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Abstract 

It is proved in a quite general Feynman diagram model that the 

presence of diffractively produced inelastic channels at high energies 

leads to a decrease in the total cross section below as well as above 

the threshold for the process. A nondiffractive channel is shown to 

lead to the opposite effect, namely, the total cross section is increased 

at large energies. Asymptotically, the former behavior agrees with 

the results of the eikonal approach and the Gribov Reggeon calculus. 

On the basis of this theorem, one may expect to see a broad dip in the 

pp total cross section at intermediate energies if the triple Pomeron 

decouples. 

(Submitted to Phys. Rev. Letters) 
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I. Introduction 

The observed rise in the proton-proton total cross section at the CERN-ISR’ 

has generated considerable speculation on the possible existence of a new and 

unexpectedly large energy scale in strong interactions. On the theoretical side, 

the Mueller-Regge approach has led to simple and physical relations between 

production processes and elastic scattering. 2 The resulting analysis of diffractive 

fragmentation processes has led to the identification of positive contributions to 

the total cross section which increase with energy3 and which may be of the same 

size as the observed rise. However, it has recently been pointed out that in the 

eikonal approach, the term which is linear in the triple Pomeron coupling is neg- 

ative definite for asymptotic energies. 4 This is in agreement with Gribov’s Reg- 

geon calculus. 5 It is our purpose here to give a simple non-asymptotic analysis, 

valid around threshold, of this result and the physics involved. 

In those papers which try to relate the increase in the p-p total cross section 

to the sharp rise in the inclusive proton cross section near x z 1, where x is the 

Feynman scaling variable, it is commonly assumed (and quite naturally) that an 

increase in the diffractive excitation cross section normally produces a rise in the 

total cross section and that the other contributions remain more or less the same. 6 

In this paper, this threshold effect is reexamined and it is shown that despite ex- 

pectations to the contrary, the effect on this total cross section of a rapidly rising 

inelastic cross section depends critically on whether the final state is diffractively 

produced or not. If the production mechanism is predominantly real, such as the 

case of real particle exchange, then the total cross section rises; however, if the 

production mechanism is diffractive, then the total cross section decreases with 

the onset of the inelastic process. The point is that in this case a rise in the frag- 

mentation cross section normally produces twice as much fall in the cross section 

-2- 



for events with no rapidity gap. This reversal will certainly have an effect on 

the decoupling theorems7 as was briefly discussed in reference 4. 

In order to illustrate this rather unexpected behavior which is nevertheless 

true in potential scattering, 8 let us examine a very simple two-channel model 

of the scattering matrix which is dominated by absorption. Unitarity of the S- 

matrix will be guaranteed by writing it in matrix form in impact parameter space. 

An angular momentum expansion yields the same result. Consider the following 

S-matrix: 

S=exp [- A(b) + i axa( , 

where ax is the symmetric and real off-diagonal Pauli matrix and A(b) is posi- 

tive. The energy dependence is suppressed. In this model, the transition (or 

production) scattering amplitude between the up and down states is real if a(b) is 

real. The total, elastic, and production cross sections are given, respectively, 

by 

=2 -A 
‘TOT cos a 1 

2 

‘EL = d2b\l - eWA cos a I 

and 

?N = d2blesA sin a I2 . 

Therefore, the absorption function A(b) determines the absorption cross section 

and satisfies the equation: 

aToT -jdzb [l - e-2A] + aEL(s) + oIN(s) . 

However, if the transition scattering amplitude is diffractive (purely 
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imaginary), then setting a = i \a\ in the S-matrix leads to the relation 

omT(s) = d2 b [l - e-2A] + cEL(s) - aIN , 

where A must satisfy the relation A 2 Ial for consistency with unitarity. Fur- 

thermore, if both A and a are small or are treated perturbatively, then to second 

order in these quantities, one finds the relation 

aTOT = 2 bA - aEL(s) - aIN + . . . . . . 

The minus sign in front of the elastic cross section term is a reflection of the 

familiar phenomena that leads to the celebrated minus sign for the net two 

Pomeron cut. The diffractively produced inelastic cross section has the same 

sign-it could hardly be different. 

Let us turn now to a proof of our result in a Feynman diagram model in 

which the absorptive channels are explicitly treated. The classes of diagrams 

will be chosen so as to be consistent with the usual S-matrix philosophy with 

cluster decomposition as expressed, for example, by Abarbanel. 9 

II. Theorem 

In this section, we will consider scattering amplitudes which are built up 

of ladder graphs, window graphs, and fragmentation graphs. It is necessary to 

divide the asymptotic and intermediate states into channels which will be labeled 

by the number of rapidity gaps present in them. Only zero and one-gap states 

will be considered but higher numbers can be trivially included. Their corre- 

sponding Green’s functions will be denoted by Go and Gl; the elastic two-body 

state will be dealt with explicitly and its propagator is Ge. The G’s are collections 
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of Feynman propagators in the direction of s. The real (or in general Hermitian) 

transition kernels are introduced as KeO, Kel, and Kol, and they contain no 

intermediate states of the Go, Gl, or Ge type. 

At this point, it is simplest to proceed directly to the equations for the 

scattering amplitudes that fully define the class of diagrams considered. They 

are 

T ee = KeO GO T0e + Kel Gl Tie 

Tie = Kle (l+Ge Tee) + K10 GO T0e * 

It is also convenient to introduce the positive definite operator C T, where 

ZT = i’;, - Tee )/2i 

whose matrix element in the forward direction is proportional to the total cross 

section. 

For example, the lowest order contribution to the transition amplitude Toe 

is Koe, which could be dominated by and certainly contains the simple multi- 

peripheral production graph. The elastic scattering amplitude Tee then con- 

tains the term KeOGOKOe which is immediately recognized as the ladder graphs, 

where Go contains all the propagators of the rungs. This model does not con- 

tain all graphs; in particular, the nonplaner graphs are not treated completely. 

Some nonplaner graphs can be included by appropriate choices for the kernels K, 

but others are not since when the discontinuity of the amplitude is taken, some 

multidimensional cuts are not included. However, since our final result agrees 

with the eikonal for asymptotic energies, and nonplaner graphs are required in 
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the eikonal approach, our theorem would seem to have nonzero content. In the 

case of the exchange of two Pomerons, nonplaner graphs allow a cut through 

both Pomerons simultaneously which is a positive definite term. It is compen- 

sated by the fact that there are then also twice as many single-cut terms. For 

a clear and detailed analysis of these intermediate states, see the work of 

Botke. 10 

Since the major interest here is to explore the consequences of diffraction, 

it will be assumed that Go is dominated by its imaginary part. We will set 

Go = - i do, where do 2 0 and it contains the mass-shell delta functions of the 

particles in the rungs of the ladder. It is also true that at high energies, the 

elastic Green’s function Ge is dominated by its imaginary part so that Ge = - i de. 

It is not necessary to make this approximation in all cases but it simplifies the 

discussion. 

Now let us compare two different physical cases, namely, the effect on the 

total cross section of diffractive and nondiffractive production of one-gap or 

fragmentation states. 

(a) Nondiffractive case 

For this case, it will be assumed that Kol = 0 = K10 and then to lowest 

order, Tie = Kle, which is real. The formal solution for Tee is 

Tee= [1 - WG,]-‘W , 

where 

W=KeOGOKOe+KelGIKle * 

For later use, we define 

-ImW=Ao+Al , 
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where A0 1 are positive definite and correspond to the above two terms. The 
, 

total cross section operator is 

CT= l-W*G* [1 
-1 

e I ( W*deW - ImW)[1 - G~w]-~ . 

Let us now explore the effects .of the one-gap intermediate states in the situation 

when Go = -ido, Ge = -id,, and Gl = -ixdl , where x is a parameter that allows 

the one-gap states to be turned off. One finds 

ZT[do, de, xdJ = [1+ (A0 + xAl)de]-’ (A0 + xAl) . 

The effect of varying x from zero to one is determined by integrating 

2 = [l+ jAo+xAl)de]-l Al [lide(Ao+xAl)]-l 1 0 

which is a positive definite operator. Therefore, under the stated assumptions, 

the total cross section definitely increases as nondiffractively produced one-gap 

states are introduced. This is to be contrasted with the result in the next section. 

(b) Diffractive Case 

For this case, it is convenient to set Kle = 0 = Kel and then one finds 

T ee = KeO[l - GOu]-l GOKOe 

Tle=KIO[l -GoU]-lGoKOe 

where 

’ =%eGeKeO + KOIGIK10 ’ 

It will now be assumed that Go and Ge are purely imaginary, but since threshold 

effects of the one-gap states are of interest, the real part of Gl will not be 
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neglected. Below threshold, Gl is real and negative definite. Tie is seen to be 

basically diffractive under these assumptions. 

It is convenient to symmetrize the operators present in CT, and after a 

slight rearrangement, one finds 

zde, xdl, yReGl I 

where 
1 1 1 1 

L = (l+A) 3 2 ‘z 
do Kol ReGIKIOdo Cl+ A) 

-2 

and 
1 1 
z A(z,x) = do zKoedeKeO + xKOldlKIO 

It is now obvious that 2, is a decreasing function of y and hence of terms pro- 

portional to Re Gl. One can then proceed to carry out the same argument with 

respect to x and then z. The result is that 

de, dl, ReGl ] _< ET[do, de, 0, 0] 5 c,[a,; 0, 0, O] , 

where 

0, 0, 0 1 = KeOdOKOe . 

The above operator inequality which is our main result must hold for any 

diagonal matrix element and hence the total cross section must be less than the 

value given by neglecting elastic and one-gap intermediate states. This latter 

value is usually termed the “bare Pomeron. ” 

One readily sees that an ever increasing contribution from the one-gap states 

actually damps the total cross section towards zero. Note also that by virtue of 
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the sign reversal, the real part of the scattering amplitude coming from the 

fragmentation states becomes positive at sufficiently large energies. 11 This is 

opposite to the expectation from dispersion relations and to the idea that the 

fragmentation states lead to a rise in the cross section as in case (a) discussed 

above. Since the real part is known to be negative at intermediate energies, it 

should stay negative below and in the threshold region and then start to increase 

and turn positive (if diffractive fragmentation dominates) when the energy is far 

above the effective fragmentation threshold. 

It therefore seems clear that a rise in the total cross section cannot come 

from the turning-on of a diffractively produced channel. In other words, the 

triple Pomeron region must contribute negatively to the total cross section. If 

the (presumably) diffractively produced states do indeed have a rising cross sec- 

tion in pp scattering in the ISR energy range, either the basic mechanism pro- 

ducing the no-gap or pionization states must rise by considerably more, or there 

are important contributions from nondiffractive final states. The mystery of the 

origin of any rise in the pp total and elastic cross sections deepens, but from 

another point of view, our results provide a natural but perhaps not totally 

satisfactory explanation from the broad dip 12 in the pp cross section which is 

starting to go away (as an inverse power of Bn s if the triple Pomeron decouples) 

in the ISR energy range. 
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