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ABSTRACT 

K13 decays are discussed in an explicit model of PCAC involving 

the pion and a heavier particle, the T?. This model has recently been 

shown to be capable of yielding the correct -/r” - 2y decay rate from 

the Adler PCAC anomaly using one triplet of fractionally charged 

Cell-Mann/Zweig quarks, as well as reproducing all the “good” 

results of strong PCAC. In this paper we extend the model to treat 

Kn3 decays and compare it to the earlier Brandt-Preparata theory of 

weak PCAC . 

(Submitted to Phys. Rev. ) 

*Work supported by the U. S. Atomic Energy Commission. 



I. INTRODUCTION 

A. Two Models of Weak PCAC 

Models of weak PCAC’ have been proposed in which the pion pole dominance 

assumption is applied only to those matrix elements of the divergence of the 

axial current that are taken with composite hadronic states. 2,3 The motivation 

for these models is inter alia to reproduce the “good” results of PCAC (Goldberger- -- 

Treiman relation, 4 Adler consistency condition, 5 and Adler-Weisberger sum 

rule6), while at the same time providing a framework yielding the correct 

7r” -+ 27 decay rate from the Bell-Jackiw-Adler theory of the PCAC anomaly7 

without simultaneously requiring that we abandon the original Gell-Mann/Zweig 

quark model3 of an elementary triplet of fractionally charged quarks. In weak 

PCAC schemes the equivalence between the divergence of the weak axial vector 

current, D(x), and the pion field, G(x), is expressed as an wproximate equality 

between hadronic matrix elements in a restricted momentum transfer range 

<aIDlb> M f7P2 

& w2-P2) 
<aTlb> (o<P2<1-12) (I. 1) 

where p = pb-pa is the four-momentum carried by the operator D, and a and b 

are hadrons. Here p is the pion mass and fn the r 
l-42 

decay constant. Equation 

(I0 1) is essentially the statement that the matrix element of Di (i= 1,2,3) between 

hadronic states is dominated (for small p2) by the pion pole. In “strong PCAC” 

(I. 1) is replaced by an operator statement, Di = p2fs$f, which implies weak 

PCAC, but not vice versa. In application to the theory of the no - 2y decay 

anomaly, strong PCAC requires that a less simple quark scheme - (viz. , 

colored quarks’ or the Han-Hambu 10 model of three integrally-charged triplets)- 

be adopted in order to explain the n-O - 2y decay rate from the theory of the 
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anomaly. The calculated matrix element is too small by a factor of M 3 on the 

basis of the Gell-Mann/Zweig triplet model of quarks. 

In this paper we want to apply a recent2 model of weak PCAC (hereafter 

called Model A) to a discussion of K 13 decay, and of the Callan-Treiman 11 rela- 

tion in particular. We also compare it with an earlier version of weak PCAC 

put forth several years ago by Brandt and Preparata3 (called Model BP). As 

will be discussed shortly, the original aim of Model BP was to furnish a frame- 

work in which a possible “breakdown” of the Callan-Treiman relation for Kn3 

could be understood, However, the most recent experiment 12 is consistent with 

a smooth extrapolation of the K13 form factors to the Callan-Treiman point, and, 

based on this beautiful new precision result, the experimental motivation for introducing 

Model BP no longer exists. We shall delineate the differences betweenModels A andBP. 

B. Model A 

Model A is a weak PCAC scheme in which specific statements are made 

about the matrix elements of the axial divergence between physical states. To 

epitomize it, consider a matrix element between nuclear states <a ID lb>, suitably 

normalized, which we shall denote by a scalar function Q(p2) multiplied by a 

suitable tensor, where p2 E (pa-p,J2. Q(p2) is assumed to satisfy an unsubtracted 

dispersion relation (USDR) 

where we have separated out the pion pole term. In the simplest form of 

Model A we assume that for p2 < p2 we can effectively replace the integral 

along the cut > 9p2 by another pole term representing a (fictitious) particle, 
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the 7rr, 

whose mass p1 (>3~), decay constant f\, and coupling galab @12) are parameters 

determined in Ref. 2 from the model’s prediction for the Goldberger-Treiman 

relation and ?r” --L 2y decay. 

The coupling constants in (I. 3) are related to physical vertices as follows: 

<alDlb> w ft2 fP,2 

43 b2-p2-ie) 
<anIb> -t 

Ji (p’ 2-p2-ie) 
< aT* lb> 

to < P2 < /J2) (I* 4) 

Now, if a and b are extended composite structures, then as shown in Ref. 2 we 

can expect the matrix elements to satisfy <a+ lb> << <aTlb> . It follows that 

with a and b hadronic states, (I. 4) can be approximated by (I. l), the canonical 

statement of weak PCAC . 

In Ref. 2 relevant parameters in Model A were fixed by experimental com- 

parison to be 

P ‘M 1.65 GeV 

where g, and gH are the coupling of 7~ and + to elementary constituents. As in 

Ref. 2 we shall assume, for simplicity, that in the range p2 < p2 all the physics 

in the O- channel can be attributed to the r and 7r ‘. 

C. Model BP 

As in Eq. (I. l), the working hypothesis of Model BP is that the matrix 
. 

element <a ID1 lb> of D1 (i= 1,2,3) between hadronic states a and b is dominated 
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for small p2 by the pion pole. In contrast to Model A, which accomplishes 

this by noting that the form factors in (I. 4) should satisfy <an’Ib> << <a7r lb> , 

Model BP accomplished (I. 1) by postulating Regge asymptotic behavior for the 

absorptive parts of all relevant forward scattering amplitudes, which provides 

a criterion as to whether or not a highly convergent USDR is likely to exist for 

certain matrix elements. For Ki3 in particular the analysis was made by 

studying the asymptotic behavior of the amplitudes in terms of the dimensionality 

of the operators and their corresponding light cone structure. 13 The matrix 

element <a ID lb> is one of those for which a highly convergent USDR is asserted 

to exist, suggesting dominance by the pion. However, the matrix elements of the 

current operators are assumed to be less smooth than their divergences since 

they are of higher dimensionality and this leads to the possibility of large cor- 

rections to PCAC. The importance of these corrections depends on the way in 

which SU3 x SU3 is broken as an exact symmetry. We will outline in this paper 

the relation of Model A to BP and show that the former leads naturally to the 

Callan-Treiman relation with small corrections comparable to those found in the 

other familiar successes of PCAC. 

II. Ka3 DECAYS 

The Kn3 experimental form factors f*(q2) are defined by the physical matrix 

element14 

Fp(q2;pC1.qp) = < $I$-lK+> = i ~2 [(kP& f+(q2) + qpfJq2)] CrI. 1) 

where k(p) is the momentum of the K+(n”), q=k -p is the momentum of the 

lepton pair, and VK- 
P 

is the strangeness changing vector current. We shall also 

have occasion to discuss the physical matrix element of the divergence g z apVp 
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of the vector current: 

E(q2) = or”lc3 K- [Kc> =-iqpFp(q2) = f+(s2) + s2fJ12) 1 
(u-2) 

The form factors f,(q2) are usually parametrized f,(q2) = f,(O) [l+ h,(q2/p2)]. 

Ke3 experiments 15 readily give f+(O) M 1 and h, M 0.03, but the experimental 

status of f has been ambiguous. It is customary to take h MO and report on 

the ratio [(q2) z f (q2)/f+(q2) for which polarization and Dalitz plot measure- 

ments have typically yielded ((0) N -1 while Ke3/K 
lJ3 

branching measurements 

have yielded t(O) - 0, both results always quoted with large uncertainties. 15 

In this regard, results from a recent SLAC-Santa Cruz collaboration 12 measuring 

the Dalitz plot are distinguished by very small error bars. They obtain 

t (q2) M t(O) = 0.01 f 0.04, consistent with the original Callan-Treiman prediction. 

Consequences of this on models of weak PCAC will be summarized later. 

Applying PCAC to (lI. 1) in the soft pion limit and using current algebra 

to evaluate the equal time commutator of the axial charge with a strangeness- 

changing vector current gives directly the Callan-Treiman relation 11 

However if, following Brandt and Preparata, 3 we choose to work with the 

“smoother” matrix element (II. 2) in making the PCAC extrapolation we must 

evaluate an equal time commutator of the axial charge with the divergence of 

the strangeness changing current, 98 K- , and this requires the introduction of 

specific parameters for describing the breaking of SU3x SU3 invariance. The 

formal derivation following this path has been described elsewhere 16 and will 

be recapitulated briefly in the appendix. 

-6 - 



Turning to Model A we construct the off-shell extrapolation of (II. 1) to the 

soft pion (p -0) point from 

F;(P~, q2;pc1, qcl = ) 
(p2-p2) $2 

/ 
d4x eiPox <O IT (VF-(0)D3(x)) IK> (11.4) 

where D” is the divergence of the axial current. The right-hand side is evaluated 

by writing an unsubtracted dispersion relation in p2, inserting the pion pole at 

P2,P2, and replacing the continuum with a 7r l pole at p’2 as in (I. 3). This gives 

where fk is the decay constant of the 7r1 and f;(q2) are its couplings to the K and 

the lepton pair as illustrated in Fig. 1. The ?T’ term in the above is that part of 

the off-shell matrix element of VK which is due to the process of Fig. 1. 

Extrapolating to the soft pion point p - 0 and applying current algebra as before 

gives 

(II. 6) 

where the size of the ‘*correction term” to pion dominance depends on the product 

of ratios shown. Equation (II. 6) is precisely the statement of the Callan-Treiman 

relation (II. 3) in the language of Model A. 

Concerning the magnitude of the correction term we expect If L/f,1 to be 

not greatly different from unity, to the extent that the $ and r have elementary 

coupling constant that are comparable - i. e. , gH/g, N 1 in (I0 5). 
2 We use the 
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following considerations to estimate the size of the rest of the correction term. 

In Model A the form factors f,(q2) describe how the K and 7r, members of the 

same pseudoscalar octet, are connected by the vector current V K. The T+ 

represents that contribution to the O- channel arising from states which lie 

outside this octet; f;(q2) describe the coupling of K and $ through VK. If su3 

were a perfect symmetry, we would expect -cK IVf(q=O) In> = l/h/i and 

<KlVt(q=O) I+> = 0. In the real world SU3 is not perfect; we assume the ratio 

<K IVF(q=O) I 7rr> / <K IVf(q=O) I 7r> to be a number on the order of SU3 breaking. 

Normally we characterize SU3 breaking as a lo-20% effect; here it can be meas- 

ured by the ratio of the mass splittings within the pseudoscalar octet to the 

mass interval between the pseudoscalar octet and the excited spectrum con- 

taining the 7r1, which gives the same result - i. e. , (m~-~2)/(~12-m~) M 0.1 

where m 8 is the mean n-K octet mass. Extrapolating from q2 = 0 to q2 = rnk 

as needed in (II. 6) should not alter the above ratio significantly: the lowest 

mass state contributing in a dispersion analysis of the vertex <K IV: I+> is 

the K*(890) and rnk =$ rn&+ . On the basis of this argument we expect the 

ratio if;(m~)+f~(m$~+(m~)+f-(rntj - and therefore the entire correction 

term in (II. 6) - to be small, i.e., pion dominance to be good. 

We now turn briefly to look at Model BP and compare it with Model A. The 

expression corresponding to (X.5) (the off-shell extrapolation of (II. 1)) in the 

framework of Model BP is 

F;‘(p’, q2;pp, qp) = w. 7) 
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with :$“, q2) = f,(q2) of (II. 5). The off-shell extrapolation of matrix element 

(II. 2) (which is the f’smooth” one in the BP hierarchy) is 

EBP(p2, q2) = -$ [(m[-p2)t+(p2,q2)+q2T-(p2,q2)] + ‘zip 

7-r 

@. 8) 

(The additional term in (II. 8) comes from the equal-time commutator obtained 

in moving the divergence outside the time-ordered product, as indicated in the 

appendix. ) Whereas the p2 dependence of Model A in F A 
P 

and EA is explicitly 

exhibited - at the cost of extra free parameters f: (q2) - it is hidden inside the 

form factors f*(p2, q2) in the treatment of Model BP. In this sense Model BP 

is a more general formulation (parametrization) than Model A, being so far 

arbitrary regarding the number and strength of the various O- contributions. 

On the basis of the light cone arguments mentioned in the introduction, 

Brandt and Preparata 3,13 conclude that (II. 8) will extrapolate smoothly from 

p2 = 0 to p2 =p2 and point out that no similar claim can be made for (II. 7). We 

write the low energy theorem in terms of (II. 8)) using (see appendix) 

where E 2 and E 3 are the symmetry-breaking parameters used by Brandt and 

Preparata, defined in the appendix. Combining (II. 9) with (II. 8) gives the 

Callan-Treiman relation as derived by BP. Assuming a smooth extrapolation 

to the pion pole at p2 =p2 based on (II. 8)) BP obtained corrections to the Callan- 

Treiman relation that depend strongly on the ratio of symmetry breaking 

parameters e2/e3. In this way they were able to accommodate the then existing 

experimental indications of [ (0) = ~Q.L~, 0) M -1, i.e., sizeable curvature in the 
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extrapolations from the physical region for Ke3 decay to the Callan-Treiman 

point, by choosing a large ratio of e2/e3, in contrast to the Gell-Mann, Oakes, 

and Renner (GOR)17 result of approximate SU2 x SU2 symmetry. 

In Model A we do not have this freedom: changes in e2/e3 are reflected 

only in fk rni ( 1 as in Eq. (A. 12) of the appendix. In Model A the assumption of 

10-20s absolute goodness of SU3 automatically requires 5 - 0 from (II.6) 

regardless of the goodness of SU2 x SU2; if the data showed 5 - -1, Model A 

would be ruled out. 

III. SUMMARY 

We have considered the treatment of K13 decays in a recently proposed 

model2 (Model A) of weak PCAC. In this model the O- channel is represented 

(for 0 <p2 <p2) by a pion and another (fictitious) particle, the $, which approxi- 

mates the contributions of the dispersion cut p2 > 9p2. The fact that the 7r1 is 

not a member of the K-n octet, combined with some validity of classification 

under SU3, leads naturally to a small value for the Km3 parameter [. Such a 

value for 5 is now being seen by experimentalists. 12 The generality of an 

earlier approach (Model BP), whose main virtue was that it provided a frame- 

work in which a larger value for 15 I could be accommodated, is thus no longer 

necessary. 
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APPENDIX 

In this appendix we define our notation and derive the low energy theorems 

(A. 11) (which is the same as (II. 6)) and (A. 12). 

It is conventional to discuss models of PCAC in terms of a symmetry- 

breaking Hamiltonian density which is assumed to belong to a (3,3) + (3,8) 

representation 18 of su3 xsu3: 

E -E 
H’= 2 3 so+ l 3s8 

& 
(A. 1) 

where so and s8 are the usual nonet scalar densities, and E 2 and E 3 are the 

parameters used by Brandt and Preparata. These last are related to the ozo 

and a8 of Gell-Mann, Oakes, and Renner 
17 by e2=& 8 3 8. It oo+o ande =Q! 

has been customary to identify e2 with the SU2 x SU2 symmetry-breaking 

strength (E 2 = 0 would indicate perfect chiral symmetry), but the identification 

of E 3 with the SU3 symmetry-breaking strength is ambiguous. 
19 On the basis 

of mass formulae and using the symmetry-breaking Hamiltonian density (A. l), 

Gell-Mann, Oakes,and Renner (GOR) estimate E 2/~ 3 = -0.13, which does imply 

that SU2 x SU2 is a better symmetry than SU3. 

Formally, the off-shell extrapolations of both (II. 1) and (II. 2) are constructed 

from 

FI*(p2,q2;pp. qp) = ~ Bp(P2, q2;pp, qp j f p2 

7r 

(A. 2) 

F/JP”, q2;P@ qp = )J d4x eiPox <OIT (f(0) D3(x))IK > 
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E(p2,q2) = 

(A* 3) 

z(p2, q2) = 
/ 

d4x eipox<O IT (8-(O) D3(x)) IK> 

where D3 is the axial vector current divergence and g K is the vector current 

divergence. We can relate (A. 2) and (A. 3) using 

T(gK-(y)D3(0)) = $- 
P 

T (V;-(y)D3(0)) - a(y,) [V;-(v),D3(0)] 

2 

D3(x) = 
3 

’ e2 2 E DK (0) HTT) 
l 3-3 2 

(A- 4) 

where we have evaluated the equal-time commutator in terms of the structure 

of the symmetry-breaking Hamiltonian density (A. 1) using a J = -i [Hl,Q]. The PLI-1 
relation between (A. 2) and (A. 3) is therefore 

E(p2, q2) = -is’” Fp(p2, q2;pp, qp) + 
&42-p2)m2K 

a P2f* 
(A. 5) 

This equation is an identity on the mass shell; off the mass shell it describes 

the extrapolation in terms of the symmetry-breaking model. 

We can now write down two low energy (p - 0) theorems: 

Fp(O,mi;O,kl) = Q 
a f- 

(A- 6) 

(A. 7) 

Here (A.6) follows directly from (A. 2) and is the familiar model- and symmetry- 

independent result derived by Callan and Treiman. The low energy theorem (A. 7) 

which follows from (A. 6) using (A. 5), & dependent on the symmetry breaking. 
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If we wish to extract predictions on the form factors f+(q2) and f-(q2) in 

(II. 1) or (II. 2) at the unphysical point q2 =mi we must invoke the above low 

energy theorems and make assumptions regarding the p2-extrapolation 

characteristics of Fp(p2, q2;pcL, qp) and E(p2, q2) in (A. 2) and (A. 3). 

To express the low energy theorems (A. 6) and (A. 7) in the language of 

Model A, we first write a dispersion relation in p2 for Fp(p2, q2;pp,qp) of (A. 2): 

Fy(p2, q2;pp, qr) = 

with 

abs Pp p ( ‘2,q2;pp)qp)={d4x eip’Ox <~l[D~(x),V~(o)]lK> 

= (2T)4xs4@l-pn) <OlD3(0)In><nlv~(0)lK> (A-3) 
n 

In Model A the sum contributes a term with ~(P’~-P~) and one with ~(P’~-/L’~), 

so we find 

F;(P”, q2;P$$) = J- [(k+PJp f+(q2) + s,f-(42) 3 

2 2 /J’2fk i 

4 
+- +i+ - - 

P’ -P P2fT a 

= IIp+II’ 
P 

A similar analysis for E(p2, q2) in (A. 3) yields 

5? 

1 (k+p),f;(42) + qf1(92Jl 

(A-9) _ 

EAtP2, s2) 1 [+fp2)f+ts2) +2f_(s2)j 2 = 5 + -4&) 2- p’wf’ p2f 1 ~2 [(mi-pf2) fk(q2) + q2fl(q2)] 

7r 

=lI+ II’ 

- 13 - 



L . 

Thus in this model all extrapolation properties in p2 for FP(p2, q2;pP, qP) and 

E(p2, q2) are explicit and relate only to the ? term in each: the extrapolation 

properties are fixed once values are assigned to fk and f’ . 

Taking p - 0 in both the above and combining with the exact low energy 

theorems (A.6 ) and (A. 7) as before, we deduce the following exact low energy 

theorems for Km3 in Model A: 

Ft: [f+(mg) + f-(-k)] + t [f:(mi) + fl(rnk)l = 5 (A. 11) 

E A: f+(m[) + 

(A. 12) 

Equation (A. 11) is the same as (II. 6). 

Consistency between (A. 11) and (A. 12) requires 

fK rnk -Zje2 
f;(mi)= f’ - 

?r P2 
( ) 

_ -!!!!I f 

26 p’2fk + 
(mg) 

e3-3 2 

= -0.16 -i- 0.01 (1.44) (A. 13) 

where we have used fK/f, 2 2 12 M 1.3 with (1.5) andf+(q2) = 1+ 0.03 q //J . 

If the pion accounted for all the physics in the O- channel, then the ‘T’ terms 

in (A. 11) and (A. 12) would be absent and those two equations could be solved to 

yield 

rnk fK -$e2 
f+(mfi) = 2 f 2 

P 7r i i e3 -V2 
(A. 14) 
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which can be thought of as determining the 1 ‘symmetry hierarchy” E 2/~ 3 in 

terms of other experimentally known factors. (Although (A. 14) looks different 

from the GOR 17 relationship between meson octet masses and the symmetry 

hierarchy (from which they obtain E 2/~ 3 M -0.13), it has followed from the 

same assumption they used; namely that so and s8 in the symmetry-breaking 

Hamiltonian (A. 1) belong to the same (3,3) + (3,3) representation of SU3x SU3. 

That relation (A. 14) is satisfied experimentally to within -20% (using the 

GOR value for E 2/~ 3) is an indication that in Model A the 71’ will not be very 

important in the decay, in agreement with the expectation that, to the extent 

that the physical K and 7r lie in the same SU3 octet and that the z1 lies outside, 

the linking of K and n1 by the vector current should be much smaller than the 

linking of K and 7r. 
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FIGURE CAPTION 

1. This figure illustrates the decomposition of the off-shell matrix element 

(II. 4) into a r and r* term as in (II. 5). On the mass shell p2 =p2, only the 

first (7f) term in (II.5) (i.e., the first diagram on RHS above) is present. 

- 17 - 



I 

2326Al 

. 


