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ABSTRACT 

We investigate a class of possible radiative corrections 

to the low energy theorem for 7ro - n/ in theories with massive 

charged vector mesons. The absence of these corrections is 

verified to fourth order in a spontaneously broken, non-Abelian 

gauge model. 
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The decay rate I’(ao - 3/‘y) occupies a privileged position among low energy 

phenomena as a probe of the quantum numbers of the constituents of hadronic 

currents. 1 Using PCAC and current algebra assumptions and, in addition, a 
n 

remarkable theorem’: due to Adler and Bardeen, the experimental rate is inter- 

preted to support models with three triplets of quarks. The theorem, verified 

in electrodynamics and the sigma model, tells us that the amplitude &(7ro --n/) 

at p”,= 0 is determined to any finite order in perturbation theory by the lowest 

order fermion loop diagram (Fig. 1). In this note, I will discuss the verification 

of the theorem in models containing fermions and charged vector mesons. Since 

it is necessary to consider a renormalizable model, I will consider a spontaneously 

broken gauge model, from the class of such models in which the hadron anomaly 

is cancelled by the lepton anomaly. 3 

The proof of the theorem is in two steps. In the first step one establishes 

that the anomaly in chiral Ward-Takahashi identities is unaltered by radiative 

corrections. For instance, in lepton electrodynamics the anomaly is to any finite 

order 

d jp= 2mij5 + 2 FpV F QP 
P5 EPv QP 

(1) 

where j:= $yCly51(, , j, = fi,J, , and FClv = #A’ - 3’A’. Similarly in a gauge 

theory, the existence of an appropriate regularization method presumably assures 

us that to any finite order in the gauge coupling constant the hadron anomaly is 

given by just the lowest order contribution. 495 

In the second step of the proof of the low energy theorem, in the case of 

Q. E. D. one uses Eq. (1) to calculate g(O) defined by 

(2) 
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where ki are photon momenta, kF= 0, and ei are photon polarizations. Since 

<fiid j’ly y > is of thirdorder inthe ki, /J5 12 it suffices to calculate 

<i-21FpvFaply~~2> = -2qk; e;e; + O(a) (3) 

so that 

S(O) = 2 + O(a2) . (4) 

The proof is complete if it is shown that there is no term O(a) in (3) of the form 

tika! ’ p 12?“2 so that (4) becomes 

o! g(o) = 2n (5) 

to any order in Q! . A contribution to (3) of order O(o) would arise from “final 

state scattering” of the two photons as in Fig. 2. But Fig. 2 is of third order in 

the k. : 
1 

one power of ki comes from the effective anomaly vertex and one power 

of ki each from the coupling of the external photon legs to the photon-photon 

scattering amplitude through the field strength tensors FPv . 

To complete the second step of the proof in a model containing charged vector 

mesons which couple to the fermions, we must consider in addition to Fig. 2 

diagrams of the type shown in Fig. 3. Figure 3 represents possible fourth order 

contributions to the low energy theorem, in which charged vector mesons emerge 

from the fermion loop and then interact to produce a two photon final state. Unlike 

the electrodynamics contribution of Fig. 2, there is no simple power-counting 

argument which shows that Fig. 3 cannot contribute to the low energy theorem. 

For instance, the “final state scatteringY1 of Fig. 3a, shown in Fig. 4, is one of 

the terms which contribute to the low energy theorem for y-W scattering, 6 in 

which the coupling is of the AI” rather than the FPv type. It might be conjectured 

that summing all possible insertions of the photons, which here means adding 

Figs, 3a and 3b, might construct FPv type couplings for the two photons. But 
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since in Fig. 3 the closed charge loop to which the photons couple includes the 

fermion loop which gives rise to the anomaly, it is not obvious that a third, 

separate factor of photon momentum must arise from the fermion loop, and 

without an explicit calculation we cannot rule out the possibility that Fig. 3 does 

contribute radiative corrections to the low energy theorem. The essential ele- 

ment of simplicity in Fig. 2 - that the charge loop to which the photons couple 

may be factorized from the fermion loop which causes the anomaly - is absent 

from Fig. 3. 

We therefore consider an explicit calculation of the diagrams of Fig. 3. We 

shall find that Fig. 3 does not contribute to the low energy theorem, thus verifying 

the absence of these radiative corrections to fourth order in the gauge coupling 

constant. The calculation is simple and straightforward. The one remarkable 

feature has to do with the regularization procedure. In the model defined below, 

i’ig. 3a makes a quadratically divergent contribution and Fig. 3b makes a 

logarithmically divergent contribution to the low energy theorem. But when 

Figs. 3a and 3b are defined by the dimensional regularization procedure, they 

are found to be equal and opposite. 

The model chosen for the calculation contains an SU(2) triplet of gauge vector 

fields A!, an SU(2) triplet of real scalar fields $i, and an SU(2) doublet of 

(hadronic) fermions $. The unbroken Lagrangian, invariant under SU(2) gauge 

transformations, is (with lepton terms suppressed) 

ea - e ‘abc $bAz)2 + f(q) , (6) 

where Fiv E ePAi - #Ai + e l abc Ab ‘“AL and f is an SU(2) invariant, renormalizable 

polynomial in the scalar fields with a minimum at $ = (0, 0,v ). Redefining the 
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scalar fields to have vanishing vacuum expectation values, AZ acquire a mass 

h = ev and the remaining U(1) gauge symmetry is the “electromagneticJ’ gauge 

invariance of the model. Notice that the “photon” A! is pure isovector, so that 

the *‘proton” and “neutror?’ have charges f l/2. 

For convenience we consider the low energy theorem for the isoscalar axial 

current 

and we investigate the diagrams of Fig. 3 to fourth order in the gauge coupling 

constant (and to all orders in the Yukawa coupling constant g). It is most con- 

venient to calculate in the unitary gauge, because it is only in this gauge that the 

vacuum polarization diagrams, Fig. 5, correspond precisely to the charge 

renormalization of the lowest order contribution, Fig. 1. 7 In other gauges, the 

charge renormalization is accomplished by contributions from Figs. 3 and 5, so 

that the calculation is more complicated. 

The regularization prescription used is the one advocated by Bardeen4: the 

integral is continued to n dimensions, g pv8v = n, but Dirac matrices are kept 

four-dimensional. The inner product of a Dirac matrix with an n-dimensional 

momentum vector is defined by keeping only the first four components of the 

n-vector . Consequently, fermion lines are unmodified, and the anomaly, which 

involves only fermion lines, is given by the usual expression, 8 with all tensors 

and momenta defined in four dimensions: 

d jP = 2mij + e2 
l-45 5 

- E~vuT Tr gpv g”r 
32~~ 

where 

(7) 
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and the ~~ are normalized to 
[I ’ 
ra, 7 

bJ 
= 2ie abc’c’ The regular iz ation s theme 

is presumed sufficient to guarantee that Eq. (7) is correct to any finite order 

in e. 4 

We now wish to calculate < Q I~PvS07 Iy,r,> to order e2. Following the 

regularization prescription, the boson loop integrals encountered here are defined 

by continuation in the space-time dimension. ’ As in Bardeen’s definition of pP1)l 

with p an n-vector, the inner product of an n-tensor with a 4-tensor is defined by 

keeping just the first four components of each index of the n-tensor. Thus in 

evaluating the contribution of < & IgPvSo r Iy,r, > to Eq. (7), we can discard 

terms which are symmetric in any pair of Lorentz indices. For this reason 

(among others), diagrams such as Fig. 6 cannot contribute, since the vector 

meson propagator is symmetric in its Lorentz indices. 

Thus the only possible fourth order diagrams in addition to those represented 

by Figs. 2 and 5 are the diagrams of Fig. 3. The calculation is trivially exact 

to all orders in g, because it is impossible to draw diagrams with Yukawa couplings 

if only fourth order in the gauge coupling constant e is allowed (except for contri- 

butions to the charge renormalization, Fig. 5). 

The calculation is straightforward and the results are as follows: the con- 

tribution from Fig. 3a to the low energy theorem is 

ga(()) -i e4 rdnw 1 2 w2 
= - 4n2 J 2 (wvj3 i iiw 20 - 7 (w2-A2) (8) 

and from Fig. 3b it is 

4 2 Hb(0)=i” 1 

4n2 
3+w (1 - 4)) 

(27r)4 (w2-A2)2 A2 n I l i 
(9) 

Notice that for n=4, ga(0) diverges quadratically while gb(0) diverges logarith- 

mically. Thus if we had performed our calculation in four dimensions and defined 
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the integrals with a cutoff, we would have concluded that ga(0) + gb(0) is a 

cutoff dependent, nonvanishing quantity. However, evaluating (8) and (9) by the 

rules for performing integrations in n dimensions, 9 we find that 

LPa(0) = - gb(o) 

This miracle - the cancellation of a quadratic with a logarithmic divergence - 

occurs because of the following unlikely expression for zero: 

/- 
J - (1-i) $1 

2 in = 
I 

$* tr(2-3 -I- (1-f) ;r(l-;,) 

( 1 A2 
2-t 

ZZ 0 . (11) 

It is not surprising that regulating with a cutoff, we would obtain an ill-defined, 

cutoff dependent result. The question of renormalizability aside, if we had regulated 

the theory with a cutoff then Eq. (7) would not be the complete expression for the 

anomaly, since we would also expect singular subintegrations involving massive 

vector meson propagators to contribute to the anomaly. (If we regulate with a 

cutoff, the anomaly arises from surface terms which are generated by shifting 

the origin of integration, and we would expect such surface terms not only from 

fermion loops but also from loops containing massive vector meson propagators.) 

In this case, the calculation which has been presented here would be a non- 

sequitur, since it is based on the validity of Eq. (7). 
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To summarize, we have shown to fourth order in the gauge coupling constant 

that there are no radiative corrections to the low energy theorem for < a 1 j, Iy,r, > 

due to “final state scattering” of the gauge mesons. However before we can 

conclude that there are no radiative corrections which modify the low energy 

theorem, additional work is required on two questions: 

(1) It must be shown that ~7final statel’ radiative corrections of the 

type considered in this paper vanish in any finite order. 

(2) Considering Ref. 5, it seems desirable to verify the argument4 

that the existence of an adequate regularization scheme is 

sufficient to guarantee that the Ward identity anomaly in the 

hadron sector is given by just the lowest order hadron anomaly. 

In view of the significance attributed to the low energy theorem for l?(ro --yy), it 

would be very interesting to resolve these two questions. 
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FIGURE CAPTIONS 

1. Lowest order contribution to the low energy theorem. 

2. A possible source of radiative corrections due to yy “final statefJ scattering. 

The crossed vertex represents the effective vertex due to the anomaly. 

3. Possible sources of radiative corrections due to “final state” interactions 

among the gauge mesons. Charged gauge mesons are denoted by “WJJ. 

4. A contribution to the lowest order yW scattering amplitude. 

5. The contribution of vacuum polarization to the low energy theorem. 

6. The contribution of the pentagon anomaly, which vanishes identically. 
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