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ABSTRACT 

The eikonal approach to the scattering and production of high energy 

particles is reviewed. Several models for the high energy behavior of 

the eikonal phase are discussed. We show how to introduce effects 

associated with the fragmentation of the incident particles into the eikonal 

framework, and indicate how these effects can influence the energy 

dependence of cross sections. The contributions of the triple Regge 

region of phase space to the amplitude are examined, The importance 

of absorptive effects is clearly shown by demonstrating that the sign of 

the term linear in the triple Pomeron coupling is negative in the total 

cross section. 
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I. INTRODUCTION 

The eikonal approach to scattering at short wavelengths has been very 

useful in a wide variety of applications ranging from classical wave propagation 

to ultra high energy physics. The purpose of this paper is to give a brief 

review of the physical insight that has been gained concerning strong interaction 

processes at high energies and to underline the theoretical questions that 

remain. 

One of the main virtues of the eikonal method is that the geometrical 

constraints of unitarity are automatically enforced on the elastic scattering 

amplitude. In fact it has been possible to construct eikonal models for which 

the scattering operator satisfies full multiparticle unitarity in the direct 

channel. l-5 The approach is general enough to allow one to study a variety 

of production mechanisms., 

In the relativistic domain the eikonal approximation has been studied most 

thoroughly for elastic scattering at high energies and small momentum transfers. 

The two incident particles are pictured as propagating through the interaction 

region in a straight line without making appreciable fractional changes in their 

energies or longitudinal momenta. It has been possible to show that this picture 

is correct for certain classes of Feynman diagrams. The case in which the 

incident particles interact via the exchange of elementary particles (see figure la) 

has been extensively studied. 6-9 This simplest of all exchange models can even 

be extended to large momentum transfers, 9,lO Tiktopoulos and Treiman l1 have 

shown that while an eikonal-like formula does result when vector mesons are 

exchanged this is not the case in the exchange of scalar mesons. In the latter 

case the large momenta of the incident particles can be transferred to the 

-2- 



exchanged quanta in violation of the eikonal picture. This does not happen for 

vector exchange to leading order in s. 

The much more complicated problem involving the exchange of noninteracting 

towers in quantum electrodynamics has been studied by Cheng and Wu, 12 This 

work led to their well known model of high energy scattering. 13 The related 

problem of the exchange of noninteracting ladders in e3 theory (see figure lb) 

has also been studied extensively. 14,15 This work allows one to correctly treat 

the Mandelstam cuts which arise when multiple exchanged ladders are inter- 

twined along the projectile and target lines. For the exchange of one or two 

G3 ladders, the leading asymptotic behavior of the Feynman graphs does come 

when the large momenta follow the eikonal paths. However, for the exchange 

of three or more ladders, the leading asymptotic behavior again comes from 

short circuit paths O 15 

The exchange of interacting ladders and of nonplanar check-board graphs 

(see figure lc) has also been studied. 3,4,16 These calculations indicate that 

interactions among the exchanged ladders or towers can be important. In 

general the forces between N exchanged bosons do not saturate, and the binding 

increases faster than NO The consequences of this will be discussed in section II, 

The simple eikonal picture in which the two incident particles retain their 

identity throughout the scattering process is made plausible by the leading 

particle effect, but it is obviously highly oversimplified. Recently Skard and 

Fulco17 have extended the eikonal model to include effects associated with the 

fragmentation of the incident particles, Their work demonstrates a very 

interesting new physical point -- namely, the presence of fragmentation channels 

in black disc scattering can make the disc overblack and thereby induce trans- 

parency in the system. This unexpected effect will be discussed in section III 
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within a general framework. When the eikonal phase is dominated by Regge 

pole exchange, fragmentation effects play a crucial role in determining the 

triple Regge contribution to cross sections. This subject is also briefly 

discussed in section III. 

II. ABSORPTION -- NO FRAGMENTATION OR DIFFRACTION 

The conventional eikonal form for the invariant elastic scattering amplitude, 

M, is 

09 
M(s, t) = 4?ris bdb Jo(b fit) I 1 - eix (b’ ‘) 1, 

0 
(1) 

where the complex phase x (b, s) is the sum over all connected graphs involving 

the exchange of an arbitrary number of mesons as shown in figure 2. l8 By 

connected graphs we mean that the circles in figure 2 represent connected 

t-channel scattering amplitudes. Disconnected graphs arise from the expansion 

of the exponential. It is probably best to regard eq. (1) as a simple ansatz which 

automatically takes into account the constraints of unitarity. This equation can 

be “derived” from Feynman graphs of the type shown in figure 2 18 provided one 

considers only the contributions in which the incident particles retain their 

large momenta throughout the scattering process, 19 However, as was pointed 

out in the introduction, these contributions do not always give the leading 

asymptotic behavior of the individual Feymnan graphs. 

In general the circles in figure 2 can correspond to n - m meson scattering 

amplitudes; however, in all of the work that we are aware of only diagonal 

(n - n) contributions to x have been taken into account, While it should be 

possible to discuss the eigenchannels in the t-channel, we shall limit ourselves 
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to diagonal terms only. It is then convenient to write 

co 
ix (b, s) = 

c 
in d 

n 
(b, s) s bta - 1) + WI e-wb . 

n=l 

Here n is the number of mesons being exchanged, p is their mass and a! is their 

spin. We have explicitly displayed the factor of e -npb since for n meson exchange 

2 20 the nearest t-channel singularity is at t = (np) . As a result, we expect 

dn(b, s) to go to a constant for large b and fixed s. We also expect that for 

large s, a(n) can be chosen so that dn(b, s) varies with s at most like a power 

of Qns. This is the case for the diagrams considered in references 12-16. 

Cheng and Wu have suggested that for large values of b terms in eq. (2) 

which correspond to the exchange of three or more mesons can be neglected 

because of their more rapid fall off. Let us therefore start by considering the 

first two terms in eq. (2). In general dl is real, Re d2> 0, and a (2) > 0. As 

a result, for large values of s and b the ladder or tower graphs dominate the 

single particle exchange terms for vector exchange. They also dominate for 

scalar exchange provided a (2) > 1, If one retains only the contributions to x 

arising from the tower graphs, then for vector exchange e ix@, s) goes to zero 

at large s for b 7 (a(2)/2p )Qns = R. Qns, and goes to 1 for b > R. Qns. In the 

present normalization the total and elastic cross sections at high energies are 

given by 

-00 
OT = 4n J bdb Re [ 1 - eiX(bS ‘)I 

0 
and 

o- eQ = 2n bdb 11 - eiXtb* “)I 2 o 

(3) 

(4) 

So for vector exchange 13 

“T = tieQ = 27r(R0 Qns)20 (5) 
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A similar result holds for scalar exchange when a (2) > 2. IL4 The only change 

is that R. = [ a (2) - 2]/2~. Equation (5) of course corresponds to scattering 

from a black disc of radius Robins. 

Whether the contributions to X arising from the exchange of three or more 

mesons can actually be neglected for large b depends upon the behavior of a(n) 

as a function of n. In the checkerboard graph model (see figure lc) a (n) grows 

like &(n - 1) , 3’ l6 so these terms obviously cannot be neglected. This behavior 

for a(n) is not hard to understand., The particles represented by dashed lines 

in figure lc give rise to attractive forces among the exchanged mesons. Since 

the number of “two body potentials” increases like $n(n - l), it is hardly 

surprising that the binding among the mesons does also. In this case the series 

for iX is marginally convergent. For most values of the input parameters the 

. 
total and elastic cross sections fa,ll like a power of energy as s goes to infinity. 

I 
These checkerboard graph models were simplified versions of multiperipheral- 

type theories in which the approximations were tailored to be accurate in the 

multiregge region of phase space, The results show that these contributions. 

are then strongly suppressed by a type of self-damping imposed by unitarity. 

This suppression of large relative energies between secondaries is required 

by the experimental data. 

Models which include many body forces among the exchanged mesons (see 

figure 3) have also been studied04 The results are qualitatively similar to those 

obtained in the checkerboard model, except that there is a limited range of 

input parameters for which the multichain forces saturate, i.e. for which a(n) 

grows less rapidly than n. In the latter case the multimeson exchange contributed 

to x can of course be neglected. 

-6- 



The behavior of a(n) in relativistic field theories remains an open question. 

Three cases can be identified: 

1) a(n) grows less rapidly than n. In this case only the one and two meson 

exchange contributions are important at large b. As a result, for vector 

exchange there is always appreciable scattering out to b of order RoQns, and 

eq. (5) holds. 

2) a(n) grows more rapidly than n. Here all terms in the series for X 

must be retained and a detailed calculation is necessary to determine the high 

energy behavior of the total cross section. This case is further complicated by 

the fact that couplings between the various meson channels are likely to be 

important. 

3) a(n) grows like n. In this case the high energy behavior depends critically 

on the behavior of the dn. For example, if dn -. d”/n!, then one again obtains 

black disc scattering for vector exchange, while if d,- dn one finds that for 

vector exchange: 

iX(b, s) = ide -I-lb [ 1- idsa empb] -’ 0 (6) 

Here we have written a(n) = (n - l)a, since by definition a(1) = 0. The first two 

terms in the series expansion of eq, (6) agree with the results of Cheng and Wu, 

but this form for X leads to a total cross section which falls like a power of the 

energy D 

The high energy behavior of X (b, s) depends critically on the mechanism 

for producing particles in the central region. Particle production can be studied 

in the eikonal framework by treating X (b, s) as an operator. l-5 In general it is 

a functional of the creation and annihilation operators of the produced particles. 

In references 3-5, where the form of X (b, s) is taken from the multiperipheral 

model, X (b, s) turns out to be an unbounded operator for most values of the 
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input parameters. It is then hardly surprising that one must take into account 

all powers of x (b, s) when computing the scattering amplitude, However, it is 

also possible to construct reasonable models for which x (b, s) is a bounded 

operator 0 4,21 In these models it is possible to adjust the input parameters so 

that the tower dominance hypothesis holds. It is also possible to arrange for 

any desired energy dependence for the total cross section. 

III. FRAGMENTATION AND DIFFRACTION 

Although the simple eikonal picture discussed in the last section is quite 

appealing, it certainly cannot be the whole story. If the incident particles 

never lost a significant fraction of their momenta, then all of the produced 

particles would have to be produced in the pionization region. Experimentally 

one knows that the incident particles often fragment into two or more secondaries 

which share the large incident momentum. Such effects are present in some of \ 1 

the Feynman diagram models we have mentioned. For example, the diagrams 

which correspond to the exchange of one or two @’ ladders only give rise to the 

simple eikonal picture if one treats the ladders in the leading log approximation. 

These diagrams also contain terms in which intermediate particles share the 

large incident momenta. Such terms, which break the eikonal picture, 

contribute to nonleading powers of hs. A similar result undoubtedly holds 

for the exchange of QED towers. 

Fragmentation effects can be included in the general eikonal picture provided 

the invariant mass of the fragments of each particle is small compared to the 

total center of mass energy. 2,17 It is convenient to divide both the intermediate 

and final states into two classes: those in which there are no large rapidity 
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gaps and those in which there is at least one large gap. For simplicity we 

consider explicity only those final states in which there is at least one large 
22 

gap. Then the scattering amplitude can be written in matrix form 23 

MkQ(s, t) = 4nis bdb JO(b $-t) [ 1 - eix (by ‘)lke , 

where the subscripts label the various states with at least one large rapidity 

gap, They consist of the incident state and all states to which it can be 

diffractively excited. Typical diagrams are shown in figure 4. The phase X , 

which is represented by a wavy line in figure 4,is itself a sum of diagrams in 

which none of the intermediate states have large rapidity gaps, We assume that 

these nondiffractive intermediate states produce absorption in all the eigen- 

channels and therefore write 

ixk@ S) = - Ak&b, S) 

where A is taken to be a positive definite hermitian matrix which can be 

diagonalized by the unitary matrix G(b, s): 

IG-‘(b, s)A(b, s)G(b, s)l ke = Ake = ati al&b, s). 

(8) 

(9) 

The scattering amplitude is then given by 

00 
Mja(s, t) = 4nis bdb Jo(b -t) c G. 

Jk 
(b, s) [ 1 - e 

-+b, s) 
1 

k 

One cannot go much further without making specific dynamical assumptions. 

However, it is amusing to consider specific classes of possible behavior. Suppose 

that there are N discrete eigenvalues of A which are very large out to an impact 

parameter of order b. (perhaps b. t Robs) and that all of the eigenvalues 
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decrease rapidly to zero for b > boo Then, assuming that G(b, s) is a slowly 

varying function of b, one sees that 

N 

uj = i Im Mjj(s, 0) = 4n bO 
T bdb 

0 . 1=n 

= 2nb2 g Ojj ’ (11) 

UJ = 2n 
ed bdb I(1 - e-A)jj 1 ’ 

, = “b; 

and 

Jk=2n bdb 1 (1 - e-A)jk 

gjj 1 ‘Is (12) 

where 

N 

gjk = c 
G. (b JQ 0’ s) Gi$ (bo, s) 0 (14) 

Q=n 

Notice that as long as there is more than one diffractive channel the total cross 

sections do not all have to approach the same limit as they would in the simple 

black disc-eikonal models discussed in the last section. Furthermore, since 

gjj 2 1, we see that cee/~TC$ instead of being exactly $ as in the simple 

black disc models. However, if we define the diffractive cross section by 

ii ,J 
ohif eB + c 

Jk . (15) 

k#j 
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then we obtain the important result 17 

j -1 j 
“dif --pTT 0 (16) 

The energy dependence of the various cross sections depends in detail on the 

behavior of b. and the gij( s) 0 

There are two special cases of interest. First, if all of the eigenvalues 

of A are large out to b-bo, then g. =6. ‘k j 
Jk $ 

0 So, a;!~%~~ = 27rbi and oj /cT 

goes to zero at high energies. These are just the results of the one channel 

model. Going to the opposite extreme consider the case in which only one 

eigenvalue of A is large out to b =boO This is equivalent to taking A to be 

separable so we write 

Ati@, s) = Gk(S)“(b, s) GQtQo 0 (17) 

This is a crude version of the model discussed in reference 1’7. Writing 

g GE(s) = I(s) the scattering amplitude takes the form 

/ 

w 
MH(s, t) = 4nis 

0 
bdb Jo(b fit) 

Gk(S)GQtS) 

I(s) 
[ 1 _ e-1(s)atb, S)] 0 

(18) 

In general, the functions Gk and I(s) depend on the impact parameter b. On the 

basis of our previous comments we expect a(b, s) to grow like a power of s for 

fixed b. I(s) will also increase with s since new diffractive channels are 

continually being opened9 but we would not expect it to grow nearly as rapidly 

as a(b, s). In that case the value of b. is only slightly effected, actually only 

logarithmically, by the presence of the diffractive channels; however, the 

factor of I(s)-’ under the integral in eq. (18) means that these channels tend to 

make the disc more transparent. In the work of Skard and Fulco 17 fragmentation 
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effects are treated in a manner similar to the diffraction model. 24 They find 

that I(s) grows like (J?ns)’ , where v is constrained to vary between 0 and 2 by 

self consistency requirements. Therefore, in this model the disc is no longer 

black and the total cross section behaves like (~3~s) 2-V D The value of n depends 

on the details of the fragmentation mechanism. It can even be a slowly varying 

function of s. 

Finally, let us consider the effects of fragmentation and absorption in a 

multiperipheral-like model. The simplest diagrams that contribute to the 

eikonal phase are shown in figure 5a. Cutting these diagrams, one can, of 

course, divide the intermediate states into those with no large rapidity gaps 

and those with one or more such gaps. Examples are shown in figures 5b and 

5c respectively. The wavy lines represent ladders whose high energy behavior 

is assumed to be dominated by a Regge pole with intercept close to or equal to 1. 

For the graphs in figure 5b, these Regge poles give rise to absorptive corrections 

to the basic multiperipheral production amplitude. Notice that the one gap 

contributions are necessarily closely related to the zero gap ones because the 

same graphs contribute to both. 

The graphs in figure 5b which have absorptive corrections (wavy lines) 

interfere destructively with the graph obtained by cutting the simple ladder. 

The graph in which the Reggeon is attached to the incoming lines and the one 

in which it is attached to the outgoing lines both contribute to the two Reggeon 

cut. Each of these graphs is equal in magnitude but opposite in sign to the 

AFS graph (the first one in figure 5c) which has one large rapidity gap, This is 

the origin of the well-known result that in the eikonal model the two-Reggeon cut 

makes a negative contribution to the total cross section., The same sign 

reversal holds for the triple Regge term which also makes a negative contribution 
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to the total cross section. The physical interpretation of the sign reversal 

is simple and clear. If fragmentation is caused by a predominantly absorptive 

exchange, such as the Pomeron, its lowest order contribution to the total 

cross section is negative, whereas if it is caused by a real exchange, the 

resulting contribution is positive. 27 This is related to the familiar theorem in 

multichannel potential scattering that a hermitian transition potential produces 

attraction below threshold and to its forgotten corollary that an antihermitian 

one leads to repulsion. 

The close connection between the Mandelstam cut and the triple Regge 

contribution is illustrated in figure 6. If no rungs are allowed in the bottom 

ladder, this diagram is exactly the two Reggeon cut. In both cases the sign 

obtained in the eikonal model is in agreement with that obtained in Gribov’s 

Reggeon calculus D 25 The existence of certain cancelling graphs for the triple 

Regge terms has been discussed in perturbation theory in the excellent paper by 

I. G. Halliday and C. T. Sachrajde. 26 

The diffractive production of large mass fragmentation states has been 

extensively studied because of their connection to the triple Pomeron vertex 

function, 28,29 One usually assumes that the dominant production mechanism is 

via the exchange of a simple factorizable Pomeranchuk pole as in the second 

graph of figure 5c. In the eikonal picture this assumption is highly questionable. 

If M is the mass of the fragmentation state, then the Pomeranchuk (radius)’ of 

the process is of order ~!‘J~(s/M’)~ Since the region of interest for the decoupling 

theorems is M2 z ES, where E is fixed, only small values of the impact 

parameter are important. It is this region of large M2 in the integration which 

gives rise to a contribution to the total cross section which increases with 

energy. However, it is just for these values of the impact parameter that 
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shadowing and absorption effects should be most important. These absorption 

interactions all have (ranges)’ which can be as large as a’J!n s. They will be 

important and will tend to suppress the contribution of this region of phase 
30 space 0 In fact, we have seen that some of the simple diagrams of figure 5b 

actually reverse its sign. When higher order terms in the eikonal expansion 

are retained, the total cross section doesn’t go negative but falls as a function 

of s. Whether additional absorption effects such as those depicted in figure 7 

actually eliminate the inconsistency of a nonvanishing triple Pomeranchuk 

coupling is not clear. However, it certainly seems important to take the 

effects of unitarity into account, particularly at the small impact parameters 

that are important in the large mass triple Regge region. 

A preliminary calculation of the single diffractive excitation (or Y-graph) 

has been performed. Because of the shadowing effect, the net first order 

contribution of the triple Pomeron vertex to the total cross section is negative. 

However, the contribution to the inclusive cross section is in complete agree- 

ment with that obtained in the Mueller approach. 29 The result is that I.(b, s)a(b, s) 

(refer to Eq. (18)) grows like m s for b2/ks fixed and this produces a total cross 

section which falls as (J?&I s)-‘. If the triple Pomeron decouples, then the total 

cross section approaches a constant. In either case, however, the result is 

consistent. Higher order diffractive contributions will change this result and the 

rate of fall of the total cross section, but it certainly demonstrates that it is 

important to treat the effects of shadowing and absorption in the triple Regge region. 

IV, CONCLUSION 

The eikonal approach to high energy scattering and particle production has 

many attractive features, in particular the constraints of s-channel unitarity are 

built in from the start. Furthermore, one ordinarily obtains a simple physical 
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picture in the impact parameter representation, no matter how complicated the 

P-plane structure of the scattering amplitude is. The approach is general 

enough to incorporate any energy dependence of the total cross section (consistent 

with the Froissart bound) and to allow one to study a variety of production 

mechanisms O The generality of the approach is also a disadvantage since all 

of the specific predictions are quite model dependent and can be changed by 

altering the form of the eikonal phase. A second drawback is that the constraints 

of t-channel unitarity are not automatically incorporated, and in general it 

appears to be difficult to include them. 

Although a great deal of work has gone into this subject, a large number of 

open questions remain. Probably the mast important is the behavior of the 

eikonal phase, x (b, s) for large values of b and s. If the tower dominance 

assumption of Cheng and Wu is correct, then in Quantum Electrodynamics 

X (b, s) is large out to impact parameters of order !2ns. A similar result would 

hold if the asymptotic behavior of X (b, s) were dominated by a Regge pole with 

intercept greater than one. Calculations of the checkerboard graphs cast doubt 

on the tower dominance hypothesis, however these calculations have not been 

done in the framework of QED. It would be particularly interesting to know the 

asymptotic behavior of the QED graphs corresponding to the exchange of three 

interacting photons. An example of such graphs is shown in figure 8. If the 

checkerboard graph calculations are an accurate guide then these graphs should 

give a contribution to X (b, s) which is important out to larger impact parameters 

than the tower graph contribution, 

We have seen in section III that once fragmentation effects are taken into 

account, the eikonal phase, X (b, s), is in general an operator. In this case the 

energy dependence of the total cross section depends crucially on the details of 
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the fragmentation mechanism. For example, the fact that some of the eigen- 

values of X (b, s) are large out to an impact parameter of order hs does not 

necessarily mean that the Froissart bound is saturated. The diffractive 

channels tend to make the disc transparent and therefore decrease the size of 

the total cross section which could then have any asymptotic behavior consistent 

with s-channel unitarity. 

The effect of absorption on the triple Regge region of phase space was 

shown to be physically necessary and mathematically important. The usual 

derivation of the decoupling theorems is particularly sensitive to these effects. 

Both the sign and magnitude of the terms linear in the triple Pomeron coupling 

constant can be strongly modified. The sign reversal phenomena was shown 

to be closely related to the same effect occurring in the AFS-Mandelstam 

discussion of the two Pomeron cut. In fact, the triple Regge region and the 

two Pomeron cut were shown to arise from the same type of diagrams and one 

is the limit of the other. 

In summary, we have seen that the eikonal approach offers many advantages 

in that it builds in the constraints of unitarity and affords a simple picture 

of scattering and production processes in impact parameter space. However, 

as in all relativistic theories, high order effects are important, especially at 

high energies, and the expected asymptotic behavior in the energy is not yet 

known rigorously for any realistic model. 
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These interactions can be easily pictured in impact parameter space. 

If the simple multiperipheral graph is represented as a chain in this 

space which stretches between the target and projectile, then the 

absorptive graphs arise from interactions which occur between the ends 

of the chain, between one end and somewhere along the chain, and between 

two points along the chain. Absorption therefore clearly suppresses those 

configurations in which the chain is coiled up on itself -- it prefers to be 

as straight as possible. One important effect of this phenomena is to 

modify the distribution in the variables conjugate to the impact parameters, 

namely, the relative transverse momenta. 
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FIGURES 

1. (a) Typical elementary particle exchange graph in the eikonal approximation. 

(b) Sample non-interacting ladder graph. 

(c) Non-planar checkerboard graph. 

2. Connected exchanges which contribute to eikonal phase. 

3. Many body forces. 

4. Typical fragmentation graphs O 

5. (a) Interacting ladder-type contributions to the eikonal phase. 

(b) Lowest order absorptive corrections to the zero gap contribution. 

(c) Lowest order fragmentation graphs. 

6. An illustration showing the close connection between the triple Regge and 

the Mandelstam graphs. 

7. Absorptive corrections to the fragmentation graphs. 

8. Three photon tower graph. 
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