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ABSTRACT 

The influence of spin factors on the validity of the Drell-Yan 

relation is investigated in the framework of the Drell-Lee bound 

state model for the nucleon. Calculations are performed after 

introducing an infinite momentum frame parametrization. It turns 

out that in one of the two spin combinations looked into the relation 

has to be modified. 
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I : 

I. INTRODUCTION 

Drell and Yan’ made the conjecture that a behavior of the scaling function 

VW,(W) proportional 1 - i ( 1 near threshold - with w = - m 
cl2 

- is up to 

logarithmic factors linked to an elastic form factor FI(q) behaving like 

[ I 
1 / (q2) n+I ‘2 in the limit of large q2. In contrast to this conjecture the bound 

state model for the nucleon of Drell and Lee2 yields a structure function 

VW,(U) a (1 - i)” 

and an elastic form factor 

(I.11 

0.2) 

for the case of a charged spin-0 constituent of the proton. 

More generally it was established in a parton model3 that due to crossing 

symmetry the scaling function for a nucleon current is of the form 
, 

2n+l 
VW,(W) = CN (1 - ‘) 0 n=O,1,2 *.. 

and for a pion current 

(I. 3) 

VW,(W) = CT (1 - 
2n 

-:, n = 0, 1,2,. . , (I-4) 

Further it is 4,5 known that in a Bethe-Salpeter type bound state model with a 

covariant potential of the form 

V(q) = s 2$.k!g q +K 65) 

with 

s g(K 2, dK 
2 = finite (1.6) 
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- that means a wave function $(x) which is finite for x- 0 - the elastic form 

factor Fl(q) must at least fall off like O(qV4) up to logarithms. 

This is compatible with the Drell-Lee model, but not with Drell-Yan’s 

conjecture. To determine at what point their suggestion has to be modified 

we first translate the covariant model of Drell and Lee into the infinite mo- 

mentum frame parton language of Drell and Yan. Besides providing calcula- 

tional advantages this form lends itself to a comparison with the bound state 

model of Gunion, Brodsky, and Blankenbecler. 6 

It turns out that in the nucleon current case the spin factors do not affect 

the Drell-Yan relation. In the pion current case a modified relation holds. 

II. THE DRELL-LEE BOUND STATE MODEL 

To establish the feature of scaling in a relativistic field theory Drell and 

Lee proposed a bound state model for the nucleon. 2 It is assumed that the 

proton is composed of a spin-l/2 particle and a spin-0 particle. Either of the 

two can couple point-like to the electromagnetic field. Radiative corrections 

are neglected. 

Let the proton of mass m and four-momentum p contain a charged constit- 

uent of mass ml and four-momentum II? and an uncharged constituent of mass 

m2 and four-momentum X (see Fig. 1). Then 

p= P‘t-Bz (II. 1) 

The ansatz for the bound state wave function +p(~ 2, with 

K = (ml+m2)-l (m2 p-mlW @* 2) 

-3- 



takes its inspiration from the ladder approximation of the Bethe-Salpeter equa- 

tion. K is the reduced relative momentum. $J (K 2, is written in the form 
P 

(II. 3) 

where up is a free Dirac spinor of four-momentum p and mass m. g(K 2, is 

assumed to be a scalar. Drell and Lee show that it is a scalar at least in the 
2 1imitK -*co. 

To make calculations easy we will need the stronger assumption that even 

for small K 2 the spinor structure of +P(~) is given by y5up. If then g(K 2, was 

set a constant, the graphs of the theory would turn into the graphs of a standard 

pseudoscalar-coupling meson theory. The asymptotic behavior of (Pp(~2) as 

K2 -**co is 

Gp(K 2, K 0 (K 
-2 

) w 4) 

for a potential as in (I. 5). 
. 

The matrix element of the electromagnetic current J between proton states 

of four-momentum p and p+q=p’ respectively, as well as the structure functions 

can be derived readily. 

Two cases shall be distinguished. Either the spin-l/2 constituent or the 

spin-0 constituent couples to the electromagnetic field. The bound state wave 

function is the same in both cases, as the charge of constituents does not 

affect the Bethe-Salpeter equation. 

The Bethe-Salpeter graph of Fig. 2 translates into 

<plJV Ip’ > = -e(2@ -4 
/ 

1 
l $po 

= - e( 27r) 

(II. 5) 
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with 

G1 
V 

= T,, (K ‘1 UP + R +ml)Yv(@+ml) cbPP) (II. 5a) 

for the case of a charged spin-l/2 constituent and into 

<plJv tp’> = -e(2lr) -4 j- d4p Fp,W) qj-& 1 

2 (lP+q)2-my 
’ (25 +q,) l 

1 = -e(2Q04 / d4P ’ l ’ l 

X2 - m2, lP2 - rn: 
GII 

(lP+q)2 -m2, ’ 

with 

GII 
V = Fp!P ‘1 c$ + mcJ-) QP(K) (2 y) + Cl,) (II. 7) 

for the case of a charged spin-0 constituent. ?ip(K ) is the conjugate solution to 

TPP). Further 

m2 
K’=K+m+m (P tn. 8) 

1 2 e 

The structure functions Wl and vW2 are given through (Fig. 3):. 

Wpv (q2,po q) = e2 (2~)~ d4X d4P 8 (X0) 8 (PO) 6(X2-m:) 6(P2-rn:) * 

- s4(p-x-IP) 1 
HI 

PV 
(P2 -m4)2 1 1 HII 

PV 

tn. 9) 

inserting 

HI 
PV = Tr 

C 
zP(K) tV+m,) yp W+d+m,) Yv ([B’+ml) *Pw 1 spin (II. 10) 

averaged 
if the spin-l/2 constituent carries the charge and 

H= 
PV = Tr 

C 
sP(~) ($+ m2) +P(K) 1 spin Pp+qJ t2pv+qv) (II. 11) 

averaged 
if the spin-0 constituent carries the charge. 

As the Drell-Yan relation connects the (l- l/w)-behavior of the structure 

function v W2 in the scaling limit and the q-behavior of the elastic form factor 

Fl’ one has to project out these quantities from the ones given above. This 

becomes particularly simple in the infinite momentum frame of the proton, 
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given by’ 

Pp= ( P+$ OL’ P \ 

and 

(II. 12a) 

(II. 12b) 

withP-roo andv=p*q. 

For the elastic form factor 

-2 
v2!L 

2 (II. 13) 

Taking the zero- (or three-) component of <ptl Jv Ip > and averaging over the 

proton spin, $ (< t IJolt > + illJ,l~>) , one obtains F 1 up to a constant factor. 

- 

Fl(q2) = $ ccpf IJolp> (II. 14) 

III. CHANGE OF PARAMETRIZATION 

The expressions for Fl and v W2 are easier to handle if one chooses a 

particular parametrization for the four-momenta involved. 7 

5 = ( xp+ 

P2,XL2 
rJxp 9 -i;l’, xp 

1 

9.cp = pp - lPc, = 
( 
(1-x)P + 

X2+X; 

2(1-x)P ’ -$ , (l-x) P 
1 

(III. 1) 

The loop-integration can then be written as 
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After carrying out the integration over !P2, with this choice of variables the 

new expressions can be compared to the corresponding quantities in time- 

ordered perturbation theory in the infinite momentum frame. 

For Fl the integration over lP2 can be done as a Cauchy contour integral 

closed with a semicircle at infinity. Therefore the pole-structure of the inte- 

grand in the complex U?‘-plane must be known. If one replaces the wave func- 

tion by a constant, all poles originate from the propagators and one gets the 

usual time-ordered perturbation expansion in the infinite momentum frame. 

With a wave function in the integrand a specific form has to be assumed for it 

to be able to do the integration. 

As the behavior of ap(~) for K 
2 --r& 00 is O(K-~) we use an ansatz 

1 
@p(K) = K 2-h2+ ie y5 “p (Ia. 3) 

approximating all singularities of +p(~ ) by a single pole at h2. The value of h 

turns out to be irrelevant, what matters is the asymptotic behavior. For both 

cases of charge distribution Fl takes the form 

Fl(q2) = -e(27r)4 
s 

d4U? 1 1 1 
X2-mi+ie !P2-mT+ie (lP+q)2-mf+ie 

1 1 2m lPo 
. 

K2-h2+ie K,2-h2+ie l spin factor l P 

For a charged spin-l/2 constituent the spin factor is 

1 -- 
sl/2 = 2[po c up,Y5W+d+m1)yot#+m )Y u 15P 

and for a charged spin-0 constituent it is 
- 

so = c cp,r5 t%+m )Y u 2 5P 

(JJJ. 4) 

on* 5) 

(III. 6) 
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In the parametrization (III. 1) the spin factors transform into 

’ sl/2 = - x ( 
(ml-xnQ2 +Xf + (l-x) TL * r;i) 

(I= 7) 

So = -& 
i 
(m2- (l-x)m)2+ El2 + (l-x) zL l rl+ X2-m: 

1 

They do not change the pole structure of the integrand of (III. 4) in the P2-plane. 

It is important to note that the poles coming from the wave functions are both 

taken with a +ie. For a discussion that 3 is not the time reverse of cp see 

Drell and Lee. 2 The interesting quantities, deciding upon the position of the 

poles in the P2-plane are 2, (ll?+q)2, K~, and KIT. From 

(yC+P)2= p2 = m2 (III. 8) 

one finds 

~2+zl p2-L -2 x k1 + m2(l-x) 

(P+q)2 = rP2 - 25 l ;i; - (1-x) <- 

2 
K =- e P2 - g FL2 + m2 @3-x) p 

Kt2 = K2 - 2(1-P) y- * C-1 - (1-P) (l-x) ;j-2 

with 

p= m2 
m +m 1 2 

(rrr. 918 

(III. 10) 

In the order in which the 5 propagator-type poles are written down in (III. 4), 

the first pole lies in the upper half of the lP2-plane for 0 5 x ( 1 and in the lower 

half-plane for all other x, the second and third pole lie always in the lower half- 

plane, the fourth and fifth pole lie in the upper half-plane for 0 2 x 5 p and in the 

lower half-plane for all other x. Therefore if the integration-contour is closed 

in the upper half-plane, residues will contribute for 0 (x ( 1 only. The integral 
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(III. 4) becomes formally 

Fl m Id25 11 $$ / dP2 = Integrand(iP2,x,~l) = 

= Jd2xl l1 % Residue of Integrand at S?=rni 

+l d2qlp g Residue of Integrand at K2= A2 

+/ “l$ $ Residue of Integrand at ~~~ = A2 (III. 11) 

Being interested only in the q-behavior of Fl at large cl2 and assuming ml 

and m2 nonzero, the ql-behavior of the second and third term on the right- 

hand side of (III. 11) can be determined by taking the limit cl2 -, w inside the 

integral. Both terms contribute as 0 9;” . 
( 1 

The , ql-behavior of the first term 

on the right-hand side of (III. 11) cannot be determined as easily because the 

limit ‘s;12 - ~0 and the integration cannot be interchanged in this case, i. e. , 

after taking the limit inside the integral one is left with a divergent expression. 

Therefore this term has to be looked at more carefully. 

with 

Y/2 atX2=m2 2 . gtq !z* (rp ‘14J * f 1 sO at X2=m2 2 

(III. 13) 
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where 

m2 
X 

= mT(l-x) + mix (m[. 14) 

g q = 
(l-x) 

i 
-g2 ii2 

-mi 3 + m2(x-@(l-x) - (1-x) Ip 1 - -) 

and 

S 
l/2 ( 

x2=mi z-i 
) ( 

(ml-xm)2+ Xl2 + (l-x) cl* rl ) 

So (Xz2=mi) = -& 
- (i 

m2 - (l-x) mj2 + Cf+ (l-x) $l * Cl) 
(ZlT. 15) 

The important contributions from the ?f l -integration to the integral (III. 13) 

come from F A l- 0 and F = 
1 - (l-x) zL , giving the same contribution in both 

regions due to the symmetry of the integrand. The dominant contributions 

from the x-integration come from the region x=1. 

Therefore % and g can be brought into the form 

with 

and 

V!L2i =J ““5 1 1 & l (-x2 2 - 1 
-m 2 

y$(1 x)c 
)( ( 1 1)2-mi) 

l mq a*(c-+ (1-x) z1 j - 

sl/2 

i i 

szo 

Z(kl) = AL+ 
( -Xl -m2) 

LT l/2 = - (ml-m)2 + El2 ( + (l-x) ‘;i ‘<-) 

so = -& (mi+-,2, (l-x) $*yl) 

(III. 16) 

PI* 17) 

(III. 18) 
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Up to factors of x and terms of the sums in the denominators proportional to 

(l-x), which are inessential in the important integration region, this expres- 

sion for Fl coincides with the one of Gunion, Brodsky, and Blankenbecler. 6 

If one takes the integral (III. 16) separately for the terms appearing in the 

spin fiLctors, the q-behavior of each can be read off readily by setting 

Ii?-- = - (l-x) z1 , taking the limit ;il” - 03 and looking at the degree of diver- 

gence of the remaining x-integral. A convergent x-integration yields a q- 

independent factor, a logarithmically divergent x-integration gives a 

log (C12& , 1 a linearly divergent one gives a factor I zl I /m2 . The particular 

combination of these separate terms in 5 
l/2 

and go, however, gives rise to 

cancellations and therefore requires more careful calculation. Let first the 

spin-l/2 constituent be charged. -2 With the above description the term a k 
1 

of the spin factor gives an integral a lfiy . So does the term -i;’ 
l l Cl (1-x) * 

But as, the two terms appear with a different sign the l/ T12-contributions 

cancel out. There are no contributions proportional to odd powers of l/’ . 
1 

The constant (ml -m)2 gives rise to a term a l/q log(~12/m~). Careful 

calculation shows that the whole integral (III. 16) goes like l/ z14 log (z12/mE). 

In the case of a charged spin-0 constituent the l/ ‘;“- contributions cancel out 

again. But due to the additional factor & the remaining contribution from 

& ( c12+ Kl l cl (l-x)) is proportional to l/ cl3 . The term a rni in the spin 

factor yields a contribution of the same behavior. Careful calculation shows 

that these two contributions to @I. 16) also cancel and that the whole integral 

goes like l/ T14 log2 ( T12/mi) for large q12 . 

For the evaluation of (III. 16) denominators are combined with the Feynman- 

trick: 

1 
s 

1 
-=2 
(JIB)~ o 

dz Zn-l 1 

(Az+B) 2n 
(III. 19) 
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This allows us to shift the integration variable f and render the angular inte- 

gration trivial. 

Expressing vW2 in the parametrization (III. 1) in the infinite momentum 

frame (II. 12) is straightforward. The 8 -functions limit the x-integration to an 

interval [ 0, l] 0 One &function puts the uncharged particle X on mass-shell - 

which makes vW2 comparable to Fl. Taking the Bjorken-limit 

-2 
q1 -w 

v -03 (In. 20) 

5 fixed 

91 

in vW2, the other 6-function becomes 6 2x m2v - ( z-12), which makes the 

x-integration trivial. 

(III. 21) 

with 
2m2v 

cd=- 

ql 

s1/2 = - ;; ’ ((ml-xm)2 + C12) (III. 22) 

F = - & ((m2- (l-x)m)2 + JC12) 

Again the result coincides with the result in the model of Gunion, Brodsky, and 

Blankenbecler but for factors of x in the integrand of (III. 21). These do not 

affect the threshold behavior w - 1. The results for the two cases are 

VW,(W) a 1 -i 3 ( 1 (III. 23) 
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for a charged spin-l/2 constituent and 

for a charged spin-0 constituent. 

(III. 24) 

IV. THE DRELL-YAN RELATION 

The Drell-Yan relation’ states that if VW,(W) in the limit w - 1 behaves 

like 

lrn VW,(W) cc 1 - - ( ) W 
m=0,1,2 . . . w. 1) 

then the behavior of Fl(q12) -2. for large qL is 

(TV.3 

with 

2p=m-1 (N. 3) 

The original derivation of the relation as proposed by Drell and Yan can now 

easily be reconstructed in the framework of the bound state model for spinless 

particles. Assuming an ansatz 

+p(K) = ’ 

tK2 - A2)P 

for the bound state wavefunction one gets as in (III. 16) above 

(TV.41 

Fl(<-) =/““T- /& f(X,z;) p(x, ($+ (1-x) zl)“) 

with 

f x,F2 = 
( 1 

(1-x) 
P 

1 (-Z12- mtjP 

(Iv. 5) 

P. 6) 
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Further analogous to (IlI. 21) 

VW2 (w) a /“‘q$$ l+-i) lf(x,iy) I2 w. 7) 

Drell and Yan argue that the q-dependence of Fl ( T12) in (IV.5) stems from the 

x-integration, the transverse momentum overlap integral will be finite and 

q-independent - at least up to logarithms. That means 

Q$ 
Fl(z:, a J dx (l-x)2p-1 

0 

or 

FlE$ a (+)2p 

Crv. 8) 

(rv. 9) 

Clearly the (1 - L ,) -behavior of VW,(W) is determined by the factors (l-x) in 

the integrand of (IV. 7). This time the integration over x will not add another 

factor of (l-x) because of the b-function. Therefore one obtains 

VW,(w) a (l-~)~~-’ (Iv. 10) 

In the case of particles with spin the integral (IV. 5) is of the form 

F,(;;) = /d2xl /& f(x, r-) f*(x, (kl+(l-xJ<l,2) “(x,2-* (~-+(1-x$)) (w. 11) 

where h is the spin factor S 
l/2 

or So respectively. The particular form of h 

can ruin the Drell-Yan argument. The overlap integral may no longer be q- 

independent. For n=2 the result of Chapter 3 is that in the case of a charged 

spin-0 constituent the relation is obviously violated. If there was no cancellation 

of l/q:-terms in Fl, the relation would break down in both cases. In the case 

of a charged spin-l/2 constituent it is repaired by that cancellation and the fact 
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that there are no l/q: -terms around. In the charged spin-0 constituent case 

thereis a cancellation in nonleading terms a l/q: too so that the relation is 

not repaired by the cancellation of the leading terms. 

The cancellation between terms a 1fi12 is model-independent, i. e . , it 

does not depend on the particular ansatz for the wavefunction. 

The cancellation of l/q:-terms in the second case can be traced back to 

the ansatz (III. 3) for the wavefunction. It appears not only for a wavefunction 

1 $(‘d a - 
K2-h2 

(Iv. 12) 

but also for the general case 

tibP(K) 

so that a relation similar to (IV. 3) holds: 

2p = m-2 

(rv. 13) 

0-v. 14 

V. CONCLUSIONS 

A priori both of the two cases described above should contribute to elastic 

and inelastic scattering. The data for v W,(W), 10 however, suggest that vW2 

behaves like 1 - i 
3 

( 1 
for w - 1. At least the admixture of scattering from a 

spin-0 parton must be very small. The same conclusion is independently 

drawn from the fact that R = oL/cT is very small. 

The pointlike coupling of the electromagnetic field to a spin-0 constituent 

may be ruled out if one views the spin-0 constituent as a core, that means an 

approximation for a number of further spin-l/2 constituents. Therefore the 

case of a charged spin-0 parton is only of theoretical interest, e.g. , to study 

how the Drell-Yan relation can be violated. 

The above results were also obtained in a softened field theory by Landshoff 

and Polkinghorne. 11 
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In the Drell-Lee model GE/GM does not scale. Our result is valid for 

this kind of model. But it might well be that in a model with boson charged fields 

constructed to give GE/GM scaling, the Drell-Yan relation is retained. 
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FIGURE CAPTIONS 

1. Bound state wavefunction for the nucleon. 

2. Electromagnetic form factor. 

3. Feynman-diagram corresponding to W 
PV ’ 
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