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ABSTRACT 

Analogous to Fourier frequency transforms of the integration and 

differentiation of a continuous-time function, Walsh sequency trans- 

forms of the summing and differencing of an arbitrary discrete-time 

function have been derived. These transforms can be represented 

numerically in the form of matrices of simple recursive structure. 

The matrices are not orthogonal, but they are the inverse of each 

other, and the value of their determinants is one. 

(To be published in IEEE Trans. 

on Electromagnetic Compatibility) 

*Work supported by the U. S. Atomic Energy Commission. 



INTRODUCTION 

The existence of Fourier frequency transforms of the integration and 

differentiation of continuou&ime functions suggests seeking Walsh sequency 

transforms of the summing and differencing of discrete-time (or other discrete- 

data) functions. 

In brief, if s and d represent the summing Z and differencing A of an 

arbitrary discrete-time function f, and if S, D, and F represent their respective 

Walsh transforms, we seek transforms E and H that carry F into S and D 

respectively, as depicted in Fig. 1. 

A 

Fig. 2: Relations between existing and 
desired sequency transforms. 

The desired transforms are easily derived, and can be represented 

numerically in matrix form. If the Walsh transform is defined as a matrix 

W of sequency-ordered Walsh functions, then the desired matrices 2 and & 

are of simple recursive structure. Although not orthogonal, they are the 

inverse of each other, and the value of their determinants is 1. 

DEFINITIONS 

Let fi denote the value of an arbitrary discrete-time function f in the ith 

subinterval (i = 0, 1, , . . 2n - 1) of the finite discrete-time interval (0, T). 
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Let 

j 
sj= Cfi (j=O, 1, . . . Zn-1) 

i=O 
(1) 

denote the forward sum of f, so that sj is the value of the sum at the end of the 

j th subinterval. 

Let 

di = fi - fi 1 (f 
-1 

= 0) (2) 

denote the backward difference of f, so that di is the value of the difference at 

the beginning of the ith subinterval. 

In matrix form (1) and (2) are simply 

s=z. f (3) 

d= A. f (4) 

where s, d, and f are all column matrices of 2n elements, and 2 and A are square 

matrices of order 2n. 

The summing matrix 2 is a lower triangular matrix: 

10 o...o 
11 O...Q 

l-l 

11 l...O 
. . . . . . . . . . . . . 
11 l...l 

(5) 
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The differencing matrix A is one whose elements are 1 on the principal 

diagonal, -1 on the first subdiagonal, and 0 elsewhere: 

.I 

1 0 o... 0 0 

-1 1 0 . . . 0 0 

AL 0 -1 1 . . . 0 0 (6) 

. . . . . . . . . . . . . . . . . 

0 0 0 . . . -1 1 
& 

The definitions of 2 and A in terms of forward sum and backward differ- 

ence yield the convenient result that 

Z*A=A*Z=I (7) 

where I is the identity matrix, and consequently that Z: and A are the inverse 

of each other. 

It is also useful to observe that since both are triangular matrices whose 

elements on the principal diagonal are all 1, 

det 2 = det A = 1 (8) 

They are not orthogonal, however , since the transpose of either matrix 

is not its inverse. 

In matrix form the Walsh transform of f is 

F=We f (9) 

where W is (herein) the sequency-ordered Walsh matrix [IG!]. 
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If n = 3, for example, 

w= 

11111111 
1 1 1 1 -1 -1 -1 -1 

1 1 -1 -1 -1 -1 L 1: 

1 1 -1 -1 1 1 -1 -1 

1 -1 -1 1 1 -1 -1 1 

1 -1 -1 1 -1 1 1 -1 

1 -1 1 -1 -1 1 -1 1 

1 -1 1 -1 1 -1 I -1 

(10) 

Inasmuch as f is an arbitrary discrete-time function, f in (9) can be re- 

placed by s from (3) or d from (4), and the resulting transforms defined as 

s=w* s=w- ‘z* f (11) 

D=W. d=W.A*f (12) 

We now wish to derive and determine the nature of matrices z and & 

defining operations in the sequency domain corresponding to those defined by 

Z and A in the discrete-time domain, so that 

S=x’:.F (13) 

D= ii* F (14) 

Thus, if we know the numerical nature of i and n , (13) and (14) provide 

alternative means of computing the Walsh transforms of the forward sum and 

backward difference of an arbitrary discrete-time function. 

DERIVATIONS 

Substitution of (9) in (13) and (14) gives 

S=.LW*f 

D= & W. f 

(15) 

(16) 
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Since f is generally non-null, it follows from equating the right sides of 

(11) and (15), and of (12) and (16), that 

~-w=w~2 (17) 

&W=W*A (18) 

As is well known [I], 

W-l = 2-nw (19) 

Postmultiplication of both sides of (17) and (18) by W-l and substitution of (19) 

thus gives the desired matrices: 

~+pW.~ l w (20) 

(21) 

NUMERICAL NATURE OF THE TRANSFORM MATRICES 

We now have only to perform the operations specified by (20) and (21) to 

determine the numerical nature of 2 and A . 

The following results are stated without proof, having been obtained 

empirically. 

The matrix 2 is the simpler of the two, and can easily be written from 

memory. 
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If n = 3, for example, 

5 = 2-l 

= 2-l 

, 
94 2 1 

-4 1 2 1 
-2 1 1 

-2 11 

-1 1 
-1 1 

-1 1 
-1 1 

+ 

1 

1 

1 

where gl has a more or less obvious recursive structure, and 

z2 = I (23) 

The matrix g1 can be constructed as a series of upper left square sub- 

matrices of order 2p (p = 0, 1, . . . n), as shown in (22)) by some very simple 

recursion formulas. 
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(4 Let Al1 denote the upper left square submatrix of order 2’ of il. 

For p = 0, 

A12’) = 9 
11 

Forlsp<n, = 

(24) 

(25) 

in which A?:-‘) has already been determined from the preceding recursion 

step, and 

A(2p-1) = 2n-P . p 
12 

Atzpwl) = -2w? . p 
21 

where P is a permutation matrix whose elements are 1 on the secondary 

diagonal and 0 elsewhere, and N is a null matrix. 

Finally, for any value of n, 

Kz I 2-l 

(26) 

(27) 

(28) 

(29) 

The matrix a is only slightly more complicated, although it may appear 

more formidable at first glance because it is not sparse. 
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If n = 3, for example, 

E Y-4 1 1 1 1 -1 -1 3 3 -3 1 1 5 -1 -1 -1 7 -7 1 1 1 -1 -5 -1 3 -3 -3 1 1 -1 -1 -1 -1 

1 3 5 -1 1 11 -3 -1 

1 3 -3 -1 1 3 13 -1 
1 -1 1 -1 1 -1 1 1.5 

(30) 

The matrix A1 has a very simple semirecursive structure. Consider its 

partitioning into four square submatrices of order 2 n-l , and observe that the 

two right submatrices are simply negative horizontal reflections of the respec- 

tive left submatrices (i. e. , with all element signs changed, and the order of 

the columns reversed), and that the two lower submatrices are simply positive 

vertical reflections of the respective upper submatrices (i. e. , with no element 

signs changed, but the order of the rows reversed). 
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If the upper left submatrix is partitioned into four square submatrices of 

order 2 n-2 , the same statement is true, except on the principal diagonal of the 

new ( order 2 n-2) 1 ower right submatrix. The correct elements there can be 

obtained by adding to the lower right submatrix a scalar matrix of order 2 n-2 

whose elements on the principal diagonal are all 2n (= 8 in this example). 

Thus, the matrix 5 can be constructed as a series of upper left square 

submatrices of order 2’ (q = 0, 1, . . 0 n), as shown in (30)) by some very simple 

recursion formulas. In this case, however, a matrix A2 of order 2q must be 

added to the matrix a1 of order 2’ in each recursion step. 

eq) Let Bll denote the upper left square submatrix of order 2’ of Al, and 

cylq’ that of A2. 

For q = 0, 

Bt2’) = 1 
11 (31) 

(32) 

(33) 

(34) 

(35) 
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;it2’) = Btf;’ + C ‘Izp’ 
11 (36) 

in which BE-l) has already been determined from the preceding recursion step, 

and 

Bt2’-? = _ Bylq-l) . p 
12 

Bt2’-l) = p . Bcq-l) 
21 

Bt2’-l) = _ p . By;? . p 
22 

~(~‘-5 = cgq-l) = Cflq-l) = N 
11 

c(24-1) = 2q+l 1 
22 

(37) 

(33) 

(39) 

(41) 

where P is a permutation matrix whose elements are 1 in the secondary diagonal 

and 0 elsewhere, and Nis a null matrix. 

Finally, 

KA = 2-n (42) 

OTHER PROPERTIES OF THE TRANSFORM MATRICES 

As with 2 and A, it can be shown easily that 

Z.Z=I (43) 

and consequently that z and 5 too are the inverse of each other. Substitution 

of (20) and (21) in (43) gives 

(2-n w l z l w) l (2-” W l A* W)= I (44) 

With the use of (19) and (7), (44) can be reduced readily to an identity, thus 

verifying (43). 
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As with Z and A, it can also be shown easily that 

detz = det A= 1 

Substitution of (19) in (20) and (21) gives 

2=w-l.r,ow 

ii=W-‘0 A-W 

(45) 

(46) 

(47) 

As is well known, the determinant of a product of square matrices is equal to 

the product of the determinants of the factor matrices [4], so 

det 5 = (det W-l) (det ZZ) (det W) (48) 

det & = (det W-l) (det A) (det W) (49) 

As is also well known, the determinant of the inverse of a nonsingular matrix 

is equal to the reciprocal of the determinant of the matrix [5], so (48) and (49) 

can be rewritten as simply 

det 2 = det 2 (50) 

det 2 = det A 

Reference to (8) verifies (45). 

(51) 

Finally, like E and A, 2 and n are not orthogonal, since the trans- 

space of either matrix is not its inverse. 

POSSIBLE APPLICATIONS 

Specific applications of these new transform matrices is beyond the 

scope of this paper, but one possibility is a new approach to the analysis 

of interference in pulse systems. Capacitive interference is a result of 

pulse sums (sums of products of pulse amplitudes and durations), while 

inductive interference is a result of pulse differences (changes in amplitudes 

at pulse leading and trailing edges). Thus in the case of an interference-causing 
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pulse pattern there is a potential interest not only in its own sequency spectrum, 

but also in that of its differences or sums during the pattern period. It is hoped 

that use of these matrices will render a clearer understanding of the nature of 

such problems and facilitate better solutions than is possible through the use 

of nonsinusoidal Fourier methods, 

Another possible application is further development of the concepts of 

nonsinusoidal (pulsed) electromagnetic waves [6] o 

Finally, it is hoped that they will contribute to a further understanding of 

the Walsh functions themselves. 
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