2 sin 0856 )22\ k

kz‘% (Cos(& &’)) kl< 258,?, 2 (s 2 2 Z+1 :

The last term of this expression may be re~written for our purposes as

. ' X 2(
(6.5) g (2,;31"’!.(95‘"’9 2) = Z /\@F (2045‘6&@'57/1&)

2L +]




‘where A are combinative coefficients with the ert /\ = & .
w kp property op o
The Nth power of x in the expansion of F(x, 6, 6%) will have the form, in

S Cot () AL |
g=0 3_ ( ) Ag, <5) } (6.6).
where C i(}/z n(a”) S

~ - A 2(é+)
A w : Z?” (ZW”M‘S"> " (2"?5‘)-

(COS 6 )= Ofi(c») >\ + {7(@ 1 ..... - ﬂd@)]

Thus the leading power of (q-q') in C -ad’ is (-qq ) . Similarly, the leading
/s

power of (g-q') in j-2,0 comes from £=0. Thus in the term gq =k of the

coefficient of xN in F(x,0,0'"), we have

C %A)efv a.z;z_) [(—191?;’)A
12 Cug) T (g )]

[v1]



This shows the highest spin at a pole a = Nis N. It is followed by a complete
sequence of daughters, but there are no ancestors.

One can easily see that this result does not erucially depend upon our
choice of). . All that is required is that in the s-pole region, W ™ /7( o2

so one can apply the asymptotic expansion in powers of x,

] -
G @)~ 1T T (@) (e D ek

(w)“"rﬁ) 2z ’

whelz F is a }’\f |8 f”] e ”’“"_h"c’ function.
The PROOF to show the t channel poles have no ancestors is equally

straightforward, so we will not present it here.

C. Ghosts in the Spectrum.
appear

Excitations created by the regulator fieldsY in the spectrum, and because of
the "i" factor appearing in their coupling, they give rise to "ghosts, " that is,
states of negative norm. Now, these can be pushed arbitrarilyAhigh in the spectrum
by allowing the vé.lues of 1 we choose to be arbitrarily large. However, we

~ will maintain the values 1 1= 1 ,1 2 =20hosen for the previous example in

' order to demonstrate how they explicitly appear at the first few levels. We will
also see that even the usual "a'" modes give rise to ghosts, since the ghost-
elimination theorems only apply when the common mass of the exiernal lines is

M =-1,

Consider first o = N =1. Inthis first nontrivial case, the residue at the

pole is

() R, (mz-3) (t22) B3I B (%)



~where we introduce the symbol

g(?/) d@@m&) =/ B(W v-” B(Lﬂ}- 5.

In R1 , the factor ¢n2-%) signals it is only the (A = 1) b-set of oscillators that
contribute. This is because there is a built~in signature factor in the amplitude
when Fig. 1 and Fig. 2 are added together that eliminates a = odd poles from
the amplitude when )\ is even, e.g., X =0 and >\= 2. The origin of this factor

is easy to understand from the expression

(Go egVeon . § o o V@)
(o] : 0
* g?’v e G717

where? W-6. Now, COS ne = ("/) cas R? : and, more generally,

@)= )™ Ch () lmpuesthatgoc*(@) (_/)"'Aj" )

@)
These terms appear in the expansion of jp ) 9- 7“) as coefficients
of @ 1 [ (A . Thus the factor (-1)" may be absorbed by shifting
f,\'—) ™ +’[Y in each term. However, the factors (—1))‘ cannot be

RGO \/\//«(?#’r)
o n (7t + o e (7eT)
ZV_—(Q ( 77)'*&-}«‘3 ,ws,
‘f‘Z N> 5 _(QCA (s, 3/))



Now, if in the contributions to the 2-current amplitude, the currents lie on
opposite sides of % , the contraction©f the fields to produce a Green's
function will produce a modification of the energy denominator relative to the

case when they are on the same side,

ézlo (7-7) _, egla (2'-7) (_/)Lj

A

which has the yequiredsignature effect (-1 )N at a pole. However, the (-1)
factors do not have a similar effect, and we get poles for odd N unless R_ is even.
To get properly signatured poles, we should always choose )_ even. Nevertheless,

for our present purpose of illustration, this does not matter.
To examine the positivity of Rl’ pass to the kinematics of an elastic

-scattering q2 = q‘2 = Mz, p2= p'2= uz, with CM scattering angle
2 -
: (2-m?)’]
COS‘;{= /'/'287-l[; “23§u€f-ma)4/‘<- -m ,
The residue at the first pole should have the form

Re g () R+ g7 (1) R )



where giz (Mz) are form factors, and Pi(ﬁ) are Legendye polynomials. Thus
the constant term and coefficient of t should be positive. Under these kinematic

conditions, we have

e - [&b‘é‘)(ﬂzﬁ)[@(/-ma)]%

(6.10)

. A Lavs
Since the B functions are real, B2 are positive. Thus we see that the vector
excitation is a ""good!" state, but the scalar daughter is a ghost for MZ}‘ 0. Why

is there any "'good' particle at all in this case? The reason is that the l =1
oscillators entef Vu with coefficient /312 =2fm2-1 ) 0 (see Eq. (6.3)). It is not
necessary for all the new oscillators to have wrong metric in order to satisfy
the constraints following Eq. (4.5). |

Next, consider the o = 2 level. The signature effect now decouples the
A =1 oscillator, but we still have the effect of the even >\ extra modes.

Explicitly, in the kinematics of an elastic scattering, we find

Eoﬁfz(ﬁ(,-mz)z)+ff72(?/‘72-4/§’]"—<?)
Coyoamt(emt-smiet)

\
It ié easy to verify that for M2 7 0, the vector particle isa ghpst. However,
tensor and scalar parts have a positive sign. This illustrates two points:
. (1) the "a" modes continue to produce good particles on the leading trajectory,
even if the theory is only Moebius invarianf:, as in the ordinary Veneziano model;
(2) a more detailed analysis shows the scalar daughter receives positive con-

tributions from both the "a" mode and the )\ =2 "b" mode. Thus, just as



the "a" modes produce good leading parti¢les, but may produce bad daughters,
the "b" mode that couples with 2 < () produces a ba(.i leading particle, but
‘may produce good daughters.

We also note that the '"a" mode itself contributes to the negative residue
of the vector particle, It can be made positive for MZ < 0, but this is not
satisfactory for our current theory. The b-mode contributes to make this part
of the residue even more negative. Thus there does not seem to be much
hope of contriving cancellations between "a' and the ghost "b" particles so all

residues are positive.

D. Asymptotic Behavior

It is possible to show that our T, amplitude has Regge behavior in all the
proper limits. In particular, it does not growas u— =, which was a problem in
the phenomenological dual ﬁodel of Nambu.ﬁ’ However, we will only exhibit the
s-channel asymptotic behavior, since it displays a fixed pole.az

Consider the limit s — « with t held fixed. As can be seen from (6.4),
any exact evaluation of the integral re{aresentation for T2 involves pole terms.
For fhis reasoﬂ it is necessary to keep s off the real axié when calculating the
asymptotic behavior, and we shall take a -2, a standard proc;adure in dual

- o) 2
Tesonance models.:’o Following the discussion of Nambu , write

. T . ' -Xs_ | , '
7; '_S:C{'x « 0 F(’X) @11



The usual analysis indicates the integrand will be maximal near x =1,
6,67 =0. However, notice that according to (6.1), F(x=1) # 0. Thus
,2 'J

To a2 (o) [ gt )ees RGP F

This may indicate the presence of a fixed pole, provided the series does

not add up to give Regge asymptotic behavior. We .shall see that from the

second term onward it must add up this way, but the fixed pole remains.
To study these effects in detail, write x = e ; and for =0

, introduce spherical coordinates

60 » 6'&~ 0O

fcosac. 5 [>> fo70
. W/&)d)@;

P
&
9';f$£n%$én ; W/z_)/g)O .

(6.13)

[

fscn.occos ;

The variable w, (3.11), becomes . 7V i 7,)/
) ‘;Q;‘ I d - v2, /g."‘ ?“ 3

& csc? o esc? | "
. W& /E — o0 of/;cewls’l;. (6.14)



In the same approximation,

SER ol sen ;{A
F(n.0.87) > g (n s wp )G p)

(6.15)

(/+Sm.2af Scn. /g) Qi? (I sen dsm/@) %ﬁg
exp [ -2698° @, 0]

The asymptotic behavior can be extracted straightforwardly from this
expression. However, it is necessary to keep a close watch on the angular
integrations in order to see that the fixed pole cannot coexist with simultaneous

poles in both current lines. Except near a = 77/2 ,F = ’Y/f , F can be
expanded further.

F(f F) "‘f (smczcas/@) f' (sc'noc $éﬂ/€)bd€/£

| 2,,,,./@ (sin? danﬂ)"*""("”‘é‘f‘) ( "H) (2:51,5%
Z'/\;Q (sin?e scn /g)

Then T2 is apprommately

’ & ;C;fmSOC Q’
R 2 ¢
oﬁff ﬁ ¢ WG‘;W



With a steepest descents  estimate, we have

' A Qs x gt ___ (coso<)
% e f f Ay 7 ~OP -3"'{: (6.18))

cosoa;fO

which is Regge behavior with e, =t-3, independent of the values of q2 and q'z.

t

Now examine the remaining angle integrals. <. | /_?& ‘
ﬁf& SlJ/LVDLfo//(g F(o(,/g) (sos 0() f‘zﬁo(f}/g @moc) 7
(m)“@,zﬁ) *;'Z(COS/) 7 ng (1372¢) (o sypemy

C2 = Cﬂ(qz, q'z,t) is a polynomial in its arguments and will not be singular as a
function of any of them. The [9’ integration can be carried out at once. Strictly,
the same formula should not be used for the « integration, since we have noted

that o = W/g causes the expansion (6.16) to fail. However, the upper end of the

3 term, which is singular for

integration region in « affects only the (cos a)t—
t < 0, an unphysical result. If we set that term equal to one, @nsistent with
-(6.18), we do not affect the q2 and q'2 singularity structure, which is of interest.

Thus

e T (T
-0l 2 .2 24 +3-¢%-9/¢(6.19)
T~ 5 268897




This combination of T! functions allows simultaneous poles in q2 and q'z, for
any positive integer values of these quantities. The denominator produces dips
for q2 + q'2 =2n+3, n=0,1,...; this will kill simultaneous poles if q2 and
q‘2 are not both even or both odd for sufficiently large q2, q'z, an interesting
effect.

In the region where a & f’Y/ 2, a different set of apprbximation is
appropriate, and it is here that we will pick up the fixed pole. Loé)king back

at the coordinates (6.13), we See that for ? = % - & &O)
TreY
Al ~ @ co.S/? ; | 620
G ”"fsin/@ ..

The characteristic feature of this domain is that ¥ and one of the angles &, 91,

can be second order small, but the other angle is simultaneously only first

order small.

We now have

Té ,\,{j#)a 2-t d¥ eocsfsin’fﬁ/@ F(/g,?z)‘ (6.21)

The integrand may be expanded,



2
Since only powers of V appear in the expansion, the second term is already
contained in the alternate expression (4.31), and we need only keep F( /3 ., 0)
to define T
f.p.
Now irtroduce

gfff

(6.23)

" and examme

7 [ gt i)

~ o)™
Thef integration has been extended to €, ~ 0(1). For (ﬂ, )/’7017( y

we obtain

e [ Gl

The /8 integral is a pole term, since _

F(/ga) (cos )5’ (sza/é);('“‘”‘a/‘g)‘-fi%)

- (1" scnz/g) ff' exf’[fb?; Q (a(/@))]
thha() CSCZ/

Near /G % Q (W) cancels the apparent singularity in (1 - sin 2 )
Thus the only singularities are near /8 =0, % ; and ,



» a . B(ﬁfﬁlﬂ’f?
| Ja/’g F(/e,o)=Z/(C,((3'fvé). z 'z /.

As in the ordinary Veneziano case, the B function has singularities in q2 or
q’z, but not simultaneously in both.

We find, then, that the fixed pole arises if the triple limit 97, 6,
8' — 0 is performed in such a way that an "equal time" configuration must
exist prior to 6 and 6' going to zero. If any small "time" difference is
allowed to persist as the vertices approach the edge, a Regge pole occurs
instead of a fixed pole, and both currents may convert to hadronic states. Thus,

there are two distinct physical ways of approaching the limit. An extrapolation

of this result wiould be that the equal-time commutator of currents determined
as the limit of an "almost-equal-time" commutator is not unigue; however,

this extrapolation can only be made meaningful by a detailed analysis §vhich is
beyond the scope of this paper.

To conclude this section, we remark that our considerations have been
restricted to include only the " C—numbgr” part of f @, qu). The density.
excitations produce contributions to the spectrum, as mentioned in Section III,
but these are always positive norm scalars. They also contribute to the real
;;art of the amplitude in a way discussed in Appendix C.

To study how these excitations alter the Regge behavior, recall the relevant

Green's function has the form



Cos 2o = SEN o S(.'n 2? cot 20 +Sén20{ 56"5@(6.28)
4‘@(73 ) (1+sin® sen 2/@) Z 7 (I- stn?oe sin .?./g)t’é .

This result has been written in the polar coordinates (6.13). It modifies (6.15)

F(xe,6°) F(=,0)
S |

The new factorj’ -2 effectively shifts t — t + 2, which changes the Regge

to read

F(x,e,é’) —

behavior to aft) =t-1. Thus we have the asymptotic form

. F(#,e%) ¢l .
T ™ G ’%‘%‘ tlas) Bl §7). e

It is straightforward to verify that the angular function f(e, ﬁ ) in Eq. (6.28) does
not alter the arguments we gave regarding the ""decoupling” of the fixed pole

from the purely hadronic amplitude.
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VI. SUMMARY AND DISCUSSION

The premise on which this paper was based is that a useful
approximation to the e]ecﬁrodynamics of hadrons can be obtained in a
semi-classical framework., It has been shown in A wwmBER @ works

that the “free" fields
of DRMs result from a special choice of coordinate gauge in which to
,.expréss tﬁe action of»a classical free particfé. Nambu‘s hypothesis
for tﬁe vector current provides a natural electromagnetic interaction
term in this view,since it formally leads to the Lorentz equation
with ¥pc,p1aying the role of space-time coordinate.

‘The first retreat from this aesthetically appealing framework
occurs in making allowance for a non~trivia1'q2 dependence of the matrix
elements of the current., To achieve this, a regulator field, which allows
cancellation of infinities in the operator eiqv , and leads to the Green's
function structure of the Rebbi-Drummond model, was introduced. It is
not the only possible way to proceed. A "dual loop" approach possibly
has an advantage of greater internal consistency;tght the machinery
needed for calculations is so cumbersome as to detract from its attractive-
ne#s as a phenomenological theory, which is all we ére c]aihing for'the
DRM in this paper. -
| The extra-field method allows for straightfofward calculation
at the phenbmeno1ogica1 Tevel, but one must concede at the outset thét'
ghosts will be présent in the spectrum. This is very unpleasant, for
the good features which the "free-particle” formulation could lead one
to hope for are already sacrifiéed. - |

. With Pandora's box opened, the disease of harmonic oscillator wave

functions, Gaussian form factors, can also be dealt with. The method by
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which this has been achieved deserveé further study on its own. Pﬂysica11y,
Eq. (3.8) may be thought of as the equation of motion for a string with
variable densfty. Since the endpoints have divergent "masses", except

if » = 0 or 1, the central region is de-emphasized. Because of the wrong-

_.metric, we subtract away the rapidly falling contribution to the form
factor from that region. (It may also be possible to consider Eq. (2.8)

;és representing a string spinning end over end.)

Further discussion of the lack of scaling in vwz is hardly required
here. Yet, in spite of the shortcomings of the model in providing a
definite answer to the problem posed in the opening paragraph of the paper,
limited progress can be claimed. Some is concrete, as in the discussion
of the vector-dominance aspects of the ampiitude A ; the elaboration of
the origin of the fixed pole in the strip domain; and the evaluation of
the effects of a quantized internal current.

Perhaps more important, however, is that detailed evaluation of this
model points, in different ways, to a need for a broader interna1 structure
in tﬁe‘basic formalism of the DRM. For example, the form factor calculation
is non-unique because many possible A values for the auxiliary fields are
allowed: a group which includes a spectrum of SL(2,R) values has a better
chance of solving the problem uniquely.

Use of a group which requires a larger number of internal dimensions
is an even more interesting possibility.

o bmees L et e

RS Sty W 1f one concedes that the two-

dimensional domain of the DRM is a surface in physical space-time, and
not an abstract space, it is more natural to attempt a new start directly

with more. internal dimensioﬁs, instead of covering regions of four-space"

by distorting the two-surface ("non-planar-loops”). To the extent that



harmonic oscillators are needed for quantization of the field, and not in the
solution of the field equations themselves, if is not necessary to think of such
a model as an "elastic solid", anymore than one conceives of the photon field
to be such. One could, for example, consider compressional modes along the
length of the string.

In this regard, it is interesting tomte that in the 'parton" interpretation
of the DRM, the string model corresponds to the collective motion of infinitely
many partons due to "soft" interactions between nearest neighbors in rapidity.g

SYSSHIND

Kogut and . v have recently drawn attention to the possibility that in addition

to ths éoft inte);action, there may also be a phenomenologically important

"hard" interaction, very singular at short distances, giving forces of long-range

in rapidity. A vector gluon theory would have such an effect. It is very ) »
kot H<ert T pmp " HARD

challenging to construct a model which consistently incorporateéﬁhese features.

A generalization to a hypothetical qq sea of the degenerate electron gas problem,

with its collective density fluctuations and screened Coulomb force, immediately

comes to mind; but, as it true for the DRM itself, incorporation of the require-

ments of relativity is far from trivial.
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APP?NDIX A: ALTERNATE REALIZATION OF SPACE OF .SL{2,R) REPRESENTATIONS

In the upper half z plane, define linear differential operators

2. Wy = —'(l-{*-i") 3/9;? + c¢.C. 3

(A1) 2¢ Uy = (1—-2%) 9/o2 + c.c

¢ Uy = 2 9z + coe

These obey the Lie algebra of the SL(2,R) group. The Casimir invariant is

2 2 2 - T 3 -
A= -(u”-uy - a3)=(*‘i’) */92 2% .
Since the Casimir operates in a representation as a multiple of the
identity, the eigenfunctions of & transform according to representations

of SL(2,R). This eigenvalue equation is just (2.4).

" Define the scalar product

(z-2Y

and the adjoint of U; with respect to this scalar product,

(A.2) (—f‘, 4> = j d°% fx(f)g('ﬂ ;

,(f,u;3)= [uj.ac,%>7_ |

(A.3)

The operators L Uj are self-adjoint: (1U1)+v = 11&1 That 1is,

| , L o .
fd‘% (z-2)* 7 (ium)—:fdz (z-5) (iU F) g

It is shown in Ref. - that the eigenfunctions of &
are vectors in a Hilbert Space which is a valid realization of the

(ébstract) space in which the action of the grbup SL(Z,R)Ais unitarily



(A.4)

where

3 X
implemented, provided A is in the interval 1 > X > g,
(Supp]emehtary Series); or if i = 'i%:l.,‘ o real,

(™)
(Principal Series). An element of the group acts on the functions ¥ (

)

aceording to

- LU, (A ____J?
T, 4% = e ¥4 9% - s (755 ),

o p) :
?: (-3 py £ SL(Z)R_jj defg"lj

and Ui are the df%ferential operators in (A.1).

The remarkable feature of (A.4) is that the functions v(x)(z) do
not acquire any multiplier function under the action of the group,
regardless of the value of A (provided ft is in the supp]ementary
or principal series). '

The explanation for this phenomenon is that one is dealing with
a different realization of the epace of functions that teansform as
representations from the one commonly used in the diseussion of the
DRM. . o , Y
| A very interesting feature of the newjrea1ization is that the
Casimir equation is the field equation for the field transforming
according to a representation. In the usual realization, the Casimir
operator is trivially a constant, and a Lagrangian for fiere of arbi-
trary SL(Z,R) "spin" cannot be written. »

A difficulty, on the other hand, is that the feasibility of this

realization has been demonstrated in Ref. % only for the principal



and supplementary series. The mapping from the familiar homogeneous-
function space to the new function space we are discussing has not
been carried out for integer point representations by these authors,

in spite of the fact these representations are also unitary.

Nevertheiess, it is possibTe to continue the solutions of Eq.
 (2.9) in } from the supplementary series to the positive integer values
of A without encountering any pathological behaviour. In particular,
it has been checked explicitly to second order in o, 8, v,

that, for ax = 2,

et ) = #(etz)
eI:F‘(ul'f‘U'Z.) cf(%) "= Lf( z./ H.F?.) 3

e U = g (e

If repeated application of the operators Ui.onto the functions(f(x)(z)
were to lead one‘into a new class of functions, it would show up in
second order for A= 2.

A11 one can honestly say is that the status of'the integer point
representations in the new realization is an open, and very interesting
question which merits further investigation.

v For-comp]eteness, we note that a differential form of the
generators in the striﬁ domain, obtained directly from (A.1) éy change

of variables, has been given in Eq. ( - ).
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The operator 3 =,%- Ly, L} - Lg , which is the Casimir invariant,

: 2
‘reduces to sin2 e(ai - ae).

v

~ To study the action of these generators on the eigenfunctions, the

following identity is useful, when combined with the normalization integral

) (31%0\ .

I

m (M) (M FAL)) ¢ (e)
- mti .

: (M coes & t SING ag) ‘f;m (6):

mt



APPENDIX B

Construction of Green's Function

Treating 7 as a time variable, we seek the Green’s function satisfying

the (hyperbolic) equation

_Qi * 82 _ M) o ,7,,&,)__ K 5(9-&9 5 Ty
aO'A a’/"?’ se°0 ‘ (B.1) - ‘

(K is a normalization specifying the strength of the source.)

Eicpanding— G()‘) in terms of its Fourier components, -

" A - ;[w Z“T')
A o et L

. (B.2)
— 60

‘
and then expanding (A) (G" & 5 W ) in the complete, orthonormal eigen-
functions f ¢ ')\) 9) , onme obtains in a well-known fashion
) 4
~iw (C-T )

) -
(»= 2!%_ ;jo;:)(@.) f(@')/(;)/&/ e wa*ﬁ .(B.3)

-~ A

The boundary condition needed to complete the pecification of G is imposed
by prescribing how the integral appearing in the expression above is to be

evaluated. The well-known x =0 sum

. I :
(2™0) = in(7-7) cos nB cosn 9, (T(’T‘:
G‘ = ZZ c n oA
= e



follows from choosing the contour as in Fig. 7, with =+ Fa E displacements as
indicated; and from choosing K_ = 4+ 2L

Thus, in general,

g Se 40+ 30,2’()50‘”(@) (rer).

(B.4)
- )
Inserting the expressions for 52 ( 6) exhibited in Eq. (3.9b), we have
G(mz Zek-l T(5) (Sc‘n_e.sdn &) e CXNT,T)
Zovo ‘e cn(’?’_/r‘) [/L'l") C (COSQ>C (COSQ)
o T (n +2A) (B-5)

in which 2 & :é"A .

To perform this sum, use the addition theorem

, n A o )
63 (cos 6) C: (“‘59) =" ?272,{_,;2!-;-,.2&) In

2o Qv etend

(1>0).

Further, we will need the generating function for Gegenbauer polynomials,

f Z7C (W)= (1-2wz + 22)”" /z:<l >0

n=0



Temporarily give ( =T ’} a small imaginary part, so that
Z= e’ (1)
satisfies /Z/ < | . Then using (B.6) and (B.7) in (B.5), -
Non us 2A-l R
VG['\): (Sénéséﬂ 9’) zZ fd/(&cn/d) (I~22cos XfZ)
J
(4]
- : . . /7 (B.8) ‘
s ¥ = cos@ cos @+ 5cn @ sin@ ot ff

A change of integration variable enables us to recognize

i - -2
fdff Ging)* (1-22 cos 5422

| 2 ) /*ZZ-ZZCDSQ cos &
= in 6 sin G ) — @
: (Z o ) th 2256;@@86’)9

Insertion into (B.8) yields Eq. (3.11), normalized so as to agree with the known

1 = 0 function.



APPENDIX C

The Low Energy Theorem

The matrix element for graphs 1 and 2 may be expressed in terms

Moo = S(pgr YRR /g)ﬁr,v//m

[eirag 1T en R " (s70) ),

(C.1)

+ e T /E: ’7’ 3’(&,# ;}fu fﬁ’(& 0)>7

TEtens [Iad/wﬁ ? s’-ffw S

The term relevant as q, q' — 0, in a gauge Su chthat 6? 6/0 O

[‘r\jw j;‘g‘}g‘}eﬁﬁaad )@, (J-é Vv)(90>
+<(:£xaa ol (T 3 Vi Jg >7. (



et

jﬁ@d@ﬁ(a& /“@~ J&‘V”)@;N

(C.3)

]
furfao[< (2L (:Lzaa\/v@o&ﬂ

rom the explic tf rms of the Green's functions in thes expre

OV,
C,g,?g-><\/( 7) V(&g)) etc., we find the only no
nishing term is from the /[” 0 endpoint. By use of

(&o) v, (¢ 0)? = wrg/w S(6-0);

(C.42)

<M) ; (@40)) = —-(,77’*"“ g(& @')
A0 ¢ _

’ (C.4b)

B | w7bt[a;@({(9, <(_b£</_) ’ (&L ao(\7) ',o>>

,wfﬁad& %gg&o’eo) o 5((9 6“)}




where G contains the Green's functions of all the fields in Vﬂ

The first term on the right-hand side of (C.5) gives rise to the correct
low energy limit of the amplitude, proportional to ez. However, the terms
involving Q“ and G are divergent. Seagulls are required to cancel the con-
tributions of these pieces.

Contact terms of the required form are obtained by a careful construction

of H, ,. In abbreviated form,
int

O‘f:OC *%,{f N e

OZZT{IT,{ DJD,?._ éba+/boz+()0~jp j).(c_ﬁ)
- & rp 9P’ A

O?int_ 2 gbo c}i ,jOJ/OA ) A .

Introduce

o SX g ’
r’T‘“‘“:“ewi*%{ﬁAf
SE L 5 e (@ 4
P SE)O—_&’:Y f-‘%[ﬁ)/é‘/‘“

H‘%jﬂ/+ff~f3 (C.82)

(C.7)



e = e [PL A B A I
et [P A 43 15 AT

The terms of order e2 in (C.8b) are the desired seagulls. Note that the second
N i
part of 'Mpv not discussed has the same structure as Myu (1); indeed 1?/[6;“1 =

~
ZM;w (1), since only the gw term is important. It is then found that the seagulls

indeed cancel the required terms in (C.5).
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