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ABSTRACT 

An invariant regulator field method is applied to the construction of vector 

current vertices in a dual resonance model. If it is not required that the regu- 

lators be fully conformally invariant, but only that they have the invariance 

required for duality, Gaussian factors can be eliminated consistently from both 

the elastic form factor and the deep inelastic structure functions. This method 

introduces new ghost states which can be pushed to arbitrarily large mass by 

judicious choice of the regulator parameters. However, there are still ghosts 

. at low levels from the basic dynamical oscillator field, as in the Veneziano 

mddel with intercept a!(O) # 1. The structure function vW2 does not scale in 
. 

the model. The physical interpretation of this result is discussed in detail. . 
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‘In spi%@ of the great progress made in recent years in understanding the 
structure of dual resonance models (DRFi) that stem from the Veneziano formula 

and its generalizations for hadron-hadron scattering amplitudes, it has not yet 

proved possible to construct a coiaparably consistent dual theory of current- 

hadron interactions. The basic entity in terms of which the theory of the DFE 

can be most clearly formulated is the Nambu-Susskind "strir&. 1 There is no 

doubt that the classical problem of the radiation of a violin string on which 

charge has been distributed is well-defined and can be solved. It is much more 
difficult to decide whether the analogous fully relativistic, quantum-mechanical 

problem is -even well-defined, let alone solvable in full generality. We till not 

do this in this paper, and the title is to be taken as a real question, not a 
rhetorical one. 

Our aims in this paper are much less ambitions. Two principal strands of 
development 293 in the theory of "dual" currents will be ~~t&laced in such a 

4 manner that at least formally the requirements of duality are satisfied in a 

model for the vector current. The model will then be used to calculate the 
elastic form factor of the groTund state of the strling, and the b&aviour of the 

deep-jnelastic structure function Pi2 in the Bjorken limit. The results of these ' 

calculations have been published 5 elsewhere, . In thi.s paper, we elaborats "ihe 
ar,ments leading t@ the results, and hopefully clarify some physical points. 

It must be pointed out that we accept at the outset shortcomjngs of a very serious 
nature in the formatism, such as the occurence of both tachyons and negative 
metric ghosts, Remarkably, in spite of tM.s, the physical inteqretation of our 
results is not implausible. 

Some of the principal problems to be faced in constructing a dual theory of 

currents can be understood by first examining a single harmonic oscilbtor in 

three dimensions. The Hamiltonian is ( in appropriate units ) 

The current in this theory has components (in .momentum space) 



In terms of $& and j&+ one has 

where use has been :nade of a well-hovn zidentity to pass to "nomal older&" 

form. 
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One problem is that if, instead of a single mode there are an infinite 

number of modes as in the string, there is a divergence in passing from (1.2a) 

to (1.2b). This -problem with going to the continuum limit has been stressed by 
b 

Nielsen and Susskind. They argue that is is not reasonable for current probes to 

really "see" a continuum in the string, hence there should exist a maximum mode 

number corresponding to a minimum spacing of constituents of the string. Not 

unexpectedly, a careless implementation of this -proposal leads to a breaking of 

duality. When the infini& are removed in such a manner an to preserve the duality 

propertie-s of amplitudes involving currents, it is found that there are still an 

infinite number of modes in the problem. The details of this "dual" method of 

removing infinities, due to Drummond and to Rebbi, are discussed in Section II. 

It is found to be much like a field-theoretic ?regulator~ method.7 

A second problem-facing us in constructing dual current theories is how to 

generalize FQ. (1.1). It describes the current of a single particle in a harmonic 

well. The method of constructing the current at a space-time point (Xn) due to the 
xe 

motions of the constituent particles on the string has been given by Nambu. This I 
formalism is also reviewed in Section II. One is still left with the problem of 

decid ,ing how the total charge carried by the string is to be distributed. This 

distribution must be specified in such a manner that duality is not violated, 

yet gauge invariance holds. A model for this distribution is given in Section III. 

Section III also contains a discussion of a new set of "fields" which have the 

invariance properties required for duality. We have found it convenient to introduce 

these new fields because, even after a model for the vector current is introduced 

using the formalism of Nambu, and rendered finite by the methods of Drummond and 

Rebbi, the string is found to have an unpleasant Gaussian elastic form factor. This 

is the last remnant of the s.ingle oscillator Gaussian evident in EQ. (1.2). The 

,new fields which are introduced, and are applied as "regulators", allow us to 

eliminate this Gaussian, leaving power-law fall off for the elastic form factor. 

This is demonstrated in Section IV. In this manner, it is seen that the string 
- 

model is indeed capable of reproducing the qualitative behaviour of the 

"electromagnetic" hadronic wavefunctions. 

A third major obstacle in generalizing the single three-dimensional oscillator 

to the string model is that, for relativistic covariance, a fourth oscillator in d 

timelike direction is usually also introduced. Much of the recent progress in the 
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DRM has consisted in demonstrating that, in the "manifestly covariant" formulation, 

ther + re enough subsidiary conditions to completely eliminate from the physical 

states all bad, negative-metric states created by the timelike oscillators. $ 

Unfortunately, these conditions are only satisfied if the (mas~)~ of the particles 

involved in the scattering process have the spectrum -1, 0, 1, 2, , n,,...,.. . 
r 

The problem of ensu?$ng positivity for processes involving currents remains unsolved, 
4. ghost -killing gauge conditions tn the 

although some attempts to preserve the Virasorovconstruction of the currents have 
', 10 

been made. We reserve to the conclusion discussion of these attempts. 

In this paper, no attempt has been made to ensure positivity of the norms of the 

states. On the contrary, ocr philosophy has been as follows. Since regulator 

fields are used, which by necessity introduce infinitely many ghosts that cannot be 

eliminated by Virasoro gauge conditions, it is unnecessary to require the regulators 

to be fully "conformally invariant". It is sufficient that they be "Mobius invariant" 

in order that the theory be dual!' This freedom is what permits us to use a set of 

regulator fields that eliminate the Gaussian behavi6ur of the elastic form factors. 

The procedure is not as crazy as it might at first seem, because one is able to 

show that the net results, both for the elastic form factor and for Vi, are 

remarkably insensitive to the precise manner in which the regulators are chosen. 

Thus the bad effects of the regulators can be -pushed t ,appear at arbitrarily high ol' 

masses, while the good effects are present by mere virtue of the fact the regulators 

.have been introduced. 'The hope is, then, that the regulators mimic the properties 
. 

that a correctly cut-off, positive definite theory might have, at least for certain 

I?- matrix elements. Some of these points are illustrated in Section VI,ti 

Finally, it is appropriate in this Introduction to discuss why the structure 

function W3 should be studied in the DRM at all.' One can reasonably expect that a 

string picture will be totally anti-thetical to current explanations of the scaling 
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13 
Ofv'W . From a parton point of view, IL1 . 

3= 
it is predictable that-the string model 

will fail to scale because the motions of the constituents of the string can never be 

considered to be frae. 15 From the light-cone considerations, one might ex-pect JW, 

to be nonscaling in the string model if one believes the "fishnet" argument that id acfi 

the constituent propagators are Gaussians, and hence have no light-cone 

singularity. 

On the other hand,.the work of Bloom and Gilman 4 clearly indicates that duality 

is a notion that is relevant to deep-inelastic processes. Furthermore, several 

authors have constructed pure resonance models which exhibit scaling behaviour. 
lb 

The question is whether the DRM in its present form reali& duality in a manner 

that is applicable to a discussion of these processes, or whether it really does 

fall prey to the diseases naive considerations lead us to expect. 

Section V contains an analysis of Wzin the model. We find that W2does not 

scale in the Bjorken limit for the reasons suggested by the parton model concepts, 

namely, there is never a "time" scale so short that' par-ton-parton forces can be 

neglected. Consequently, the "partons" of the string model have structure. There 

is a contribution to))W, from the string's partons which falls off; this .is related to 

the"convective" form factor of the partons. But there is another contribution 

which grows, due to a "magne tic" parton form factor. Physically this is similar 

to a parton model in which the partons are quarks endowed with an anomolous 

_’ 
magnetic moment. It is known that in such a case, W2 scales rather than Y'Wx 

j- II. CONSTRUCTION OF THE VECTOR CURRENT 

In this section we briefly review the 

2 

construction for the vector current 

proposed by Nambu. We will see how the sum over the infinite number of modes of 

the string produces a divergence, and introduce the Drummond-Rebbi procedure for 

3 
eliminating the infinity. The invariance properties required in DRM for the current 
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to be "dual" are also.discussed. \ 

First recall the amplitudes of oscillation of the string in Minkowski space 

Here &L is the length parameter along the string, and % plays the role of a time 

variable. The string sweeps out a world sheet with parameters r .BPt, m 72/7--m+ 

The oscillator variables satisfy the commutation relations 
v y4, T-) 
+- 

Cn,,,, &+-"p&. 

of these modes of oscillation were absent, would describe the position of a classical 

free particle that was at +J*)at Y= L; and which has velocity 
J 
/J: . Because 

B 
of a conventional choice of units, 6 h. is actually the center of mass 

momentum of the string. 

This suggests that Eq. (1.1) be generalized to 

. 

is satisfied if 

the internal current is conserved, &Jd=.d ; if the component of 

the internal current normalto the boundary vanishes at the boundary: 
. 

Ed;! if the integral in (2.1) is well defined; and $ surface terms -vanish. 

.Unfortunately, 
rq 

as it stands FQ. (2.1) is not well-defined. We see this 

heuristically through the formal expression, 

,, $Gf[z-p~~(c',"l) 15 J&q e 1 +I w- ~~*)wd) o 

For, passing to normal ordered form, 

(2‘x) e-i& YIAj= ", ,-=a P.': pxy .(- -& 2 Ti,Tl cy-y,I.- 
s. 

The sum in Eq. (2.2) is infinite, so the expression e -;hV makes sense only for k 
-%, 

4 

The crucial observation tha allows 4 continuation of this line of development is 

that the infinity in the sum in Eq. (2.2) can be cancelled if in addition to 



The new b-set of oscillators obeys the same commutation relations as the a-set, 

and a- and b- sets are independent. The relative factor "i" between the sets of 

modes enables the infinities from the sums 

FL-' sin 2 
he} 

to cancel. 

One then obtai. 

(2,3) @f = : e 

The nontrivial factor (e&e) - f which appears in this eqression is 

responsible for the properties of the elastic form factor to be discussed in Section IV. 

Although there is no purely "constant" infinite factor left in (2.3), we see that 

as approaches 0 0~ n,the expression is still divergent for 

This is not the same type of problem as was the overall infinity, however, for - 

these divergences show up as a series of poles for integer values of q?. Thus 

the currents in this type of model are particle - dominated in the timelike region. 

The properly "regulated" current (2.1) can be used to discuss photon-hadron 

interactions by use of the phenomenological Lagrange density 

(id) 
= e -@(4 Apca, )" 

Where Ap (x) is a fixed external photon field. Then the single current vertex in \ 

We must now consider the requirements 

possible forms of xc (H-1 

to be-used in c/lA. to 17" 

u - c/- d 
of duality, which place constraints on the 

In the DRM, a-minimal requirement for duality of an amplitude is the invariance 

of the operators used in the construction of the amplitude under Mobius transforma- 

tions. In the operator formalism, this requirosment is that 
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where Li are generators of SL (2, IX). To focus on the required transformation properties 

of the fields, it is useful to express OUT conserved internal current in the form 

where t = e 

= gJ++dF [a;;;?$ ) e +“J ) 
r-tie 

, and UHP is the upper half complex z-plane. The condition 
(2. 5) is satisfied if _ 

where 

The real parameters are easily related to the parameters & i in (2.5). 

The invariance is then satidfied by virtue of the manifest invariance of Eq. (2.4) under 

arbitrary coordinate transformations on 8 and? with non- singular Jacobian. 

We conclude this section with three observations on the gauge invariant, dual vector 

current above: 

1) Inserting Eq. (2.6) into (2.1), one has formally 

Ju- 
oydVy, s’($-“)I . 

This is of the form of the current due >a collection of classi cal particles, with charge 

The withjl;b( b cr f the above form gives rise to the 

Lorentz equation of motion (without radiative reaction). Thus , the formalism proposed 

for the electromagnetic interaction of the string paral .els the formalism of the free string 

in physical interpretation. 

2) However, if & = af/aT&c,th ontains a term involving 
This term has no analogue in a minimally coupled classical theory, for which 3-h: 

Thus, in general, our theory is not minimally coupled, and one may anticipate Effects 

much like those due to an anomalous Pauli term. We will see such effects in W 
.?,’ 



- 
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3) At first sight, it appears as though Eq. (2. 8) cannot be satisfied for any non- 

trivial choice of for %. This stems frorr the conventional use of so-called 

multiplier representations of SU(l , 1) , or of the isomorphic SL(2, R); We will see 

that if the duality invariance group is realized in a slightly different space from the one 

conventionally used, Eq. (2. 8) can be satisfied in a variety of ways. This is the subject of 

the next section. 
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* . INTRODUCTION OF NEW FI;LDS - 
. 

"A: Invariant Equation . . c 

The Lagrange density of the free V,, (a)(z) field is 

(3.1) . d (4 1 1 
7r (g”) ( 2g) , 

It follows that Via) (z) satisfies the Laplace equation e 

(3.2) 

in the z-domain, Eq. (3.2) is well-known to be confonnally invariant. 
, 

-In addition, it has been established that, with x'"), use of 

19 Ngther's theorem leads to the full set of Virasoro gauge operators, which 

'arise as generators of infinitesimal conformal transformations. In 

particular, the Gliozzi operators ' ,@ L generate infinitesimal wobius 
! - 

transformations, and it is known that 

. - 

where z' is given by 

However, the Laplace equation is not the only equation invariant 

under Mobius transformations. The equation 

; (3.f) i 
a"'9 

:. &taz =- 
A w-q y 

(2 - a" 

1-s the most .general homocjenecus second order differential 
20 

equation left invariant Under the tranSfOrmation'(Z.~~. $'ir~torder'Dirac-l&e 
21 t equations have also been given by Sakita, ;La/ and by Susskind and Kogut. 

A 

‘-_ 
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(3.5) 

(3.6) 

- 

Eq, I (3.4) is the Ed&r- Lagrange equation resulting from variation of 

The action 

is unchanged under real Mb’bi us transformations on the integration domain 

z, so quantized solutions of (3.4) are likely candidates for operators 

that transform covariantly under SL(2,R). 

In part B of this section , normalizable solutions of (3.4) will be 

displayed. Generators of the group in the quantized theory are constructed 

in part C, and special properties of the p (z) field are treated in 

part D. The connection of these results to the representation theory of 
. 

- SL(P,R) is discussed' in Appendix A. 

BY Solutions in the Strip Domain 

In the Nambu-Susskind strip, the action (3.6) takes the following 

form after rotating v+;7 : \', 

.’ 

* *. 
;, ‘) 

*. The equation of motion in the-strip is 
.- 

: 

a= 
(3.8) ar” - 

Normalizable solutions have the.very simple form, for &vector v's, 



c 

0-w . . . ,,) / x&c.4 
O x 

yf’ y*?’ = Jam, (J > - ‘/;L ) . I - 
Here C,,x are Gegenbauer polynomials as defined in Ref. 23. 

The boundary condition Yfi (%O) = YV (7,7f)=o is sufficient for 

normalizability if Re J)O, If the b..c. is taken to be ' - 

(yfi aPv/38)y,0,,n -, 0, the case x = 0 can also be included. 

.by use of the identity ,k& (A-~O)~(X)C~~(CDSB) = (x/*)CAJnb,nr+OJ 

it follows that cp,'"' (8) = (2/7Y)V2c0r~B. Similarly, 

gf')/B) = (+7y%ofB . Since for these values of I, (3.4) 

_ becomes the Laplace equation, any other solution of the Laplace equation 

can be added onto these, provided the boundary conditions.are. also satisfied. 

The inverse of the differential operator D 04 is the Green's 

function G('!which satisfies \ 
\ 

(3.10) 

In physical terms,,K represents the strength of the source. This 

Green's function is constructed in Appendix B, where the boundary condition 
. 

is also discussed. The result for h 7 0 is 

(3.11) G(A'(e,~; e: T') = Qx-, ( cas(r-7’) - Co58 WSG’ 

SiR 8 Sib 9’ >, ! 

= Qx-, (.w) , I: 
. . 
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where is the Legendre function of second kind; andC is normalized so as to agree with 

the special cases 

Upon reversion to the elliptic 

where a= eP+i@ , L/z C?P)+‘i.O.khis is invariant underreal Mobius transformations on 

u and v,as required. 

An important reason for using the strip domain is that canonica1 quantization of the 
m may be performed using r as the t’ 

From (3. T), the canonical momentum conjugate to 

For Lore& vector fields, the canonical commutation relation - . 

(W iJ$p*, fy), yy’(6q r)] = L&&i; s (6 -+? ‘) 
follows at once from the completeness of the functions 5.$“(e), provided the 

expansion coefficients satisfy the commutation relation 

and that all other commutators of the coeffi.ci.ents vanish. . 
the T ordered two-point function is 

= -8,aJAhiG0 , 
This is easily established using (3,. is), the 

and examination of ( 6, 4’). c 



(3. lb) 

(3.18) 

, 
.:. 0,96) 

(3. rvb) 

(3. I93 

. 
! 

C. Generators in the.Quanti_zed Theory 

From Eq. (3.7), identify 

and introduce 

where 's OJ I = 7, 8 ; p = -;j,, = I ; go, = gw= 0. 

Co/\Lsr~t-;q two independent components%f TKa ) 

To, ,= p = - 

Caution has been exert i 
. 

of TF with y: . 

According to an argument by Nambu, if these den'sities,are smeared 

sed in wr 4ting TQ, because of the non-commutat ivity 

.with test functions, an interesting and non-trivial algebra ensues. It 

is just the algebra of the Virasoro operators. For brevity, we indicate . 

only the operators with direct application to our work: 

,... 



The act ion of the operators Li on the fie 

.corputed using the fully integrated expressions 

(3.2ob) 

. (3.20~) 

(3.21) 

Ids 

and the commutator 

may be 

(3 I@ ; of course, the same results are obtained directly using the 

integral representations and the canonical commutator (312): : 

.  

I  

Thus, as indicated in App. A, the Li generate,infinitesimal real M;jbius - 

transformations on (A) ?Y? after a change of variables to the 
: 

complex z-plane. 

The SL(2,R) algebra- 

may also be checked, with the usual proviso that the signs in (3.21) 

apply for the spacelike oscillators. 

Evidently Lo, the generator of T displacements, is the Hamiltonian 

operator in the theory. Note that all fields are taken to have the same 
- 

sign for the energy, regardless of whether fields of dimfferent x enter 

in the construction of V with relative "i" factors between them. An 
P 

alternate approach would be to absorb-the "i" into the b ,,, $*, . 

giving them a wrong-sign commutator. We prefer to keep the non-hermiti- 

city in the interaction. I 
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D. The Quantized p Field 

The constructions of the last two paragraphs may be carried 

over to the case of thej field introduced in (2,s) by deleting 

P yindices, and replacing gPv by (-1). One further point 

requires explanation, however. 

The charge carried by the internal current through the Nimbu- 

Susskind strip at any "time" is defined by 

Since the functions (3.9) vanish at the boundaries for x f 0, 

they cannot contribute to the internal charge E . On the other 

hand, cosine mode solutions, which occur for x = 0, do not 

vanish at the boundary, but give rise to an unsatisfactory 

r -dependent E . 

. . . 

- Thus, in order to describe a charged particle, p must 

include a zero-mode part, in analogy to the terms <%I +rL I-) 

.in V(a) 
u 

, which are the net "center-of-mass" coordinate and 

momentum of the particle. The analogy is very close, for it is 
. . 

1) necessary that under Mobius transformations, the zero-mode and 

excited ("dynamical") modes get mixed together in such a way -. 

' that the entire pis form invariant. _ 

Consider as an example 



- 

(3.2Jc) 

. 
:- 

. . 
I 

- . 

Aside from being the simplest p utilizing the A*! eigenfunctions, 
2 6. 

out by Tze, who an added appeal of (j,i3) has been painted 

derived it from the Sakita-Gervais current 

This model for p transforms according 

generators Li are modified to include go 

to (3,ao) providedOthe 

in a manner reminiscent 

of the Gliozzi operators: 

Here [ 3%) %,)I = &,'k,m~l,~,...jall other commutators, ' 

including those with co , are zero. 

Since only a single zero'mode is required to close the algebra 

of the Li, and it commutes with all operators, it is not itself an 

operator in the Fock space in which p- I '%? 9% act. It may, however, 

be treated as an isospin component, eo -3r Ts f which 

may always be diagonalized within an SU(2) representation, regardless 

of its multiplicity. Analogous comments apply for SU(3), in which case 

is the operator 

For the remainder of this paper, incoming and outgoing particle 

states will tacitly be understood to be eigenstates of the charge operator, 

but this will not be written explicitly. . . . . 
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_ . 

Note that in (2.24) p has been normalized in such a manner that, 

by the above discussion, c 

6 = < pm- fCQ)o = I. 

The connection between the internal and external charges will be established 

in the next section; with this normalization, "e" is what a real photon 

(q'=O) measures in the elastic process ‘d + particle + particle. 

Since p is a dynamical degree of freedom, it contributes to the 

total Hamiltonian of the system. The zero-mode part can be used to 

shift the trajectory intercept, so that, in general, it will depend 

on the quantum n-umbers of the trajectory. There is always an arbitrari- 

ness in the intercept to start with, unless stronger gauge conditions 

impose a specific choice for the external masses. Since such a 

restriction is unsatisfactory for off-shell currents5 in the remainder 

of the paper we always write "as: with as(O) arbitrary, and discuss 

possible effects of specific s-channel intercepts wherever appropriate. 

For the simple Compton amplitude we compute, the t-channel intercept 

is completely determined by the model from the s-channel input. 

However, the situation regarding the energy of the excitations 

: created by t 

% *c is not entirely satisfactory. As already mentioned, 

these do not contribute to the internal charge flow. They may, there- 

fore, be thought of as closed charged loops within a complicated Feynman 
'> 

diagram. 

The problem is that particles with different numbers of charged 

loops have different masses. If these states were exotic, this behaviour 

would be gratifying. But any normalized excited'ctate, z& 6 7: 10J 

has the same net internal quantum 

numbers as the unexcited state, as measured by the current at q2=0. ', 



The formalism using the field 
P 

is, therefore, only a partial 

solution to the problem 9f incorporating charges in the dual model. 

Deviations in "mean-square-charge" are allowed for, but these cannot 

be summed over to produce a "physical" particle state of a given mass. 

the (Thirring) 

ition of the 

. In this sense, our particles seem "bare". However, 

low energy theorem 27 provides an operational defin 

physical (charge)2; we find in Appendixcthat "e" 

is indeed the physical charge. 
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I . ELASTIC FORM FACTOR . \ 
A. THE MODEL 

In this section, a specific model for the Lorentz vector field 

vp (WY) will be-constructed so that the elastic form factor of 

the ground state particle has no Gaussian in q2. (By "the" elastic form 

factor one means the convective (p, + p,‘) F(q2), such that F(O) measures 

the total charge.). _,. - - . . . 

As di'scuss ed in the preceding section, the "particle" will be . 

taken to be a state of unit charge, with no internal excitation of 

any kind. Thus, on ly the zero mode of p contributes. For the vector 

field VP, write 

where V(a) 
1-I 

is given in ( ); and the values of 
P 

h and j? are yet to 

- be determined. 

The matrix element of the vector current is c 

.:- Y The second line is obtained from the first by performing the rintegration, 

which gives s cqy i-p from the zero-mode parts; 

and from use of (a,61 and (3,23) to account for J,,. t 



- 

. 

‘: 
I 

. 
The form factor is 

.since - (01 : ei % '.' 1 O> = 1 ) ,the sole q* dependence 

arises from passing to normal ordered form, Let us express this step 

as 

Since the argument of the Legendre functiou; is approximately equal to 1, 

we obtain 



. . 
Inspection of ($5) provides the following set of constraints 

for a well-defined form factor with the desired properties: 

Cancellation of infinite term: 

I .a: = -1. 
X#O 

Thus, all 
px 

cannot be real, and we will have ghosts; 

2) Cancellation of all constants (which give rise to Gaussian behavioui): 

3) Coefficient of surv 

behaviour); 

L 
P 

iving In sin $ (responsible for off-shell 

4). --I, - 

. 
by the first condition, and so is not independent. 
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bnditionsl) and 2) above may be satisfied simultaneously with a single extra 

field with‘XS I.7 ; or for an infinite number of h values less than zero. For 

negative h, the fields P > 0 are not representations, however, so they will not 

be considered. In any case, an unpleasant feature of having a solution with only 

a single value of h is that it is noninteger. Thus the poles due to this field 

app‘ear at positions displaced relative to the positions of the&-modes. Another 

possibility is to choose more than one auxiliary field. If this is done, integer 

values of h can be used. Indeed, there are an-infinite number of possibilities 

in that case. 

For the elastic form factor, it makes no difference how the constraints are 

satisfied. Provided they do hold, one obtains 

13. Discussion 

We will now discuss the properties of this form factor, the modifications 

needed to produce more acceptable behaviour, and.comment on the physical interpretation 

of the results. 

First, 2 
I=@ 1 has a series of poles for 

& 
z=43,5, .:... (2rL +I) . These 

poles arise from the endpoints of the integration, near which the integrand behaves 

like C/6/e&2 . The position of the lowest pole can be modified if fcw~ 

Eq. (2.23), has a zero-mode dependence proportionalto 8 -31 , rather than 

e . This effects th+dification &2+O( ) so‘the (m.as~)~ of the lowest 

pole moves higher or lower, de-pending on whether d is positive or negative. 

However, for the c&ge to be finite we must restrict PC> -I_ . Susskind has 

argued that this may have an intimate elation to the 
\ 

Feynman ( x4&) “wee” 

parton distributions responsible for Regge behaviour. Indeed, for QC. = - k / 

one would have the lowest pole at the 
4 

meson &,r&S,and, identifying the x 

of the dual theory with the Feyman d. , the Regge intercept would be + l/2. 

Unfortunately, we can say no more about this tantalizing possibility based on 

functions satisfying Eq. (2.4), since they cannot have a zero-mode of the desired 

form. It will be interesting to see 

the "massive Dirac' two-dimensional 

(or equivalent1 &(ii~j%,nctions in 

this behaviour without violating 
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the invariance needed for duality. 

Consider next the 'asymptotic behaviour. It is controlled.'by the central 

region of integration, as can-be seen by the replacement 

e=ylq * 

Angles p up to 
"";& 1 I contribute, the net result being a power-law fall-off 

f-4 I-' 
3 

, as can also e seen from the Beta function in Eq. (3.6). 

Thus, the oscilGtor model can give rise to power law behaviour, provided 

there is a sizable concentration of the charge density in some 'Icentral" region. 28 

-Note that at each value of 6 , one has the characteristic Gaussian behaviour 

e 
- f(e>g.' . It is by being able to add up the contributions from a neighbor- 

hood for which = that one obtains the 

slower power-law decrease. 

The precise P ower with which F(q2$ falls off asymptotically can be modified 

if (e) is such that & (y)* y-Bda yQ(‘J. Then 

Not unexpectedly, F(q2) falls off faster if the charge density is depleted toward 

the imPortant central region, by having $1 One must be careful, however, 

because the P , so odd integer 
-; . .- forbidden. To obtain we must choose&., cpJ-$/!' Th-L 

need for such non-analytic behaviour will reappear when we studyxW,in the Bjorken 

limit. - 



V. ~EEPINEL~~TIC SCATTERING 

A. Aesults 

We 

in the standard 

of this Section 

define the structure functions for deep inelastic scattering 

The differential cross section for the process is 

(5.2) d%’ 

&& = 

Here 6 is the lab frame scattering a..:glef E and E' are, respectively, the electron 

initiaL and final. energies. 

The most remarked feature of the structure functions Wi, which are in principle 

functions of both invariants s and q*, is that for 

= P*g/M = '-g'-'p'/- --SC4 . 

% 
a3 - 00 ; WL th w= 2v- 2 / & 

(Bjorken limit), the dependence is only on the ratio of the invariants, 

The hypothesis that this should occur (Bjorken's scaling hypothesis) is 

supported by experiment for W2, even with surprisingly non-asymptotic s and 9'; 

it- is widely believed that W1 also scales, thou& all doubts have not yet been 

removed!' 

Both struckre functions can be calculated in the present model. However, it 
? 
is well-known that WL is very sensitive to the spin of the particle. From the 

it can be argued that the photon field couples to elementary 

that every excitation cretied by &%and&$!s independent 

of all the rest. (There is no coupling of.modes.) Th& we expect Wl to reflect 

this choice of vector excitations, and not to scale properly. We will not deal 

with it here. 
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On the other hand, it is possible to hope that the W2 function calculated in 

the model Could have the gross qualitative features of the true hadronic Wx, Parton 

model calculations typically indicate that, provided elementary coupling of the 

partons to the electromagnetic field can be enforced, qualitative scaling; of)+ 

will result irrespective of other details of the constitution of the hadron state. 

. 

. 

We will indicate how these results are derived in the second half of thissection. 

In the remainder of-this half, we will simply state heuristic reasons for these 

results, and attempt to make contact with $arton" rhetoric. 

. of o~~~lthe (&Y) f ac t or in W;tstems basically from an interaction "time' 

. We stress this is a result of the model, the dominant contribution 

to the integral arising from this region; it is not an ad hoc assumption. ' In 

spite of this short life of the relevant intermediate states, we never couple to an 

element of the string in point-like fashion. "Parton" rescatterings occur in this 

model on time scales much smaller than t/ -I , hence only dressed partons are 

observed. Nielsen and Susskind have stressed it is natural to.expect this in any 

theory that achieves duality by being the limit of the "fishnet" Peynman graphs. 

We have a mathematical realization of this idea though we do not start from fishnets; 

it shows that even after eliminating the infinities due to the infinitely rising 

spectrum, one does not cut off the interaction. There is no "minimum" wavelength" 

beneath which one sees the discr&~partOn lines. 

From the zero-mode part of 
J( 1 

e,r, we find the par-ton form factor is simply 

related to that of the hadron as a whole. We will say more about this later, at 

which'point it will be more clear. In brief, as for the elastic form factor, it is a 

.bI 
region of @f 1 separation between the points wher'the current acts that gives rise 

to the 
II 
? 

4 fall-off of7jVJJ "Point-like" coupling would correspond to having a 

delta function in this separation, rather than a small spread. 
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On physical grounds, one can anticipate that the "excitation" part of 
d 

0, t&.11 

enhance W%relative to the zero-mode part. For, as discussed in Section III y&c@99 

contributes only to the mean-square-charge, a quantity that Wilcertainly measures. 

The idea is to bolster the Q& dependence by increasing the mean-square-charge the photon 

encountersb (Fig.6) Alternately, one can conceive of the zero-charge-flow excitations 

as being magnetic dipoles. It is known that in a parton model with quarks endowed 

with an "elementary'l anamolous moment, it is W,that scales, and noYiJW2. While 

. 
we do not have quite this situation, the Coupling, Eq. ( 2,q ), is non-milnimdif 

Thus the basic mechanism causingJW2 to grow can be said to be comprehensible 

although the law of grbwth cannot be taken seriously Erom this model. 

Let us now proceed to the quantitative verification of these observations. 



!3. Calculation of the Stwcture Ytknction kg. - 
We first wi3te Vie con%ributon frcn Fig. 1 to tkla f'omar?. compton arxplit~ude: 

(5:1) 

The 
part of the coefficient of 

_ (Me have simplified the expression by enaqy 

conservation, and ~si.nr: only the relative %mc” variable, which we now call r . 

It has been WicK-rotated, in accordance with the usual procednros in dual theory. ) 
The ordered 

13" ,.--I l\ 

is the Green.'s function of the usual V, 

It is convsnisnt to note that 
CyJsh ?- - cas @ CQS CT= f 

(5.4) w E - 

with@=6381 s=@-@ I. Thus ify+o,&ati=/. [Care is required if690~1so; 

iha will retuqqto thLs.1 IJF: first study this region, verifying it gives rise to 

the behaviour discussed in earlier paragraphs. Afterward we will show it is really 

the dominant region. 

In the range of (T,Q,Q') for whichW=j is valid, the functions 

‘., may be approximated as follows: 

..: Q&J 2% 
Then by virtue of the constraints following: Eq L-L--- .-.-L (4.5), recgired so the el.astic --I_ - 
form factor has no Gaussian term, one obtains simply ------- 
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Note it is independent of the manner in which the constraints are satisfied. 

Let us treat the constant part of We evaluate the asymptotic value 

of th maginary part by the so-called "Statistical Method". For, note that in the 

we may write 

over S-channel poles), 

can effectively extend the 

we take the limitu+ - 

, introduction of the 

c 

1) As claimed, the "interaction time" of any significance is 

This just gives the u -1 ,fall-off of W2j 

2) The relative "spacelike' variable between points where the current acts' is 

s . Only separations of order g-/Q/-’ count. The Bjorken condition 

/v/@'fixed is essential in order thatr'<< 6" , and only the term 

linear in ?- contributes; _ 

3) Even after making these approximations, there is considerable '.phase- 

space" embodied in the remaining integrations, so the numerical coefficient 

of the leading term is ol c+ (1). It is instructive in this-regard to 

note that from the region@So'zT, 
-I 

/ one obtains a contribution to W2 

that goes like U 1 I . The V -1 arises from the p integral as before, 

and. 42 
(Q 1 

-I is clearly the product of the form factors associated with 

with the interactions of the two photons in the Compton scattering. By 

integrating over all possible regions@%@: we pick up an extra factor 

,Qr . This is clearly a phase space effect, changing the behaviour from 

a 24imensional Gaussian in 
(8 4 

~ , to a single Gaussian in 
s 

. But - 
in parton terms, one would have to say the number of partons the photons 

see grows at least like in the model. 

Next, examine the contribution of the density excitations. We have 



It is clear from this expression that we 

must be very careful in seeing whether we encounter a singularity asW3 / . Note 

0 -%x&Ja(h is just the propagator of the internal current; one might well 

expect such a Green's function to develop its singularity. However, the derivatives 

actually alter it sufficiently that there is no contribution to the Im part. (See 

however, Appendix C). 

-_ 

shows this term is 0 for 0 I= 0 fi. 

All of this is true except at the points (e,?) = (o,o) , (WJ 0) , ' - 
which are included in the remaining integrations in the surface term. In any 

neighborhood of these points, the surface term integrand is strictly zero. Thus 

the regions where the integrand is infinite have zero measure, and do not 

contribute to the value of the integral except in a delta function sense. Since no 

further integrations on internal variables remain to be done on W2, the surface 

term is safely zero. 

Passing to the remaining integrals, note that adje’ immediately brings 

down one power of Q2. It is necessary to check that these integrals are convergent. 

_. , ‘ pa d 
No piece of this expression is singular. 

y be expressed in polar coordinates asc& In r. Since the area 

element contains r dr, there is no problem asaT Two integrals-are interesting: 

(51a,3, = j-ik+i~~&- Aj';Tz (I+ T&;)-Q: i-$. ; 

- - 



Tl~esa estimates can be establishad~by 

iw need not repeat here:' Heuristically, tie 

straight forward calculations which I ,.-._ 
just have again ?'-P y, y 53qri . 

It is also easy to check that other terms in h&. (5.9) fall off faster than this. 

For complete!~~ss, we k&h to note two distinct regions in the 

integration space not covered. i.n the above discussion. If, in addition to c5- e;'u, G 

is also malls & and &'must separately be small. We mu.st then aIso worry- about 

the fact band. $ are not independont irkegrals in this neighborhcod becawe 

of the wedged nature of the domain. (3 68 Fig. 8). For convenience, iy?troduce 

polar coordinata~~, f+ = YQJS f( &'z ~Si?+, NegIocting7$ W@ find w = csc&. 

_ If &and &'apuroac zero togothor, i.e., 4 
4J "%5-p one fti.ds the behaviour is 

qualitatively similar to Q. (5.7) or (5,10), but with a very small coefficimt 

corresponding to the negligible available phase space, If, on the other hand, 

pi is near G or ?$ -, 4 can be qujte larz;o. The essential point thon is that 

the careful cancellation of 2 
-p- 

that was nairkained for CC==/b rea!ts down, 

and the contributions am expori~C~71 Alps damped. This is genera3.l.y t:we for all 

the regions of t'ne integration domain ghere i/d?> 1 . The integral approaches 
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VI. Pole and-Asymptotic Structure of Two Current Amplitude 

We have seen in the previous sections that the elastic form factor and W2 do not 

depend on the way in which the regulator fields pLA’are chosen. In this section we will 
briefly examine the properties of T& whose imaginary part for forward Compton scattering 

is W,, in order to illustrate what effects the regulators $Q have. 

defined in Eq. (3.11). The usual variable x<e-7has been introduced. Figure 2 gives a 

of the properties of TLwe list below,?’ 

since the methods used are fairly conventional and well-known to workers-in this field. 

A. Current Line Poles. 

The amplitude T&has an infinite number 

integers, start ing at h: / . These arise from 

of poles for q 2 and q /2- equal to positive 

the endpoints in the 0 and 6’ in such a way 

that poles appear at even as well as odd integers. This is independent of the values of X . 

B 
,\es +----~ 

&he residues in the S (t) channels aw polynomials in t (s), correspcnding t+ maximum 

,a spin>q* (“($1, and all daughtecs, but with no ancestors . We will prove this for the 

R s i$J.tz s- channel case, taking for definigess 0 
k = ’ J $ ,” = 2 ,b.. a - I _; 

(6.3) 
yip2 , 

s 
2z= -zb 2 * 

ising the generating function for Gegenbauer 

(6.4) f hsd 2 xn,m, 6 

The last term of this expression may be re-written for our purpOSSS aS 



-/I .where 
kp 

are combinative coefficients with the property 

The Nth power of x in the expansion of F(x, 0,B I) will have the form, in 

an obvious notation, 

(6.6). 

where 

Now, 

Thus the leading power of (q-q’) in C, qq’ is (- qql)“. Similarly, the leading 

Power of (4-q’) in ii”, j-.e I comes from I-= 0. Thus in the term g = k of the 

coefficient of xN in F(x, 6, 0 I), we have 

(6.7) 



This shows the highest spin at a pole (as = N is N. It is followed by a compIete 

sequence of daughters, but there are no ancestors. 

One can easily see that this result does not crucially depend upon our 

choice of 2. All that is required is that in the s-pole region, Lil Q 

so one can apply the asymptotic expansion in powers of x, 

The PR0CV to show the t channel poles have no ancestors is equally 

straightforward, so we will not present it here. 

C. Ghosts in the Spectrum. 
appear 

Excitations created by the regulator fieldsyin the spectrum, and because of 

the Ir itI factor appearing in their coupling, they give rise to “ghosts, I1 that is, 

states of negative norm. Now, these can be pushed arbitrarily high in the spectrum 

by allowing the values of A we choose to be arbitrarily large. However, we 

will maintain the values 2 1 = 1 ,a, =2 chosen for the previous example in 

order to demonstrate how they explicitly appear at the first few levels. We will 

also see that even the usual “aIt modes give rise to ghosts, since the ghost- 

elimination theorems only apply when the common mass of the external lines is 

1 
P- 2=-l. 

Consider first as = N = 1. In this first nontrivial case, the residue at the 

pole is - 



where we introduce the symbo1 

In R1 , the factor (1n2-4) signals it is only the (2 = 1) b-set of oscillators that 

contribute. This is because there is a built-in signature factor in the amplitude 

when Fig. 1 and Fig. 2 are added together that eliminates CY~ = odd poles from 

the amplitude when x is even, e. g. , x =Oand x= 2. The origin of this factor 

is easy to understand from the expression 
?r’ 
(j@ 

s 

?$ 
d& e $f%%r) 

0 

e ;,v(r-K 
. J 

./’ 

These terms appear in the expansion of 

of elt;ny . 

as coefficients 

/iL-uQw in each term. However, the factors (- 1) x cannot be 

absorbed in the same way. Instead, one has 
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NOW, if in the contributions to the 2-current amplitude, the currents lie on 

opposite sides of n 
/ 2 , the contractionof the fields to produce a Green’s 

function. will produce a modification of the energy denominator relative to the 

case when they are on the same side, 

which has the required si nature effect (- 1 )N at a pole. However, the (-1) 31 
_ g 

factors do not have a similar effect, and we get poles for odd N unless X is even. 

To get properly s&natured poles, we should always choose 2 even. Nevertheless, 

for our present purpose of illustration, this does not matter. 

To examine the positivity of RI, pass to the kinematics of an elastic 

-scattering q2 = 4’ 21b? = , p2zz p’2= p2, with CM scattering angle 
I .-u- , 

E 

The residue at the first pole should have the form 



where g; (M2) are form factors, and Pi(t) are Legend& polynomials. Thus 

the constant term and coefficient of t should be positive. Under these kinematic 

conditions, we have 

p, = (~e-t)(t-2ml)Cjj(l-m’)l: (610) 

Since the;functions are real, “B2 are positive. Thus we see that the vector 

excitation is a rrgood*’ state, but the scalar daughter is a ghost for 27 0. Why 

is there any ttgoodtf particle at all in this case? The reason is that the x = 1 

oscillators enter VP with coefficient PI2 = 2&r2- 1 > 0 (see Eq. (6.3)). It is not 

necessary for all the new oscillators to have wrong metric in order to satisfy - 

the constraints following Eq. (4.5). 

Next, consider the (Y~ = 2 level. The signature effect now decouples the 

A= 1 oscillator, but we still have the effect of the even x extra modes. 

Explicitly, in the kinematics of an elastic scattering, we find 

._ .. 
It is easy to verify that for M2 ) 0, the vector particle is a ghost. However, 

tensor and scalar parts have a positive sign. This illustrates two points: 

(1) the rtalr modes continue to produce good particles on the leading trajectory, 

even if the theory is only Moebius invariant, as in the ordinary Veneziano model; 

(2) a more detailed analysis shows the scalar daughter receives positive con- 

tributions from both the “a11 mode and the 1 = 2 II b” mode. Thus, just as 
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the rlarl modes produce good leading particles, but may produce bad daughters, 

the llbft mode that couples with 2<o - produces a bad leading particle, but 

may produce good daughters. 

We also note that the llaI1 mode itself contributes to the negative residue 

of the vector particle. It can be made positive for d< 0, but this is not 

satisfactory for our current theory. The b-mode contributes to make this part 

of the residue even more negative. Thus there does not seem to be much 

hope of contriving cancellations between Itar’ and the ghost “b” particles so all 

residues are positive. 

D. Asymptotic Behavior 

It is possible to show that our T2 amplitude has Regge behavior in all the 

proper limits. In particular, it does not growas u - 03, which was a problem in 

% the phenomenological dual model of Nambu. However, we will only exhibit the 

s-channel asymptotic behavior, since it displays a fixed pole. 
3% 

Consider the limit s - ~0 with t held fixed. As can be seen from (6.4), 

any exact, evaluation of the integral representation for T2 involves pole terms. 

For this reason it is necessary to keep s off the real axis when calculating-the 

asymptotic behavior, and we shall take czS - - 00, a standard procedure in dual 

resonance models.‘* Following the discussion of Nambu 
2- 

, write 

(6.11) 



The usual analysis indicates the integrand will be maximal near x = 1 , 

8, 8’ = 0. However, notice that according to (6.1), F(x=l) f 0. Thus 

This may indicate the presence of a fixed pole, provided the series does 

not add up to give Regge asymptotic behavior. We shall see that from the 

second term onward it must add up this way, but the fixed pole remains. 

To study these effects in detail, write x = e 
-P ; andfor ‘?+= 0 

&I%() 9 -Q’25 0 3 introduce spherical coordinates 

(6.13) 

The variable w, (3.11), becomes 

W fb csc 2d cscL 
‘. 

P 0 m!drs~. ih (6.14) 
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In the same approximation, 

F(p,@‘) --3f bin a ““f 

The asymptotic behavior can be extracted straightforwardly from this 

expression. Hawever, it is necessary to keep a close watch on the angular 

integrations in order to see that the fixed pole cannot coexist with simultaneous 

poles in both current lines. Except near (Y = v / ,p= ?f#j , Fcmbe 2 

expanded further. 



With a steepest descents estimate, we have 

% 4 cu.sQz e 4 (6.18) 

which is Regge behavior with CY~ = t -3, independent of the values of q2 and qf2. 

Now examine the remaining angle integrals. 

Cl = C,(4z,qJ2, t) is a polynomial in its arguments and will not be singular as a 

function of any of them. The 
$ 

integration can be carried out at once. Strictly, 

the same formula should not be used for the Q! integration, since we have noted 

> . that CY = ?4 causes the expansion (6.16) to fail. However, the upper end of the 

integration region in (Y affects only the (cos (Y) t-3 term, which is singular for 

t < 0, an unphysical result. If we set that term equal to one, consistent with 

-.(6.18), we do not affect the q2 and q12 singularity. structure, 

Thus 

which is of interest. 



This combination of ‘T’ functions allows simultaneous poles in q2 and qf2, for 

any positive integer values of these quantities. The denominator produces dips 

for q2 + q12 = 2n + 3, n = 0,l ,. . . ; this will kill simultaneous poles if q2 and 

v2 are not both even or both odd for sufficiently large q2, qf2, an interesting 

effect. 

In the region where Q % /iy 
/ 2, a different set of approximation is 

appropriate, and it is here that we will pick up the fixed pole. Looking back 

at the coordinates (6.13), we See that for 

(6.20) 

The characteristic feature of this domain is that r and one of the angles 8’, 8 I, 

can be second order small, but the other angle is simultaneously only first 

order small. 

We now have 

The integrand may be expanded, 

(6.22) 
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Since only powers of fZ appear in the expansion, the second term is already 

contained in the alternate expression (4.31), and we need only keep F( 

to define Tf. p. . 

(6.23) 

and examine 

The 
9 

integrationhas been extended to 

(6.25) 

The 
P 

integral is a pole term, since 

Thus the only singularities are near 
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(6.27) 

As in the ordinary Veneziano case, the B function has singularities in q2 or 

cv2, but not simultaneously in both. 

We find, then, that the fixed pole arises if the triple limit y, 8, 

B 1 -L 0 is performed in such a way that an “equal time” configuration must 

exist prior to 0 and 0’ going to zero. If any small tttimelf difference is 

al1owed.t.o persist as the vertices approach the edge, a Regge pole occurs 

instead of a fixed pole, and both currents may convert to hadronic states. Thus, 

there are two distinct physical ways of approaching the limit. An extrapolation 

of this result Would be that 1 the equal-time commutator of currents determined 

as the limit of an “almost-equal-time” commutator is not unique; however, 

this extrapolation can only be made meaningful by a detaiIed analysis which is 

beyond the scope of this paper. 

To conclude this section, we remark that our considerations have been 

restricted to include only the l’C-numberl’ part of 
4( ) 

0, r . The density. 

excitations produce contributions to the spectrum, as mentioned in Section III, 

but these are always positive norm scalars. They also contribute to the real 

part of the amplitude in a way discussed in Appendix C. 

To study how these excitations alter the Regge behavior, recall the relevant 

; Green’s function has the form 



This result has been written in the polar coordinates (6.13). It modifies (6.15) 

The new factor 
s 

-2 effectively shifts t - t + 2, which changes the Regge 

behavior to o(t) = t- 1. Thus we have the asymptotic form 

It is straightforward to verify that the angular function f(cr, 
P 

) in Eq. (6.28) does 

not alter the arguments we gave regarding the “decoupling” of the fixed pole 

from the purely hadronic amplitude. 

-_ 
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VI. SUMMARY AND.DISCUSSION 

The premise on which this paper was based is that a useful 

approximation to the electrodynamics of hadrons can be obtained in a 

semi-classical framework. It has been shown in A aun%!~ ,at;' works 

L that the "free" fields 

df ORMs result from a special choice of coordinate gauge in which to 

'express the action of a classical free particle. Nambu's hypothesis 

for the vector current provides a natural electromagnetic interaction 

term in this view,since it formally leads to the Lorentz equation 

with V playing the role of space-time coordinate. 
P 

.The first retreat from this aesthetically appealing framework 

occurs in making allowance for a non-trivial q* dependence of the matrix 

elements of the current. To achieve this, a regulator field, which allows 

cancellation of infinities in the operator e iqV , and leads to the Green's 

function structure of the Rebbi-Drummond model, was introduced. It is 

not the only possible way to proceed. A "dual loop" approach possibly 

has an advantage of greater internal consistency;'%t the-machinery 

needed for calculations is so cumbersome as to detract from its attractive- 

ness as a phenomenological theory, which is all we are claiming for the 
. \ . . 

DRM in this paper. \ 

The extra-field method allows for straightforward calculation - + 

at the phenbmenological level, but one must concede at the outset that 
> 

ghosts will be present in the spectrum. This is very unpleasant, for 

the good features which the "free-particle" formulation could lead one 

to hope for are already sacrificed. - 

With Pandora's box opened, the disease of harmonic oscillator wave 

funct lt with. The method by ions', Gaussian form factors, can also be dea 

I 
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which this has been achieved deserves further study on its own. Physically, 

Eq. (3.8) may be thought of as the equation of motion for a string with 

variable density. Since the endpoints have divergent "masses", except 

if x = 0 or 1, the central region is de-emphasized. Because of the wrong- 

metric, we subtract s the rapidly falling contribution to the form 

factor from that region. (It may also be possible to consider Eq. (3.8) 

;'as representing a string spinning end over end.) 

Further discussion of the lack of scaling in vW2 is hardly required 

here. Yet, in spite of the shortcomings of the model in providing a 

definite answer to the problem posed in the opening paragraph of the paper, 

limited progress can be claimed. Some is concrete, as in the discussion 

of the vector-dominance aspects of the amplitude A ; the elaboration of 

the origin of the fixed pole in the strip domain; and the evaluation of 

the effects of a quantized.internal current. 

Perhaps more important, however, is that detailed evaluation of this 

model points, in different ways, to a need for a broader internal structure 

in the basic formalism of the DRM. For example, the form factor calculation 

is non-unique because many possible x values for the auxiliary fields are 

allowed: a group which includes a spectrum of SL(2,R) values has a better 

chance of solving the problem uniquely. 

Use of,a group which requires a larger number of internal dimensions 

is an even more interesting possibility. 
\ 

I :'-L( - *: * .a .: 5 : _ ' -' -" a. _. 

. : id- .- I 1.‘) ,,: If one concedes that the two- 

dimensional domain of the DRM is a surface in physical space-time, and 

not'an abstract space,,it is more natural to attempt a new start directly 

with more. internal dimensions, instead of covering regions of four-space . 

by distorting the two-surface ("non-planar-loops"). To the extent that 
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harmonic oscillators are needed for quantization of the field, and not in the 

solution of the field equations themselves, it is not necessary to think of such 

a model as an “elastic solidTf , anymore than one conceives of the photon field 

to be such. One could, for example, consider compressional modes along the 

length of the string. 

In this regard, it is interesting to rote that in the “partonfl interpretation 

of the DRM, the string model corresponds to the collective motion of infinitely 

many partons due to lfsoftt” interactions between nearest neighbors in rapidity. 33 

Sb(CISKl/dD 
Kogut and V have recently drawn attention to the possibility that in addition 

to t Es soft interaction, there may also be a phenomenologically important 

“hard” interaction, very singular at short distances, giving forces of long-range 
sf 

in rapidity. A vector gluon theory would have such an effect. It is very 
&C?rl “‘;cFT ‘? ,+/df) “~/jRD’ 

challenging to construct a model which consistently incorporates these -Y v features. 

A generalization to a hypothetical q; sea of the degenerate electron gas problem, 

with its collective density fluctuations and screened Coulomb force, immediately 

comes to mind; but, as it true for the DRM itself, incorporation of the require- 

ments of relativity is far from trivial. 
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APPFNDIX A:, ALTERNATE REALIZATION OF SPACE OF SL(2,R) REPRESENTATIONS 

In the upper half t plane, define linear differential operators 

2; Li, = - (I-+3") a/a, 4- C.C. ; 

(A.11 

These obey the Lie algebra of the SL(2,R) group. The Casimir invariant is 

A = - (u,~--u;- u,")=wz)" a=/a,~g. 

Since the Casimir operates in a re 

identity, the eigenfunctions of A 

ipresentation as a multiple of the 

transform according to representations 

ion is just (2.4). of SL(2,R). This eigenvalue equat 

Define the scalar product 

and the adjoint of Ui with respect to this scalar product, 

(A.3) 

'r 

The operators ; Ui are self-adjoint: (iUi)+. = iUil That is’, ,' 
P 

It is shown in Ref. that the eigenfunctions of A -’ 

are vectors in a Hilbert Space which is a valid realization of the " 

(abstract) space in which the action of the group SL(2,R)'is unitarily 



. 
! 

implemented, provided x is in the interval l-> X > 0, 

(Supplementary Series); or if x = p , 0 real, 

(Principal Series). An eJement of the group acts on the functions Y 
G-1 

(81 

according to 

where 

and Ui are the didfferential operators in (A.l). 

The remarkable feature of (A.4) is that the functionscp (')(z) do 

not acquire any multiplier function under the action of the group, 

regardless of the value of X (provided it is in the supplementary 

or principal series). 

The explanation for this phenomenon is that one is dealing with 

a different realization of the space of functions that transform as 

representations from the one commonly used in the discussion of the 

DFN. ' \ 

A very interesting feature of the new-realization is that the 

Casimir equation is the field equation for the field transforming 

according to a representation. In the usual realization, the Casimir 
1 

operator is trivially a constant, and a Lagrangian for fields of arbi- 

trary SL(2,R) "spin" cannot be'written. 

A difficulty, on the other hand, is that the feasibility of this 

realization has been demonstrated in Ref. - I ? w for the principal 

. 
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- 
. 

: 
! 

and supplementary series. The mapping from the familiar homogeneous- 

function space to the new function space we are discussing has not 

been carried out for integer point representations by these authors, 

in spite of the fact these representations are also unitary. 

,’ 

Nevertheless, it is possible to continue the solutions of Eq. 

(?I,$) in 1 from the supplementary series to the positive integer values 

of x without encountering any pathological behaviour. In particular, 

it has been checked explicitly to second order in a, 8, y, 

that, for x = 2, 

‘PI%) = Y’ (2-Y) . 

If repeated application of the operators Ui onto the functionsY(X).(z) 

were to lead one into a new class of functions, it would show up in 

second order for x = 2. 

All one can honestly say is that the status of the integer point 

representations in the new realization is an open, and very interesting 
1 

question which merits further investigation. 

For completeness, we note that a differential form of the 

generators in the strip domain, obtained directly from (A.l) by change 

of variables, has been given in Eq. ( ' ). 
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- 

. 

. 

I 

, 

The operator J* = k IL,, L-1 - Li , which is the Casimir invariant, 

reduces to sin' e(a2 - at). T . 
To study the action of these generators on the eigenfunctions, the 

following identity is useful, when combined w ith the normalization integra 

. (3#.%! : 

. 

\ 

. 1,. 

. . . 

. . 
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APPENDIX B 

Construction of Green’s Function 

Treating7 as a time variable, we seek the Green’s function satisfying 

the (hyperbolic) equation 

( K is a normalization specifying the strength of the source. ) 

Expandi& G(X) ’ m terms of its Fourier components, - 

’ (B.2) 

and then expanding 

functions 

complete, orthonormal eigen- 

one obtains in a well-known fashion 
1 

The boundary condition needed to complete the qecification of G is imposed 

by prescribing how the integral appearing in the expression above is to be 

evaluated. The weli-known )1 =osum 



I 

follows from choosing the contour as in Fig, 7, with f: i 6 displacements as 

indicated; and from choosing . 

Thus, in general, 

Inserting the expressions for $0 Q exhibited in Eq. (3.9b), we have 

in which I’2 2 - . kX 
To perform this sum, use the addition theorem 

Further, we will need the generating function for Gegenbauer polynomials, 

c” z”c,” (w) = (I- 2wz + zp, /A < I (y) - 



Temporarily give a small imaginary part, so that 

satisfies /z / < 1 . Then using 03.6) and (B.7) in (B.5), 

A’change of integration variable 

cos gt ~6~7 8 rine/ $*I . 

enables us to recognize 

Insertion into (B.8) yields Eq. (3.11), normalized so as to agree with the known 

L 0 function. 

1 



APPENtilX C 

The Low Energy Theorem 

The matrix element for graphs 1 and 2 may be expressed in terms of 

M e2 P IJ =q- 

where 

The term relevant as g, 4’ - 0, in a gauge such that c 



I 

Examine first 

From the explicit forms of the Green’s functions in these expressions, such as _- 

($ff--$.$ ), <17r- (q 7) ‘? (a;‘()) )o ) etc. , wk find the only non- 

vanishing term is from the T = 0 endpoint. By use of 

(C.4a) 

(C .4b) 

) 



. 

where G contains the Green’s functions of all the fields in ? IJ’ 

The first term on the right-hand side of ((2.5) gives rise to the correct 

low energy limit of the amplitude, proportional to e2. However, the terms 

involving Q o and G are divergent. Seagulls are required to cancel the con- 

tributions of these pieces. 

Contact terms of the required form are obtained by a careful construction 

of Hint. In abbreviated form, 

Then we have 

(C.8a) 



The terms of order e2 in (C.8b) are the desired seagulls, Note that the second 

not discussed has the same structure as $ 
(1) 

part of ZPv ; indeed $ = 
PV PV 

& (1) 
P” 

, since only the gPv term is important. It is then found that the seagulls 

indeed cancel the required terms in (C.5). 
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