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ABSTRACT 

Time-ordered perturbation theory evaluated in the infinite momentum 

reference frame of Weinberg is shown to be a viable calculational alter- 

native to the usual Feynman graph procedure for quantum electrodynamics. 

We derive the rules of calculation at infinite momentum, and introduce a 

convenient method for automatically including z graphs (backward moving 

fermion contributions) o We then develop techniques for implementing 

renormalization theory, and apply these to various examples. We show 

that the P - m limit is uniform for calculating renormalized amplitudes, 

but this is not true in evaluating the renormalization constants themselves. 

Our rules are then applied to calculate the electron anomalous moment 

through fourth order and a representative diagram in sixth order. It is 

shown that our techniques are competitive with the normal Feynman 

approach in practical calculations. Some implications of our results, 

and connections with the light cone quantization, are discussed. 
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I. INTRODUCTION 

Over the past few years it has been shown that the use of anl’infinite 

momentum” Lorentz frame’ has remarkable advantages for calculations in 

elementary particle physics and field theory, especially in the areas of current 

algebra sum rules, 2 parton models, 334 and eikonal scattering. 536 One 

important advantage is that it allows a straightforward application of the 

impulse and incoherence approximations familiar in nonrelativistic atomic 

and nuclear physics to relativistic field theory and bound state problems. 

We shall show that infinite momentum frame methods are also competitive 

with the usual Feynman methods in quantum electrodynamics. Despite the 

passage of over two decades, the basic methods for calculations in QED have 

changed little since the development of the Feynman-Dyson-Schwinger rules0 

Although it is true that dispersion theory calculations of the lepton vertex -- 

dispersing either in the photon mass or sidewise in one fermion leg -- do 

provide such an alternate procedure; in fact, such calculations are much more 

arduous than the standard Feynman method, often involving extremely subtle 

and treacherous nonuniform infrared problems, 7 and only are applicable to 

the two and three point amplitudes. The time-ordered perturbation theory -- 

infinite-momentum-frame-method (TOPThJ to be described here retains the 

main advantages of the dispersion method since calculations involve physical 

on-mass shell intermediate states of fixed particle number, but because of the 

P - mlimit, the complicated square-root structure of the phase-space inte- 

gration is automatically linearized, and the analysis of infrared divergences is 

no more difficult than in the corresponding Feynman calculations. 

The field-theoretic aspects of time-ordered perturbation theory in the 

P -03 limit were first studied by Weinberg’ in spinless theories, The 
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development of the parton model3 by Drell, Levy and Yan motivated the extension 

of Weinberg’s work to spin 2 L theories. 4 Because of the equivalence of TOPThm 

with conventional field theory demonstrated here for quantum electrodynamics 

(and by simple extension to the supperrenormalizable q3 theory and the re- 

normalizable F~,#x pseudoscalar theory), such parton model calculations can 

acquire a rigorous basis. The important qualification is the necessity to use 

covariant regularization rather than a simple transverse momentum cutoff 

procedure in order to avoid difficulties with gauge invariance and covariance. 

The P - 00 limit became of even greater interest when its relation to light 

cone quantization was realized. 6 In fact, the standard rules of calculation are 

identical in the two theories. The z-graph contributions of the TOPmoo corre- 

spond to seagull terms in the interaction using the light-cone quantization 

method. However, the development of the calculational rules directly from the 

standard theory with the P - 03 limit allows one to develop renormalization 

theory and avoids errors due to non-uniform convergence in the P - ~0 limit. 

For example, we clarify the subtleties involved in the light cone calculation of 

the electron self-mass. Our results agree with the analysis of this problem by 

Bouchiat, et a1.S Our techniques show how to calculate quantum electrodynamics 

on the light-cone in the Feynman gauge, rather than in the Coulomb gauge, and 

how to implement the renormalization procedure. 

After the work in this paper was completed, there have appeared other, 

more formal, proofs of the equivalence between light cone and conventional 

QED.’ The approaches are somewhat complementary. Whereas these works 

show formally that light-cone-formulated and conventional QED have the same 

renormalized S matrices, we show that the P - m limit of time-ordered 
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perturbation theory does give the light cone formulated rules, Moreover, we 

use this formalism to perform actual higher order calculations. 

The plan of this paper is as follows: In section II, we rederive the rules 

for calculating Time Ordered Perturbation Theory (TOPTh) in the infinite 

momentum frame, and present an automatic method for incorporating the 

contributing “z-graphs” of spinor theories. Then, even in spinor theories only 

intermediate states in which each particle has positive compoment of momentum 

along P survive in the P - ~0 limit. Moreover, we show that a single spinor 

or trace calculation suffices for all time ordered graphs corresponding to the 

same Feynman graph. 

The renormalization procedure for TOPThco is presented in section III. 

We show that the P - ~0 limit is uniformly convergent with respect to the 

phase space integrations when calculating renormalized amplitudes with 

invariant regularization, although this is not true for the-evaluation of the 

renormalization constants themselves. Vacuum polarization and the general 

problem of photon and fermion self-energy insertions in higher order graphs 

is discussed, Examples of vertex subgraph renormalization in the fourth order 

electron vertex are also discussed, This section also contains a proof of the 

Ward identity in the context of TOPThco, and a heuristic proof of the renormal- 

izabilityof QED in TOPThm. 

In section IV we discuss some details of the calculation of the fourth order 

and some pieces of the sixth order anomalous magnetic moment of the electron. 

The required phase space integrations over transverse and fractional longitudinal 

momenta are in general regular and smooth, and are often more readily 

integrable than the standard Feynman parametric form. 
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In the Appendix we discuss a method which, in some cases, provides a 

direct connection between the Feynman rules and those at infinite momentum. 

This method provides further insight into how our z graph rules arise. We also 

comment that the connection between the Feynman and TOPThco rules is not 

simple in all cases. 

II. THE RULES 

The S matrix is related to the invariant matrix element M by 

S = 1 - (2n)4i6(4)(P final-Pinitial)M exttrnal Ni a (2.1) 

particles 

where Ni is the normalization factor 
&d- 

and Ei is the energy of the 

ith i 
external particle. We now write the rules for calculating the contributions 

to M in the interaction picture in TOPTh. For the moment we restrict ourselves 

to spinless particles with a @3 interaction. We first classify the time-ordered 

contributions according to their Feynman topologies. Then 
.th 1. For each Feynman graph of order n, assign a time ti to the 1 vertex. 

Then draw n! graphs, corresponding to all permutations of the times ti, with 

the same topology as the Feynman graph. As an example, to the simple 

Feynman vertex graph of Figure 1, there correspond six time-ordered graphs 

as shown in Figure 2, (By convention, time flows from left to right.) 

2. With each line of each time ordered graph, associate a three-momentum. 

3. At each vertex except the last, write a factor (2~) g6 3 (3) (C<) where g is 

the coupling constant, and the delta function expresses three-momentum conser- 

vation at that vertex. At the last vertex insert only a factor g, since the factor 

(2Q36(3)(C<)has already been taken out of M in (2.1). 

-5- 



4. For each internal line write a factor l3 & 
(2X) i 

where Ei is the energy 

of the line in question, calculated on the mass shell, i.e., 

E= w 
i i i (2Q2) 

5, For each intermediate state, i.e., for each state between interaction 

times, write a factor 

1 
E illc -Eint+ie 

where Einc is the total energy of the incoming particles, and Eint is the 

energy of the intermediate state, obtained by adding the single particle 

energies of all particles in that particular state. 

6. Integrate d3pi. 

7. Add the contributions of all the different time ordered graphs. 

One sees several features which distinguish TOPTh from the Feynman 

I approach. First, every intermediate particle is on its mass shell, but energy 

is not conserved, while in the Feynman approach, energy is conserved but 

particles are off the mass shell. Second, all particles propagate forward in 

time, and the number of particles in a given intermediate state is clear. Third, 

manifest covariance is gone. One can summarize these last two points by 

saying that TOPTh emphasizes the unitarity of the theory, while the usual 

approach emphasizes its covariance, Fourth, there are many more graphs 

to calculate in TOPTh than in the Feynman approach, 

Points three and four are usually considered serious practical short- 

comings of TOPTh. However, Weinberg’ realized that the lack of manifest 

covariance could be used to good advantage. He argued that since the sum of 

the time-ordered graphs was covariant, although each of the graphs by itself 
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was not, it might be possible to find a frame of reference in which it was 

particularly simple to calculate each of these graphs. In particular, there 

might be a frame in which one could recognize immediately that most of the 

graphs gave a vanishing contribution. That frame is the infinite momentum 

frame. 

Let us review his argument. We view the scattering process from a frame 

moving rapidly in the negative z direction, so that the total incident momentum 

F is large and along the positive z direction. We will show that as P - 00 , 

each of the time ordered graphs tends to a finite limit, often to 0. That each 

graph tends to a finite limit is not a trivial result, since from covariance only 

the sum of all the graphs need be independent of P, There might have been 

cancellations between infinities of specific time-ordered graphs. 

We parametrize the momentum of the i th line by 

$--= xpz. 
1 (2Q3) 

where xi is the fractional longitudinal momentum and 5 is a two-dimensional 

vector in the x-y plane. 

Since by definition the total incident momentum is F, we have 

c q s ( ) c X. 

illC ilK! 

1 F. cq =F 

illC 

so that 

c 
illC 

xi = 1 

c 
iilC 

ri = 0 
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Because of three-momentum conservation at each vertex, we also have for 

each intermediate state 

c 
int 

xi = 1 (2.3 5) 

c 
int 

q-0 

Assuming that no photons are travelling exactly in the -z direction, we can 

always choose the velocity of the observing frame large enough so that all 

external particles have their z component of momentum positive, i. e, 

xi > 0 (2.6) 

for all external particles. But for internal particles, the x integrations extend 

over negative x as well. 

In the limit P - 00 , we have, from (2,2) and (~2~3) 

where 

E i = mm2=jxIP+ -& +6 1 i i i 
0 7 

s. = 
E+f+ rnf 

1 $1 

The incident energy is, by (2.6) and (2.4), 

E = 
i.IlC 

c Ei=P+x si+o ’ 
inc inc 2p 0 7 

The energy of an intermediate state is 

(2.7) 

(2.8) 

(Z-9) 

(20 10) : 
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If all the xi in the intermediate state are positive, then using (2.5) we find 

E int = 
1 P+E &+o p3 

0 

If, however, some xi are negative, we have 

Counting powers of P in a graph with n vertices, 

(a) From rule 3 

E int = J 
l-2 c 

Xi<0 
xi P+ 

) 
1 

OF 0 
we obtain: 

(2.11) 

(2.12) 

and since there are (n-l) delta functions we obtain a factor 

tb) From rules 4 and 6 

,-(n-1) D 

d3P i d2kdx = 
(27f)32Ei 2 lxl(2r)3 

independent of P. 

(c) From rule 5 for each intermediate state with all xi > 0, we obtain 

from (2.9) and (2.11) 

2P 

whereas if some xi < 

C Si - C si + iE 

iIlC int 

0, we obtain from (2.1.2)~ 

1 

CxFo > X i ’ . 
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S. is given by (2.8) 0 
1 

There are altogether (n-l) intermediate states, and so to 

obtain a non-vanishing limit as P -co, each term from rule 5 must contribute 

a factor P. Thus in all cases we have a finite limit and a non-zero limit only if 

each intermediate state has all its xi> 0. But since c xi is conserved at each 

vertex, this is only possible if each vertex has at least one line coming from 

the past and one line proceeding to the future. Thus, of the 6 graphs of Figure 

2, only 2a and 2b have non-vanishing limits as P - 00 0 So the passage to 

infinite momentum has reduced the number of graphs to be calculated, It 

should be stressed that letting P - ~0 is just a choice of reference frame, 

and no invariant quantity is getting large. 

We have been rather cavalier in counting powers of P, for although P gets 

large, it is possible that XP is not large, and our expansion (2.7) in terms of 

P may not be valid. This is discussed in greater detail in Section III. Our 

analysis is correct for the calculation of renormalized quantities, but must be 

modified for calculating divergent quantities. 

We can now rewrite the rules of calculation. Denoting them by primes, 

we obtain 

1’ For each Feynman graph of order n, draw all time ordered graphs 

in which each vertex has at least one line from the past and one to the future. 

2’ With each line associate an x and i?., 

3’ At each vertex except the last write a factor (2n)3g6(Cxi)6(2)(Ci?) 

inserting only g at the last vertex. 

5’ For each intermediate state write a factor 

si + ic 
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4’ and 6’ Integrate 

d2kidxi O(xi) 

(21r)32Xi 

7’ Sum over all time ordered graphs. 

The presence of spin complicates the situation., In the case of QED, the 

vertex becomes one of the following: 10 

instead of g. (e2 = 47r1~), Here p and p’ are the momenta of the respective on 

mass shell fermions (Le., p. = pr-T p + m ), and ep is the polarization vector 

of the photon. 

The sum over intermediate states now also involves the sum over spin. 

We work in the Feynman (Gupta-Bleuler) gauge where 

c $Jk, A) EJk’ A) = -gp v . 
h 

Our previous counting of powers of P is now upset, since the vertices can 
. . 

also contribute powers of P. A straightforward calculation” shows that as 

P - 00 , one of the vertices (A) - (D) is of order P only if 

(a) I= 0 or 3 and xx’ > 0 
(2.13) 

(b) p=lor2andxx’<O 

Otherwise, it is of order 1. Moreover, in case (a), the coefficient of P is the 

same whether /J = 0 or p = 3. (Here x and x’ are the x values associated with 

P and P’.) 
-ll- 



We now show that the contribution to M is of order P 
NifN3 

, where Ni is 

the number of external photons of polarization i. 

Assume first that all xi > 0, so that case (b) never arises. If a vertex is 

connected to an external photon, it contributes a factor P if and only if the 

polarization is 0 or 3. If the vertex is connected to an internal photon, because 

the coefficient of P is the same whether 1-1 = 0 or p = 3, and because go0 = -g33 

in the photon polarization sum, the terms of order P and P2 from these two 

vertices cancel identically, and give an effective vertex of order 1, (The terms 

of order 1 do not cancel, so that one cannot say that the p = 0 piece cancels the 

/J = 3 piece. In fact, this scalar/longitudinal piece is responsible for the 

Coulomb force.)- 

Suppose now that some xi < 0, We saw that the matrix element is suppressed 

by l/P2 for every intermediate state containing a particle with x < 0. But such 

a particle can contribute a factor P2 to the numerator (a factor P for each of its 

two vertices) D Thus, a fermion of negative x can contribute to M in leading 

order but only if (a) it extends over one time interval only, so that it contributes 

to only one intermediate state and (b) the fermions at each of its vertices have 

x > 0. Since a photon of negative x contributes no powers of P to the numerator, 

it can contribute only if every intermediate state containing it also contains a 

fermion of negative x. This is only possible in the simplest self energy diagram 

(see fig. 3) which will be discussed in Section III. These rules for incorporating 

fermions of negative x were first derived by Drell, Levy and Yan. 11 

Because fermions of negative x can contribute to leading order, our 

previous criterim of discarding graphs with fermions of negative x is no longer 

valid. But it can be salvaged by modifying the fermion spin sum as we now show. 
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The spin sum occurring in the matrix elements is 

c ub s)utP, s) = (14 + m) 
S 

c v(p, s) F(P, s) = (-ti + m). 
S 

Suppose there is a graph 6 with a positron of momentum pp with negative 2 

between vertices V1 and V2 with V2 after V10 The energy denominator associated 

with the intermediate state between V1 and V2 is E. 
mc - E. lnt = 2 $P. (Note that 

no other particle occurring in this intermediate state can have negative x since 

it would extend over more than one time interval and give zero contributions. 

The exceptional cases are the self-energy graph of Figure 3 and the corresponding 

photon self-energy graph with which we will deal separately.) It is straight- 

forward to see that there is always an additional time-ordered graph G identical 

to g except that the time order of vertices V1 and V2 is interchanged, The line 

between V2 and V1 now represents an electron with momentum l? = -p”, 

Ep=E,. = 
P 

Jp”z+m2 0 The sum of Contributions from these two intermediate states 

2p s 

tld ) 

-lrn*ic + 

inc! int 
* = 2P (ti+ m, + 

1 
s. - s. 

IllC mt + ie 

(2.14) 
-2E y” 

+ 
4%P2 

+ Iid 
4?P2 1 

The third term of (2.14) is negligible compared to the first, Also we have 

Ep = 1% I P = -;iP since 2 < 0 (2.15) 
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and so (2.14) becomes 

2P 
1 

d+m + 0 1 

L %c - %lt + if 
( )I p2 

where 

F0 
S. - %t = p0 + mczp 0 

(2.16) 

(2.17) 

By changing the propagator of an electron with positive x from ($ + m) to 

(3 f m) whenever the electron line extends over a single time interval, we 

automatically take into account the contribution of all positrons with x < 0. 

Similarly, we modify the propagator of positrons with positive x, which extends 

over one time interval, from (-d + m) to (-3 + m). We do not change the 

propagators of fermion lines extending over more than one time interval. With 

the replacement (2.17) only time-orders in which every intermediate state has 

positive-moving particles needs to be explicitly considered. 

This replacement of pV bytp is very reminiscent of the Feynman approach. 

One takes the fermion off the mass shell (s2 # m2), but reduces the number of 

diagrams. Moreover, sp is the four-vector which enforces four-momentum 

conservation between the given intermediate state and the external state: 

tEint -po)+so= Emc l 

However, since not all fermion lines extend over a single time interval we do 

not have complete four-momentum conservation at every vertex. 

From (2,13b) we see that it is not necessary to modify the propagator of a 

fermion extending over a single time interval if either of its vertices is 
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connected to an external photon of polarization 0 or 3, although modifying it 

will not change the answer. This follows because the associated fermion of 

negative x cannot contribute the necessary P2 to the numerator. 

Our final rules for QED at infinite momentum are thus obtained by 

modifying the infinite momentum rules for the C/I~ theory as follows: 

2” With each internal line associate an x and k. electrons For (positrons) 

extending over more than one time interval insert a factor (*$ + m) where p is 

the four momentum associated with the line. For fermions extending over one 

time interval insert the factor (&J + m) where 5 is related to p by (2.17). For 

each internal photon line insert the factor -g 
PV” 

A trace is implied for closed 

fermion loops. 

3 II Replace g by q ’ in 3’ 0 

Finally, we note that if we assign momenta PI, l l 0 pN for the fermion 

momenta of a given graph, then the Dirac algebra for each time-ordering is 

identical to that of the Feynman graph calculation, although the identification of 

pi in terms of the external and loop momenta depends on the particular time- 

order o 

III. RENORMALIZATION 

In this section we indicate how to implement the renormalization procedure 

in TOPThoo. This procedure is simple and straightforward to apply in practice, 

and closely parallels the explicitly covariant Feynman-Dyson approach. 

Reducible amplitudes with self-energy and vertex insertions are renormalized 

using subtraction terms corresponding to 6m, Z2 and Zl counter terms, which 

usually can be constructed to cancel pointwise the ultraviolet d2k phase-space 

integrations. In this section we develop the renormalization procedure for QED 

in TOPThoo and concentrate on the features which are distinct to the infinite 
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momentum method. Tn the next section we discuss the application of these rules 

to the calculation of the electron anomalous moment in fourth order. Here we 

present a heuristic proof of the renormalizability of QED and discussion of 

the uniformity of the P - 03 limit, 

In performing these renormalizations, we are subtracting infinite quantities, 

which is always a delicate procedure, The correct way to do so is to first 

regulate the integrals, rendering them finite, then subtract, and then let the 

regulators disappear. In the infinite momentum frame, since covariance is 

not manifest, one must be especially careful to regulate in an invariant manner, 

This can be achieved by using the Pauli-Villars regularization scheme. 

A, Self Energy Insertion in Compton Scattering 

As a first simple example consider the self-energy insertion to Compton 

scattering shown in Figure 4. In the usual Feynman approach the renormalized 

amplitude is constructed by subtracting formally divergent 6m and Z2 counter 

terms in second order. The problem is to choose an integral representation 

for these constants so that the total integrand of the renormalized amplitude is 

finite and point-wise covergent. In general9 the integrands are defined assuming 

covariant Feynman or Pauli-Villars regularization. 

The frame is chosen so that the fermion line pa in figure 4 has momentum 

Ta = g For the moment, consider the case of scalar particles. Only one 

time-order survives as P - 03 D The unrenormalized amplitude is 
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where (using a photon mass A) 

sO = (p, f q,)2 + iE 

3 
= m2 = 

s3 (3.2) 

F2+ A2 
s2 = 

+ lT2+m2 

x l-x 

The 6m and Z2= 1+B(2) counter terms subtractions may be computed by what we 

call the method of alternate denominators. Note that Bm can be written as 

d!- /-d2k / -’ dx 1 
2(27r)3 J 0 x(1-x) sl-s2+iC (3.3) 

since particle a is on the mass-shell. [Note this expression must be defined 

here by covariant-regularization, e.g., by subtraction of a heavy photon of 

mass A2* ] Thus mass-renormalization only requires the subtraction of the 

integrand with the alternate denominator 

1 1 1 --- 
so-s1 sl-s2 so-s3 

(3.4) 

in Mu. Similarly, if we perform wavefunction renormalization we obtain the 

renormalized amplitude 

M ren = 5 QxJA [ l x(l-x) (so-s~)(so-s2)(so-s3) - (SO-S~)(S~S~)(S~~~~) 

1 
+ 

(so-s1)(s1-s2~2 1 (3.5) 

The last term is exactly -B (2) times the Born term. The total integrand is now 

rendered finite in the ultraviolet (k -’ - oc)O By combining the terms, we see 
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that the single particle poles disappear, so that the location and residue of 

Compton scattering is still given by the Born term. 

The essential point of the “alternate denominator” method is that the 

external energy used for the denominator of the subtraction term for a 

reducible insertion is not the external (initial) energy so but rather the energy 

(sI) external to that reducible subgraph. The analogue to off-mass shell 

behavior in the Feynman approach is precisely the difference between the use 

of s 0 and s in the energy denominators. 1 In general, in self energy insertions 

onto a line with momentum-6, one should use the “scaled” variables~l=~~a+~, 

and T2 = (l-x):, - zfor the internal integration. This will ensure point-wise 

convergence of 

terms. 

Combining 

the d2k integration, after subtraction of the necessary counter 

terms in Mren we obtain the covariant spectral form 

M ren 

03 
= / W2p 0~~) Rz 

(m+% 
2 (p+q)2 -p2 + ie 

(30 6) 

(3.7) 

2 where ,U = s2 and 

1 

(m2 -)-42)2 
dx 19 [x(~-x)/.L~-(~-x~~-~~] (3.8) 

A- 1 J ( p2+h2 -m2) 2 -4.2h2 
16r2 (m2-p2)2 P2 

(3.9) 

Thus the renormalization is identical to that obtained by using the spectral 

integral of the renormalized Feynman propagator, since npQ2) = Im DF ren(p2). 
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B. Vacuum Polarization 

Consider the vacuum polarization insertion in electron-electron scattering 

[Figure 5a] 0 If we choose a frame in whichT = Fl-$ has a positive component 
2 

along ‘ijL, then only the time order in which the (q, pl, p,) vertex occurs first and 

the (q,p3,p4) vertex occurs last contributes for P- 03. The energy denominator 

for any intermediate state inside the vacuum polarization insertion is 

El+E3- [E2+k3 + C Eil = El-E2- ‘c Ei ’ 
vat D vat o 

(3.10) 

pol. pol. 
0 

so that the initial energy for the vacuum polarization insertion is ?jo E pi - p2” 

Thus if we define qz = 2 
(PI-P,) 9 then the amplitude has the factorized Feynman 

form 

M = g2 1 
(qi-h2,iC)2 

(3.11) 

where Iru(qf2) is computed from diagram 5(b), for a photon mass qz < 0. The 

Feynman propagator q; - h2 + ie is obtained from the product of the photon 

phase space (29,)-l and the energy denominator (p10-p20-q0+i c) -1 at infinite 

momentum. 

Renormalization may now be carried out by the alternate denominator 

method as in section A. The renormalized amplitude is then a spectral integral 

of the Born amplitude over photon mass which we shall calculate below. We 

can easily extend the analysis to self-insertion in higher order graphs. For 

example, consider the time-ordered contributions to electron-electron scattering 

shown in Figure 6. After the integrand for the counter terms for the vacuum 

polarization insertion are computed using the alternate energy denominator 

method, one finds that the three time orders combine simply and the 
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renormalized amplitude can again be written as the spectral integral in photon 

mass over the “Born” amplitude of Figure ‘7. 

As a further example, we calculate the lowest order vacuum polarization 

correction to lepton-lepton scattering in QED. The sum of the contributions 

from Figure 8 is 

Q”QP 

[ 

-goL + 

t-g, p-g, 0) 

12 qi + ir (cl; + W2 

,pv 1 (3.12) 

where by Lorentz invariance ‘IF PV is a function of qi = fll - $2 and by gauge- 

invariance, r ” has the form 

7rpv = (-gPVqS + q; (I;) r(q2) 

and Q 1 and I2 are the lepton current factors. At infinite momentum we can 

extract n(q2) from 7r 
PV 

simply by considering 

n03 
2 

= qo43m )* 

Moreover, choosing 

cl= ( P+G JCP 
) 

we see that 

(3.13) 

(3.14) 

(30 15) 

.(q2) = lim 
no3(q2) 

P2 * 
(3.16) 

P-w 

Only the piece of ro3 proportional to P2 survives, and graph S(c) is eliminated. 

Restricting our attention to graph 8(b), we have 

“I 
a-03 = 

+ iC 

-2o- 

(3.17) 



where p1 and p2 are on-shell with space components (c, xP) and (-2, (1-x)P) 

respectively. The term proportional to P2 gives the unrenormalized amplitude 

x( 1 -x) 
-2 k +m2-qix(l-x)-iE 

(3.18) 

We obtati the renormalized amplitude by subtraction at q2 = 0 (corresponding 

to wavefunction renormalization of the photon) or by alternate denominators. 

Thus 

“ren(s;) = 2+ J1 
0 

and the total lepton-lepton scattering interaction for Figure 8 is 

PQ” 
(-p,,) 

12 qi-h2+ie 
[ 1+ ~ren(s2)l 

(3.19) 

(3.20) 

in agreement with the standard results. 

C. Vertex Factorization 

Before discussing vertex renormalization, we first give a general proof 

of vertex factorization in TOPTho3. Consider the scattering diagram of 

Figure 9 in which the vertex part contains a total of N+l internal interactions. 

For simplicity we continue to treat all the particles as spinless, 

We choose q to have positive momentum in the ‘Z;direction. If q attaches 

to an internal line after m internal interactions have occurred (0 5 m IN), then 

there are m+l contributing time-orders depending on the time of the (I?,, P2, 9) 

interaction. Since q is on the mass shell, q. = @z We also define 
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-Go = P; 

factor 

Summing over the m+l contributions yields the integrand 

1 Fm= - 1 1 1 
c()-“0 qO+Ae l-q0 qo+Ae2-q0 l ’ ’ qo+Aem-q0 

1 1 1 000 1 
+ nel qo+Ael-qO To+Ae2-q0 Xfo+Ae rnsqO 

1 1 1 1 
+ xl q ao+Ae2-q0 ’ ’ ‘GO+Aem-q0 

1 + . . . + - 1 1 1 -*0*- 
Ael Ae2 Aem qo+Aem-q0 

.th where Ae 1 is the 1 energy denominator specific to the vertex. The remaining 

energy denominators give the common factor 

(3.22) 

The phase space factor for the photon 2qo combines with the factor (To-qo) to 

give the Feynman propagator, 

2 2 2 2 2qo(~o-qo) = (pl-p,) -h f iC E qF -h + ie (3.23) 

Thus, as expected, for each m the scattering amplitude takes the Feynman 

factorized form 

M = + F(q2) 0 
q -h +iE 

(3.24) 

where F(<2) is the vertex graph computed with the photon mass given formally 

by;2 = (pl-p2)’ < 0. Note that pair creation graphs also have the form (3.24). 
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Thus, the concept of virtual-mass particles and the factorization of vertex 

form factors appears naturally in TOPTho3 when the appropriate time-orders 

are summed over. This also permits by covariance the use of the special 

frame choice4 

s’” =Pg, z O), q2 = -$<O (3025) 
n 
L 

P = (P + s , 8+, P) 

which is very convenient for calculations of the virtual Compton amplitude 

(2qoP = mu) and form factor (2q.P = -q2)* In this frame, y brings in zero 

longitudinal momentum, eliminates pair-creation graphs, and thus further 

reduces the number of contributing time-orders. 

D. Ward Identity 

The use of frame (3.25) allows an immediately proof of the Ward identity 

ZI = Z2 for the cancellation of vertex and wave function renormalization in 

QED, We define the form factors as 

<ptq 1 JP(0) IP > = ~b?+q)[Fl(q2)YP + i -g$ F2(q2)lu(p) o (3.26) 

At t=O we may identify Jp(0) = jp(0) = :TyV$:, the free current, in the interaction 

picture, and compute Fi by TOPTh. Let us concentrate here on computing the 

contribution to ZI or Fl(0) from any given proper vertex diagram in TOPTh. 

Note that for q=O 

F&O) = lim <pl jp(0) Ip> % t/J= 093) 
P-+m 

(3.27) 

Thus the contribution to Zi from any proper vertex graph is obtained by simply 

inserting (m/P)YO or equivalently x at the interaction vertex, where x is the 

fractional longitudinal momentum of the interacting charged line. This factor 

of x cancels against one of the two phase-space forms of x -1 required for that 
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line. The resulting expression is then identical to that required for computing 

the contribution of the corresponding proper diagram to the wave function 

renormalization constant Z2 for the state Ip> 0 The result Zl-Z2 then holds to 

our order in perturbation theory. The same simple proof holds in the case 

where I p> is a bound state. 

E. Vertex Renormalization 

As a final simple example of the alternate denominator renormalization 

procedure in QED, consider the renormalization of the vertex insertion in the 

ladder graph contribution to the electron anomalous magnetic moment F2(0)0 

If we choose the (symmetrized) frame 

qp = <o,~ O), (Pk 2) = 
m’+-$i 

li 2p , & 2 , P 
> 

, q2= -y 

then only the single time-order shown in Figure 10 needs to be explicitly 

considered at P - 00 0 [Recall that backward-moving fermion contributions 

are included automatically by modifying the fermion spin sum (2.17). 1 As in 

the Feynman calculation the integration of the reducible subgraph is logarith- 

mically divergent in the ultraviolet. The subtraction of the contribution & L (2) 

is required, where Y~L (2) is the value of the proper vertex at q = 0 in second 

order. The unrenormalized amplitude is 

dxldx2 
s 

d2k ld2k2 

x1( l-xl)3x2( 1-x2)2 

- ;;<P + $I&@4 +m) Y t~3+m)~~t~2+m)4(~l+m)YcYu(P - $) 

( So-S1) (So-fJ2) (SO-~CJ (so-s4) 

where we choose the parameterization 

(3028) 

p = x1 + xlF, T2 =z2 + x2 (-xl1 + (l+j 
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for the three-momentum of the two photons. The fermion momenta then are 

determined by three-momentum conservation. With this choice of scaled 

variables the range of both x1 and x2 is 0 to 1 and ‘;1 0 ‘i;, cross terms do not 

appear. Notice that the denominator product in (3.28) is an even function of < 

because of the choice of the symmetrized frame. In the calculation of F2(0), 

the magnetic moment contribution is identified 12 from a term linear in; and 

theTdependence of the denominators may be dropped. 

The subtraction term is constructed using the alternate denominators 

(sl-s2)(s1-s3) instead of (so-s2)(so-s3) and 

coefficient of yP at q - 0: 

the appropriate numerator 

d2kld2k2 

M sub = 

4P + 2 PI, tF4+m)r,(i;,+m)rautp - Sj ) 
(s&(s0-s4) 

(sm2-Qy p2)(1-x2) 
(s1-s2)(s1 3 -s ) q-0 

(3.29) 

The last factor is the integrand for L (2) in second order. The difference 

M ren = Mu - Msub 

converges point wise in the d2k integrations, and contributes a finite amount to 

F2W l 
The infrared behavior [at x1 - 0 in Mu and x2 - 0 in Msub] may be 

regulated by using a finite photon mass h as in the Feynman calculation. In the 

case of the ladder graph contribution to F2(0), these two infrared terms in fact 

cancel, The cancellation may be arranged to happen pointwise in the integrand 

by symmetrizing the (‘-;I, x1) and (c2, x2) integration of MrenQ 
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F. The Renormalization Constants 

The calculation of 6me in second order is an excellent illustration of the 

subtleties of the limit P - ~0 0 As we have already indicated, our rule for 

incorporating fermions of negative x is not valid in this case, so we revert to 

the older rules in which particles of negative x are treated explicitly. Then 

there are 2 graphs, as indicated in figure lla and lib. As is well known these 

graphs are divergent and have to be regulated. A naive argument would say 

that, upon photon regularization, graph (llb) vanishes, for since at least one 

of the particles in the intermediate state has x < 0, the energy denominator is 

1 
just 1 - & lXil independent of the photon mass. Consequently, subtracting 

a similar integrand with a large photon mass will give identically zero. 

Unfortunately, the argument is wrong, because the limit P - ~0 cannot be 

taken under the integral sign. One must integrate first and only then let P - 00. 

To see this, let us define the P -m rules more carefully. Ignoring the numer- 

ator structure for the moment, the denominators are, before we take P - 00, 

1 1 1 
%- E k -p-k E -ek-E -p-k 

where 

ek = 7 (xP) + k + h2 

E ep-k = ’ (~-x)~P~ + 2 + m2 

P2 + m2 

and h is a small~h~ton’mass 0 

For large P we wrote 

iF2 + A2 
ek = IxlP+ 2lxIP 

(3.30) 

(3.31) 

(3,32) 
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and disregarded the second term in (3 q 32) in the first term of (3 D 30). This is 

legitimate provided that the function multiplying A vanishes at x = 0, so that 
ek 

the integral over x is well defined. In other words as a distribution on functions 

vanishing at x = 0 we have 

1 
5-i - I$P 

for large P. But if the functions vanish at x = 0, we could also write 

1 
e k 

(3.33) 

(3.34) 

To fix the coefficient C, consider what happens if the function does not vanish 

atx=O. Then the integral is not well 

subtracting the contribution of a heavy 

lim 

defined and must be regulated, by 

photon, So we must study 

P 

J (xP)2+-if2 + A2 

(3.35) 

where A is the mass of the regulator photon. For x # 0 this limit vanishes. 

But it is readily checked that as a distribution in x, (3.35) tends to 

(3.36) 

This is consistent with (3.34) if 

c = -Qn(~2 + A2)- (3.37) 

One might argue that 

p - 1 
e- (3.38) 

k x2 + (K2+ A2)/P2 

is not a function of (k 2+ A2), but of 
F2+ A2 

P2 
, so that C should be -In 
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But on regularization the h P2 terms cancel. Using then as the energy term 

P -= 
ek -iiT - Qn(T2 + A2)S(x) (3.39) 

one shows that llb does give a contribution upon regularization. 

By our rules after regularization the contribution of diagram lla to 6m is 

i 

m2(2-2x-x2)-X2 - (A - A) ‘I 
A2( l-x)+r 2+m2x2 ! 

(3.40) 

where the photon mass is taken to be h, and its longitudinal and transverse 
- 13 momenta are XP and k D 

Our new rule for 6mb gives 

6mb = - Qn(-G- 2 + A2) - Qn(Z2 + A2) . (3.41) 

Combining these two terms yields the Feynman result, which can be written as 

(3.42) 

This can be obtained by substituting the identity 

8n(if2 + h2) - J!n(r2 + A2) = &I (;z++) - Jq;; :2) 

ZZ h2-2m2x I 
-2 + m2x2+ (l-x)h2 

- (A -A) 
I 

dx (3.43) 
k , 

into 6m b0 Another derivation of this result is given in the Appendix. 

It is clear that for amplitudes which are already finite, the 6(x) cannot 

contribute and our previous rules are correct. Thus, for example, in 

-28- 



calculating the contribution of figure 12 (and the corresponding 6m counterterms 

of figure 13) to the magnetic moment of the electron, the contributions of 

Figures 12b and 13b cancel identically upon regularizaion. For renormalized 

amplitudes only figure lla contributes to the self energy insertion. 

It should be noted, that technically, if the Pauli principle were taken into 

account, graph llb would not contribute to 6m since the intermediate state has 

two electrons of the same momentum and spin. In fact, the actual contribution 

of interest is the vacuum disconnected graph llc,where the entire Figure llc 

d4p integration would give no physical contribution, except for the fact that 

the PI = p contribution is missing. However, llc gives the same contribution 

as llb calculated as if the Pauli principal is ignored. This is clear since we 

can imagine taking p’ = p+6 in llb by considering an off-shell process. The 

sum of lib and llc is continuous as 6 - 0. Accordingly we can follow the usual 

Feynman convention of ignoring the Pauli principal and the contribution of 

vacuum disconnected amplitudes. In the case of the unrenormalized amplitude 

for the vertex graph of figure 14, a 6(1-x) contribution will occur. [This 

disagrees with the argument given in ref. 5, that all distribution-type terms 

can be associated with vacuum disconnected graphs. ] However, upon regulariza- 

tion in the photon mass this contribution cancels, and it never appears in the 

renormalized amplitude. We note also that if regularization in the lepton mass 

is used in the 6m calculation, then the 6(x) contributions may be formally 

ignored 0 

G. Renormalizability 

It is possible to give a heuristic proof of renormalizability of various 

theories directly from TOPTh in the infinite moment frame, The ultraviolet 

divergences of the phase-space integrations are assumed to be covariantly 
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regulated by gauge-invariant Pauli-Villars negative metric internal leptons or 

photons (or by Feynman spectral conditions) where required. The infrared 

behavior at xphoton -0 may be regulated by using a photon mass h 2 IL4 We D 

use the Weinberg power-counting theorem, 15 After removal of divergent 

subgraphs, the phase-space integrals of the skeleton graph will converge in the 

ultraviolet if the total degree of divergence d is negative. 

We begin with the G3 theory. Recall that the degree of divergence in the 

Feynman theory is, for a graph with V vertices and N internal lines 

4N - 2N - 4(V-1) 

from d4k 

while in our rules it is 

from the 
propagators 

2N - 2(V-1) 

from d2k from energy 
denominators 

from momentum 
conservation 

2(V-1) 

from momentum 
conservation 

which agrees with the Feynman result. Thus, just as in the Feynman case, 

one proves the renormalizability of the theory. 

For any Feynman diagram in spin l/2 QED, one finds from the usual 

Feynman rules 

dl/2 = 4(Bi+Fi) - (Fit-2Bi) - 4(V-1) 

(from d4k) (from (from momentum 
propagators) conservation) 

= 4- $ Fe-Be 
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where Bi, Be, Fi, Fe denote the number of internal and external bosons and 

fermions. 16 For spin zero electrodynamics, we have 

dO 
= 4(Bi + F.J + V - (2Fi+2Bi) - 4(V-1) 

(from d4k) (numerator (from (from momentum 
terms) propagators) conservation) 

= 4 - Fe - Be. 

The only difficulty in deriving analogous rules for spin l/2 QED in TOPThm 

is-in deciding the number of powers of k contributed by the spin sums-di =+ mi or 

jli + mi. For each internal fermion line, these spin sums contribute one power 

of IGI from 70 F. If any two of these internal vectors dot together, this rule 

is correct since the result is of orderx2. If however, such a pi dots with an 

external line, the contribution is of orderx2, not iifi ., We now show that this 

can contribute at most an extra factor - Fe/2 I k I 0 

This situation arises in computing 

G(P”) ,K u(p’) 

where p’, p” are external fermion momenta and AL is formed from scalars 

and I$. It can be verified that the combination 

Pl o P” P2 O P’ 

cannot occur in such a term, except in the combination 

(PI o P” P2 l P’ - P2 l P” PI l P’) 

which is at most of orderx3, and not of orderx4. This is a reflection of the 

fact that two spin l/2 spinors (of momentum p’, p”) cannot couple to a spin 2 

object, as is required to produce the symmetric tensor p’ p” . 
P v 

As a result, 

for each two external fermions, the degree ofz in the matrix element can only 
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be increased by 1, Thus the powers of k contributed by the spin sums is at 

most 
F 

Fi+ -$ 

Then we obtain, for each time order diagram in spin l/2 QED, the degree of 

divergence 

d l/2 = 2(Bi + F.$ + (Fi+Fe/2) - 2(V-1) - 2(V-1) 

(from d2ki) (numerator (energy (momentum 
terms) denominators) conservation) 

= 4 - Fe - Bea 

Similarly, for spin-O, TOPTh QED at infinite momentum 

do = 2(Bi+F.) + v - 
2l 

2(V-1) - 2(V-1) 

(from d ki) (numerator (energy (momentum 
terms) denominators) conservation) 

= 4 - Fe - Be’ 

Since d depends on the number of external lines, there are a finite number of 

divergent subgraphs and the usual renormalization program may be carried 

out. Note that the result for dl12 is an over-estimate since, as the Feynman 

result shows, the extra Fe/2 in dl,2 cancels when the various time-orderings 

are combined. 

This cancellation (between pair states and non-pair states) can be traced 

to Fermi statistics. 

H. Convergence as P -co 

We restrict our attention to e3 theories. We have already shown in the 

previous section that the degree of divergence inF2 is as in the Feynman theories, 

and it is easily seen that there is no divergence in x, since the factor x L associated 
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-2 
with each line is compensated by the factor 

k +m2 
x appearing in the energy 

denominator of the intermediate states in which this line occurs. 

We discarded contributions of particles with negative x because the energy 

denominators formally suppressed the graph by l/P2. But the effective energy 

denominator 

1 1 

p2 1 - c lXil 
int 

does not contain the factor x/k2 which we counted on in our previous 

so that one could get divergence at x = 0 or k2 = 00 . To study these 

the energy denominator is really 

1 

-i;f+rnH -2 

1 - c lXil + c - IT 
ki +rnf 

inc 2XiP2 int 21XilP2 

If only x1 is negative, then as it goes to zero the term is 

1 
p2 .* 

analysis, 

recall that 

(3.44) 

(3.45) 

term cuts off the integral at x1 = 0 p o The contribution to the 
0 
I 

graph from small x1 is then 

1 
p2 

(3.46) 

and so is still negligible. By a similar argument the c2 integral is cut off at 

P2 (actually F2 = xP~)~ 
1 

If the rest of the graph contributes a factor - 
IF2 

then 
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I 

the entire contribution is 

d2k -enP2 
-p= 

P2 
(3.47) 

which is still negligible. If however, there is no other factor l/c2 the graph 

contributes 

1 

p2 
J- d2k = O(1) 

-E2 <P2 

(3.48) 

and is not negligible. This only happens if the vector k does not occur in any 

other intermediate state, for otherwise the energy denominator of that state 

would have a factor l/r2. But this can only happen in the l.owest order self 

energy graphs or in any graph in which these are imbedded. These are self 

energy terms which must be regulated anyway, by subtracting the contribution 

of a heavy mass M. One verifies that after regularization the contribution of 

negative x can be discarded. 

In summary, our P = - ~0 rules are valid for renormalized quantities but 

not for unrenormalized ones, 

IV. CALCULATIONS 

As an example of these techniques, we have calculated the 4th order 

contribution to the magnetic moment of the electron in QED. We chose this 

particular calculation because it involves all 3 types of renormalization, and 

agreement between our answers and the well known results of Sommerfield and 

Petermann’ 7 would be confirmation that both the P - 03 limit and the renormal- 

izations were correctly handled. We also hoped that our techniques would prove 

competitive with the Feynman approach, so that we could proceed to calculate 

part of the 6th order moment D We begin with the calculation of the second order 
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anomalous moment D 18 Consider the graph shown in Figure 14, in which the 

external photon has x = 0 and polarization index 0. x and F are labeled for each 

line. By our rules the matrix element, without external fermion spinors is 

e2 A=- - d2x dx 

2(27Q3 x(1-x)2 

X 
1 1 

-2 
m2+-- -_ q1 x2 ( X-72)2 + m2 2 

-2 -2 
q~ k ii f ;$/2)2 + m2 

4 x 1-X 
m+-----x--( 4 1-X 

(40 1) 

where PI, p2 are on shell vectors with space components (k+q/2, (I-x)P), 

(k-q/2, (1-x)P) 0 

It is readily verified that the anomalous moment is obtained from J@ by 

2:2 Tr{Jd(fi - 4 
2 + 46 - j!$tti + 4 

F2(0) = lim lirn 2 +m) 
q-o P+m -q2P 

where p - q/2, p f q/2 are on 

and K/2, P) respectively. 

Performing the trace and 

(4.2) 

shell vectors with space components (-z/2, P) 

taking the appropriate limits we obtain 

F2(0) = 2m dx x2( 1 -x) d2k 1 - 2 22 (Z2+m x ) 

= 2m2x J1 dxyr=z 
(2n)3 0 

(40 3) 

In the lowest order calculations the x variable plays the role of the Feynman 

denominator-combining parameter. This identification, however, cannot be 

made in general. 
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There are five different Feynman graphs contributing to the magnetic 

moment in fourth order 0 They are shown together with the corresponding time 

ordered graphs in Figure 15. As explained in Section II, it is sufficient to 

consider only those time orderings with all xi> 0. 

We wrote a a-stage program to perform these calculations. The first 

stage was a symbolic and algebraic program written in REDUCE. lg It took as 

input the topology of the Feynman graph, and automatically generated the 

surviving time orders , set up and performed the required traces, computed the 

energy denominators and expressed everything in terms of the infinite momentum 

frame variables. The output is a set of Fortran expressions, which served as 

input to the second stage, a multidimensional integration program written by 

G. Sheppey. 20 The vacuum polarization graph was handled as indicated in the 

previous section. As independent variables for the crossed and corner graphs, 

we used x and c for each of the 2 virtual photons. In the ladder and self energy 

graphs, we parametrized the momenta of the photons by 

1) Outer photon x=x 1 

-i;*=c 
1 

2) Inner photon x = x2( l-x1) 

With this choice, x2 ranges between 0 and 1 and the energy denominators have 

no terms in’i;r lo F2- This made the integrals over the directions of rl and z2 
-2 

trivial, so that the resulting integrals were four dimensional (over x1, x2, kl, 
-2 k2 ), while those of the crossed and corner graphs were 5 dimensional. 

21 

The crossed graph can be computed immediately, 
22 since it requires no 

renormalization. The renormalization of the ladder and self-energy graphs 
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were straightforward, as outlined in the previous section. The infrared piece 

of the ladder graph cancelled after symmetrizing the integrand in (x1,2: ) and 

(x2, 2:). while the infrared piece of the self-energy graph was removed as in 

the Feynman method. 

The only difficult graph to renormalize was the corner graph. Until this 

point, our representation for the counter terms assured that the divergence (in 

theg integral) of the unrenormalized graph and the counter terms cancelled 

pointwise. In the corner graph, both IV(a) and IV(b) required subtraction. (See 

Fig. 16.) Although the divergence of both graphs adds up to that of the counter 

term, we did not find an elegant representation of the counter term %XL (2) which 

renders each time order finite. What we did was to isolate the divergent pieces 

of each time order, and analytically computed the difference between these terms 

and the counter terms, using a regulator photon mass to assure covariance. 

Covariant regularization was essential in obtaining the right answer, since the 

subtraction of two divergent quantities is ambiguous, Our method in this graph 

was similar in spirit to intermediate renormalization 23 in standard QED calcula- 

tions in which subtraction terms, differing from the usual counter terms, but 

with the same ultraviolet behavior, are introduced in intermediate stages of 

the calculation. 

It should be noted that even for these graphs, our integrand was given by 

the infinite momentum frame rules. It was not necessary to renormalize at 

finite momentum and then take the infinite momentum limit. 

To understand the origin of the difficulty in renormalizing the corner graph, 

recall that the photon incident on the reducible vertex piece has x # 0, whereas 

in the counter term, the photon is taken to have q 
P 

= 0. Thus in the counter 

term, an insertion like cannot appear, since a photon with x = 0 cannot produce 
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two fermions with positive x. Nevertheless, the main graph IV(b) containing 

this insertion diverges. The lines external to the reducible insertions in IV(b) 

do not satisfy energy conservation. Thus, the insertion is not Lorentz invariant, 

and it can be verified that graph IV(b) is finite in TOPTh in a frame with finite 

momentum. It is the limit P - ~0 which gives rise to the divergence. This is 

of course possible, since the non-invariant insertion is frame dependent. 

The results of our calculations agreed with the usual answers. 17 But as a 

pleasant surprise, it appeared that our integrands, expressed as a function of 

xi and ci are smoother than the corresponding usual integrands expressed as a 

function of the Feynman parameters. As a result, the numerical integrations 

(which are often the most difficult part of higher order calculations in QED) 

converge considerably faster. Typically, where comparisons could be made, 

the numerical integration time was between 2 and 5 times faster than the 

standard Feynman parameter method. This gain more than offsets the extra 

effort required to perform the infinite momentum frame algebra before 

integration. 

These successes encouraged us to try some 6th order moment calculations, 

The results of this investigation for the Feynman graphs shown in Figure 17, 

have already been published. 24 

Meanwhile, diagram 17(a) has been computed analytically by Levine and 

Roskies. 25 Its value is [in units of (a/7r)3] 

=L-.- 733 591r2 
2 1728 + 648 + & ((3) = 1.7902778 

to be compared with our estimate 

1.777 h 0 013. 
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V. COVARIANT APPROACH AT P = 00 

Field theories at infinite momentum have been studied from a different 

point of view. Kogut and Soper’ argued that the limit P - 03 is a reformulation 

of the theory in which the equal time surface (in the regular frame) is replaced 

by a light-like surface, i.e., v = c. Making the transformation 

7 = t+z 
K- 

z’= A 
F 2 

they quantized the theory at equal 7 D When passing from the Lagrangian to 

the Hamiltonian in this approach they found that the interaction Hamiltonian 

contained in addition to the usual piece a seagull term with the structure 

that is, an instantaneous interaction involving 2 fermions and 2 photons. They 

then formulated TOPTh for this theory and reproduced the rules we have been 

discussing. In this approach the limit P - 00 never appears, it has already been 

taken. The question of whether this theory is equivalent to the usual one is 

the question of whether the P - 00 limit is justified. Their approach was 

formulated in the Coulomb gauge which is difficult to renormalize. Our results 

indicate that their rules are correct for renormalized amplitudes, and we have 

shown how to implement the renormalization procedure. A more covariant 

approach was developed by Chang, Root and Yan. 9 Starting with Schwinger’ s 

action principle, they “derived” the equal T commutation relations which 

Kogut and Soper had guessed. They worked in the CT’ $$ theory rather than in 

QED. They found that the Feynman propagator was identical to the usual one 

for spin zero, but differed for spin l/2. But they were able to show that the 
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extra term in the spin l/2 propagator exactly cancelled the terms arising from 

the seagull in the interaction Hamiltonian, so that their theory formally agreed 

with the usual one for renormalized amplitudes. Their expressions for the 

renormalization constants differed from the usual Feynman ones. 

These results are easily understandable in terms of ours. Because the 

Feynman propagator only involves free fields, and because all free particles 

have x > 0, the fermion propagator does not include fermions with negative x. 

These must be contained in the effective interaction Hamiltonian, and they are 

exactly the seagull term. We have seen that fermions of negative x extend only 

over one time interval so that no other interaction can occur between its 

vertices. One can then effectively assume that its vertices are simultaneous. 

Formally one can also see this by noticing that the energy denominator 

associated with a state containing a particle of negative x is independent of the 

external energy, so that its Fourier transform is a delta function in time. 

Moreover, the seagull, a contracted z-graph, clearly involves 2 external 

fermions and 2 photons. 

In a theory of scalar particles with no derivative coupling, our rules showed 

that at P - ~0 there were no particles of negative x. Thus, the free propagator 

should agree with the Feynman result. 

We can also understand why for example their expression for 6me does not 

agree with ours. As a field theory, it was natural to interpret the seagull term 

as a normal ordered expression. But that means that it will not contribute to 

6me since its expectation value must be taken between states which have no 

photons. But we have seen that the seagull does contribute to the usual Feynman 

answer for 6m,, although its omission does not alter any renormalized amplitude. 
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Bouchiat et al. 8 have shown that if one does not normal order the seagull, 

the Feynman expression for dme is obtained. 

CONCLUSIONS 

We have demonstrated that TOPTh at infinite momentum is a viable 

practical calculational technique for higher order processes in QED. We have 

shown how to implement the renormalization procedure in a manner which 

closely parallels the usual method, and have demonstrated that for renormalized 

amplitudes the limit P - 00 may be taken before performing the phase space 

integrations, although this is not true in evaluating the renormalization constants 

themselves. Many of the concepts of the Feynman approach, such as off mass 

shell behavior, factorized vertices and self energy parts, and trace techniques, 

have a natural place in TOPThoo . 

We have shown that our rules are equivalent to those obtained from quantizing 

on the light cone, but the study of the limit P - 00 allows us to extend that 

analysis to include a consistent renormalization program. Moreover, the 

discrepancy between the value of the renormalization constants evaluated in the 

light cone method and in the usual Feynman method is resolved. Our analysis 

puts field theoretic parton calculations on a rigorous basis, provided that a 

covariant regularization procedure is used. 

Some of the advantages of TOPTh at infinite momentum are 

1) Manifest unitarity, i.e. , intermediate states have a definite number 

of on-mass -shell particles. This is sometimes more useful than manifest 

c ovarianc e . This is particularly true for bound state problems where one is 

dealing with wave functions D 

2) 
-2 The integrations over k and x in renormalized amplitudes are 

well behaved at the end points and are suitable for numerical evaluation. 
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3) Because of the close resemblance of this formulation with nonrelativistic 

theory, it is hoped that this approach will lead to a deeper understanding of field 

theory and to new approximation schemes for both QED and hadron physics. A 

procedure for calculating the bound state energies of positronium has already 

been developed by Feldman et al. 26 This method has been used to extend the 

impulse approximation to relativistic problems, 4 to calculate high energy 

Compton scattering, 27 and rearrangement collisions for relativistic systems. 28 
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APPENDIXA 

The Connection Between Feynman and Infinite Momentum Rules 

In the appendix we give a simple connection between the Feynman rules and 

TOPTh in the infinite momentum frame for some low order graphs. This 

discussion extends the work of Chang and Ma5 and Schmidt.” 

Consider, as a first example, the calculation of the lowest QED vertex 

labeled as in Fig. 10. We retain the kinematics of Section IV. The Feynman 

rules give 

+?d, f m)r,M2 + m)y 

(pt - m2 + ie)(pi - m2 + ie)(k2 - A2 + it) 

We parameterize the four-momenta as follows (z2 = -q2) 

Q = (0, c 0) 

/ 
p= P+ 

\ 

m2 +%2 /4 
4P J,P - 

m2 +<2/4 
4P 

2 -2 
+ k4x+pk , r, XP - 

k2 +r2 
4xP 

(A-1) 

(A-2) 

Notice that the mass-shell conditions for p f q/2, q and k are satisfied 

independent of the value of P. Thus P is an arbitrary parameter of the frame 

choice; y = log 2P/m is the rapidity of the incident electron. Of course, in 

the frame where P - 03 , the quantity x 3 (k. - k3)/2P is the fractional longitu- 

dinal momentum carried by the photon. 

The four degrees of freedom of k2 are replaced by x, 2, and k2 

d4k = d2k dx dk2 21x1 (A-3) 
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