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Cascade models for guark and hadron fragmentation
are displayed. These models illustrate many of the
predictions of the parton model for imclusive
reactions, Haltiplicities sze constructed to ¢go as
C,n lni{s/u®} im hadron-hadron collisiaaﬁ ard as
ngln(gz/nlb in ete- anmibhilatioxn, implving a
multiplicity in lepto-productios of %&}B(QIIIzD ¢ C 1m (W-1),
Hovever, Feynkan'®s conjectere that quark guantusm nupbers are
retained, on the average, ipn the parton fragmentatiom region
is not necessarily true, This was £irst noted by Farrar and
Rosner in a model with meson esissiom only. The comjecture
(as a gemeral principle) is shown to fail as vell with baryon
emission included if sultiplicities grov mo faster than
logaritheically. In cascade models a weaker version of
Feynman*s conjecture is found %o be true in general and this
version is accessible experimentally. Also, triality is

found to play a siqnificant role, suggesting Cor reed not

o=
equal Ch » Other implicaticns of cascade modals are also
explored for hadron- hadron cocilisions, s¢2~ annihilation,
and lepto-production, for both small and large trapnsverse

momentum of the produced particles.
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‘I. INTBODUCTION

The hypothesis of limiting traqnentationlor Feynman
scalingzhas been emimently successful in describing high
energy collisions when only one final state particle is
observe&% The hypothesis suggests that at very high enerqgy
a struck hadron will fragment ipn a fashion independent of
the enerqy and type of the particle striking it. More
precisely, for a final state particle with longitudinal
momentum a fimite fraction, z, of the beam momentum, the

. . . . . '3
Lorentz invariant incleusive cross sectlon,‘; dg is

dap
expected to becowe a function only of z and thke transverse
momentusg, p, . In parton sodels, sisilar behavior is

predicted for the parton stuck by the current in¢56

7
lepto-production or produced ip ete- appihilation. In these

. instances, an isolated (and unobservable) parton is

converted into observed final state badroms, which are
anticipated to have a distribution independent of the imitial
state and determined only by the partos type an@ by

kinematic variables analogous to P, and z.

Two characteristic features of hadrom fragmentation are
the existence of a flat plateau in rapidity (dz/z
distribution for small z) and the retentionm of quantum
numbers,on the average, in the fragmentation regior. Berman,
Bjorken, ani Koqu£+and Feynladghave speculated that parton
fragmentation should also develop a plateau. In addition,
Fevnman has suagested that the guantuam numbers of the (quark)

parton are retained, on the average, in the fragmentation

reqgion, The existence of a flat, non-zero plateau
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wvould inply a 1ln chontribution to the smultiplicity in ete-
annihilation and in lepto-production from the current
fragasentation regionfg The retention of fractional gquark
guantu® numbers, on the average, in the parton fragmentation
region wvould be a striking indication of a quark
sub-stracture for the hadrons even if quarks are not seen.

A dynamical mechanism which coeld produce a plateau in the
current fragnentatién region is not at all understood;in
fact most traditional calculable models lead to a finite
peltiplicity- that is a zero plateau - for this region:‘
‘However, we shall assﬁne with Feynman that the
rultiplicities from current fragmentation are logarithmic in
Qz (wvhich makes possible Feynean scaling vhile avoiding the
probles of cbserving particles with quark-like quantunm
-nu:bérs); #ith this constraint, we construct cascade models
to describe parton and hadron fragmentation wvhich are useful
for stédying Feynman's quantum number retention hypothesis

as well as other properties of inclusive lepton~hadron

reactions.

e find that Feynman's quantur nusbher conjecture for
parton fragmentation is not true in general in our models,
although it could happen "accidentally®", This was first
noted by Parrar and Rosnegoin a model in which fragmenting

partons produce only mesons. Although a seall amount of
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baryon emission can save the conjecture, the multiplicity is
then forced to increase too quickly with Qz {see Appendix)
¥ith logaritheic multiplicities, only a seaker version of
the conjecture is valid (see below), but it does provide an
experimental test although not as striking as that of the
original prcposal.

The major conclusion is that triality plays a central
role in cascade proéésses. All triality ¢+1 cascades evolve
into a particular asysptotic forr which is the charge
conjugate of the asymptotic form of triality -1 cascades,
but not necessarily related to the asymptotic fora of
triality zero cascades. Thus the coefficients of In Q2 and
ln s in tkhe pultiplicities in e¢e- annihilation and pp
collisions need not be the same. In general, the guantum
number retention hypothesis need hold only for cascades
wshich becoee eigenstates of charge conjugation asyap-
totically, as in the triality zero cascade from a
fragmenting hadron. In the case of triality +1 cascades,
the difference between the guantum numbers of the quark and
those left in its framentation region is a constant,
independent of the guark type. That constant is not
necessarily zero and is not known a priori. Consequently,
tﬁe baryon number or electric charge left in the parton

fragmentation region cannot be predicted.
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IY. FPRAGMENTATION AS R CASCADE
The models we use to describe fragmentation may

heuristically be described as cascades, The fast moving

hadron or quark which fragments is pictured as throwing off
Cparticles in a cascade wvhich proceeds tovards lower
n‘:i‘ﬁapidi.ti\'-:sx. reynnangintrodnced the concept to avoid the
problem of observing particles wvwith quark-like quantunm
numbers. Consider for example, e+e- annihilation into hadrons
wvhich proceeds via a qq intermediate in the gquark-parton
model, If asymptotically each quark fragments into a finite
number of hadrons separated by a gap in longitudinal
momentum, the fractional quantum numbers must appear in the
final state. Consequently, Feynman proposed that the gquark
and the anti-quark initiate cascades which terminate when
they meet by annihilating the guark-like quantue numbers.
As Feynman speculated, the Quantum numbers of the quark
could be retained in the fragmentation region on the
average.

These cascades may be thought of as a step-wise process
that deposits final state hadrons (or partons which are then
converted into final state hadrons) at each step in
rapidity. PFor example, if the cascade occurs stepwvise
though emissions (like g-——>qN and gq—>qqB where N is a meson
and B is a baryon) in which the products (including the
guarks vhich continue cascading) share the ipitial momentunm,

-
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then each step corresponds to a finite step in rapidity.
The density of emitted particles per unit rapidity is
presused to become constant away from the initiating end of
the cascade (the assumption of a plateaun).

He are not prepared to say whether such a stepwise pro-
cess ought to be imagined to cccur in physical space-time or
wvhether it is really a mnemonic for some transformation
:betueen tvo represen%ations of physical states - one as
hadrons and one as quark~partons. A literal interpretation
in space time may lead to probless if the q and ‘g systess
get so far apart at high energies that annihilation and
resoval of the gquark gquantuz numbers are impossible.
However, the use of the cascade to represent the
transformation of the fragmeating particle into final state
hadrons is more general than a specific space-time
evolution.

An example of a cascade and its mathematical
description can be seen by reformulating a model given by
Peynmaﬂrin his book. PFeynman considers a sisple model for
e+e~ annihilation in which the rapidity gap between the
initial quark and anti-quark is filled with N isosinglet gi
pairs (N « rapidity). Adjacent gquarks and anti-guarks
" {(beginning at either end) are then assumed to convert into
pions (see Fig. 1a). Feynman uses a density matrix

formalism to show that, on the average, the z-component of

- —-—
s



isospin of all the pions to the left (insensitive to where
in the plateaa the average is stopped) is the I; of the
left-moving fragmenting guark. This model can easily be
cast into a cascade formalisse to derive the same results.
The first step of the cascade is the initial quark throwing
‘off the first pion and producing a guark which then
initiates the second step, etc. (see Pig.1b). Various
alternatives are offered at each step depending on the type
of pion ( ¥ T® ov W) produced. Since a particular state
after a certain number of steps is uniquely labelled by the
initial guark (produced incoherently in the parton model)
and the position and type of each pion in rapidity, there is
no interference between states. Consequently, probabilities
'can be usedin the place of amplitudes to describe the
cascadg. Horeover, the guantum numbers deposited in the
hadronic final state after n steps is calculable solely from
knowledge of the initial quark and the quark present at the
rth stap._ Thus a probability vector representing the type
of quark present at a particular step and a matrix
describing the transition to the next step are sufficient to
describe the cascade process, The quantum numbers deposited
in the fragmentation region are egqual to those of the
initiai particle if the probability vector at the end of the
cascade (K—> oo ) is neutral in those quantus numbers.

gith only p and n quarks, as in Feynzan's exasmple, the
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probabilities for emission at each step are

Plp >pr) = /3
P(P*nTﬁ)‘ Y3 ("
Pinsnmt) =i

’ P('ﬂ'*fff) =

Then if the probability of having a p or n quark present at

the Nth step is represented by a two component vector,

B Plp)
T (2)

the probability vector at the N+l1st step is
3 2f3
) = = )
}th 2, '3 F1J - [ Fﬂd (3)
i y
( ‘) and U,= \ -y

The eigenvectors of T are .

with eigenvalues X\, = | and >, T Sk

respectively. Thus if
Do) e }
lt (c, "% (M.+HL (P
then,
" L N_u N0 ",
- v PO & P —_
P 5) 2 — 3 (s)

Therefore, the z-component of isospin carried by P,

{limit of P, as N~> ¢12 ) is zero which implies that the

isospin of the initial quark is retained , on the average,
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in the fragmentation region. Peynman's hypothesis works, in
this model, for the z-component of isospin.”

However, PFParrar and ﬂosne;ashowed that in certain cases
Feynsan's hypothesis is not true for electric charge. Their
devastatingly simple argument paraphrased in teras of the
above aodefzis that P_, carries electric charge, i.e.

Q) = e,

30 that the averagé charge left in the fragmentation region

(&Q) is

AL = QBN —Q(P) = 2 . ()

This counterexasple destroys the hypothesis as a general
princigple.

Fhen A guarks are included, Q(P,,) can be zero if SU(3)
is exact: but this is an unlikely assumption since many more
vpions than kaons are expected in the plateamu ( in analogy
with badronic reactions). The general model with cascade
steps of the fora g—>Hq is described by the following

probability vector and cascade matr

ix:
P(p)
PN = P U\)

Y]
a b < |
T = o o C ( ?)
{—a-b I-a-b \-2¢



The largest =sigenvalue and its eigenvector are:
¢
L N
N - : %)
A= W, = (

[l %)

so that ¢C(P.., )+ C unless a + b ¢ c¢c = 1 and c#0 ( the
second condition insures the leading eigenvalue is
pon-degenerate) .

That Feynman®s hypothesis fails for models with only
sesons epitted is obvious from consideration of baryon
nusber. Since baryons are not produced, baryon number (+1/3
for g, -1/3 for q) cannot be retained in the fragmentation
region contrary to the hypothesis., Horeover, the failure
for electric charge then follows from the Gell ¥ann -
Nishijima relation since the hypothesis holds for I_ and
fails for Y = B # S (unless there is a compensating failure
for S, as in the exact SU(3) version of the meson emission
podel) .

This suggests that the hypothesis might be valid if
baryon epission is included. 1In fact, as wve show in the
Appendix, any amount of baryon emission resurrects Feynman®s
hypothesis in models where the cascade is a discrete
branching Harkov process (quarks cascading independently).
Unfortunately, the independence assumption causes an
avalanche of quarks resulting in a multiplicity which grows

as a power of QZ. The reason for the success of the



hypothesis in these models is that the nusmber of guarks in
the cagcade increases so rapidly that the densities of
quarks and anti-quarks become equal. However, ve must
examine the consequences of baryon emission in more
3realistic Bsodels where the cascade saturates {(vhere there is
a finite number of guarks in the asymptotic cascade) to
produce a logarithesic multiplicity.

He display next an example of a cascade with baryon
erission and logarithmic multiplicity which can be solved in
a fashion similar to the meson emission case. Once that is
done we shall be able to conclude what results in more
compleg models with more degrees of freedom. Consider a
sodel in which the Yquarks®™ are SU(3) singlets, carrying
only baryon number, ¢1/3 for quarks and -1/3 for
anti~guarks. Again suppose a single quark q has been
isolated, as in ete~ annihilation or electroproduction. Now
He‘shall suppose that in a cascade step the q can emit a
Beson, H, and continue as a q, or emit a baryon, B, and
continue as a gq state. The Gq state we shall assume can
emit a meson {(or mesons) and continue as g3, or emit an
anti-baryon and continune as a 933 Thus we have a closed
system {setting aside the emitted hadrons), vhich
asymptotically produces a constant density of final state
hadrons in rapidity. Also we may use probabilities rather

than amplitudes since there is no interference. Let the



probabilities for emission at each step be

P(q»Mq)

P(q‘v‘B‘qE(’\= | — e

P (33 > M3q) = 4 @
Plgg>Bq)= 1~

Then if the probabilities of having a q or Jg present at the

nth step are represented as a vector

Pla‘)
P, = (1o)
P33)
N
ve have
o’ 1173
(n
Pt * R )
-« /3
T P,
‘ |
The eigenvectors of T areus= '_;‘ nd u,= (-‘ with
eigenvalues ) =t and x;aﬁg-x respectively. Thus if

(3)
2*«@‘:“* (= )u} o)
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then

N - & ot ['u. + A < _‘?) 1&2] . (i?)

If either « or p is less than one, ﬂzis also less than one

and the eigenvalnes_are non-degenerate. Thus

MP:P:L:-E’U.

Nooo N A '

(14)

A-x~p

The baryon number carried by P, is

%(QZ_},;) (15)

so that the baryon number emitted is

o P = 3o (10

..‘3_.



Peynman's conjecture that the baryon number of the
original quark (+#1/3) is left in the eamitted hadrons fails
anless A% =1 +P, Since there is no a priori reason for this
cgnstraint ve see that the conjecture is not a general property
of cascade models with logarithaic multiplicities.

Consider on the other hand a system vith triality zero.
suppose that initially we have a ggq (=B) state which
undergoes a cascade which conpects this state with gqq (=§)

and §3g (=B). In a fashion analogous to that above we have

, (7
) )

=
o~
5
5
~—” -5
h
[
™
J'%
(<34
e}
iy
LY
i

v = |
w, =| ¥ , A=
|-« p
! - o 2y (19)
u2 - & ) 12"’ +F’ |
~
, .
1*3 - j A3 B ?
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Excluding special cases which produce degenerate

eigenvalues, P, is proportional to @, . Since u, carries
no baryon nusmber, the initial baryon number must have been
emitted into hadrons, on the average, unlike the case of a
‘fraqmenting guark. Of course, the retention of guantus
nurbers in a hadronic fragmentation region is well-known

from the ideas of limiting fragsentation and
Regge-HNuellerise,

In terzs of a cascade, the reason for the gquantunm
nubsber retention for triality zero and not for triality + 1
is charge conjugation invariance. The matrices describing
the triality ¢ 1 and zero cascades transfora under charge

conjugation as follows:

CT.C =T,
CT.,C =T, (19)
CT.C =T,

For triality zero, non-degerate eigenvectors of T, must be
eiéenvectors of C with eigenvalue +1, As a result, P,
Bust be neutral in additive guantum numbers like B, which
then implies the éuantun nusber retention hypothesis. For
non-zero triality, P,, is not an eigenvector of C and,

consequently, not necessarily neutral with respect to B or
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Q. Another way of stating the condition sufficient for
satiéfying the hypothesis is as follows: if a particle and
its antirarticle are connected through the cascade, then the
quantun numbers of the fragmenting particle are retained in
its fragmentation region. For exaeple, a cascade step
cannot connect a q with a g (g > § ¢ final state particles)
or else fractionally charged particles would appear in the
firal state. 1In the éase of hadronic fragmentation,
particle and anti- particle can be connected through the
cascade. (Note that in a special model where baryons and
anti-baryons are not connected through the cascade, then the
guéntun nueber hypothesis fails for hadronic fragsentationg
this case corresponds to a cascade matriz with degenerate
leading eigenvalues.)

The above results can be generaliged as follows: ve
assupe that cascades develop in a stepwise process of the
fornﬁ;T;a where t is the triality(z1,0). The probability
vectors PN give the probabilities for various states, which
ve assume to be finite in number , to be occupied after N
steps. We assume that the cascade satrix T, has a unigue
leading eigenvector, vwhich aust have an eigenvalus unity.
Physicélly this means we assume there is a unigue cascade
for each triality which develops asyaptoticaily, For
exénple, a cascade begun with a p guark will develop

asymptotically into the same cascade as an n or A quark or

,H’.-



any state with triality ¢1. The asymptotic state, Pio ¢
is independent of the fragmenting particle except for its

. -1
triality. PRecause C_EqC = W-

-1 , the asymptotic cascades

for triality +#1 and -1 are simply charge conjugates. ILet

' . . P p°
the asymptotic probability vectors be Po ) oo and oo

for triality +1,-1, and 0. A cascade begun , say, by a p

guark cculd be represented by

PN«H = .TH PN (20)

O—U
[

(Probtp): | : pr‘ob(n)x,?ﬁ)c,h:,‘) = O)

The amsount of any additive quantus nusber, Q, left in the
fragmentation region would be A( = CQ(FL)*’CQ(?%I) .
Feynman's hypothesis was that C?(F%g) =0 for all
additive guantum numbers Q. If this were the case then AQ
gould be the quantum number of the gquark initiating the
cascéde. As ve have seen, this is not necessarily true.
¥hat we can expect is that if we compare cascades initijated
by different states with the same triality, then ZSC?"CQ(RQ
is universal. This result follows from the uniqueness of
the asymptotic state; the quantum number hypothesis fails

when this state is not neutral. In other vords,

AQ(P) - G(p) = BGIN) - Q)
= AGY - Q) etc

}

(21)
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Por example, the electric charge left in the fragamentation
region of a p quark should be one greater than that left in
the fragmentation region of an n guark or a A quark.
s;lilar results follow for the other additive quantum
numbers. Also note that charge conjugation implies G(R.I)=-Q(R5)
so that AQ(q\ T - AQ(q’) . Of course a similar argument
in the case of triality zero cascades implies the asymptotic
state Po,  is neutral, ie. AQ(hadron) = Q(hadron).

.~ For the case Q = I, the sitﬁation is somewhat different
from the cases 0 = B and Q = Y. Since T, must be invariant
under a reflection in isospin space (charge symrmetry), P;;

s Poo and Pg must have I,=0, i.e. the z component
of isospin is retained in the fragmemtation region. Thus
AI#@»:%)AIgﬂ:—éﬂdavas Feynman found. On the other hand,
T, need not be SU(3) symmetric so we cannot draw any
conclusions about Y.

Sullariiing the results for cascades initiated by a
single guark, we have for the quantum numbers left in the
fragmentation region:

AT, (P =3 AB(p) = AB(n) = AB(X)

AT, (M=-3 | o | (22)
| AY(PY= AY(n) = AT+
AT,(N= 0O = oY

vhere AT, ) AB and AY are the average
}

amounts of the quantum numbers observed in the fragmeatation

Vi

V!
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region. The electric charge and strangeness are related to
the above via the Gell-Bamn - Nishijima relation: AQC[:AIZ_‘* %_l/
where AY = AB+AS . The fragmentation region need not be
precisely defined since the adjoining plateau is neutral at
,vety high energies.
The experimental gquantities AR can be represented in

the notation of Gronau, Ravndal, and Zarniéas follous:

AT, (q) = 2 §dz DJ @ T,

AB(9q) Solz- D“(z!) B (h) (2%)

AY (q) = Sd% D"(E) Y(h)

wbere the sum is over hadrons h and I)“(z) describes the

i

probability of a p gquark producing a hadron h with a
fraction z of the momentum of the guark. Our assuamption
that“thete is a unique cascade for the system with triality
+1 gives D; ~ D2 ~ D; ~ 92-_— for small z,

where a 1is the same constant in all three cases. In other
words, the plateau height , which deteraines the dominant
coniribntion to the logarithmic multiplicity is the sasme

for all fragmenting states of the same triality. (The
plateau heights are the same for triality +¢1 and -1 by C
invariance.) 1In particular, since there is no relation
between triality zero and triality = 1 cascades, the
constants multiplying 1In s in the multiplicities in e¢e-
annihilation and pp collisions need not be equal, i.e. Ceﬁg‘?éch,

However, the height of the current plateau in electro- or

_'q..



neatrino- production is equal to that in e+e- annihilation
(sée Fig. 2), so that the multiplicity in lepto-production

at high Q2 and/or high W is
\ Z - - } . . )
v x Cog EnGhar €y bugun) G

The length of the parton fragmentation region is
"detereined by the noﬁ-leading eigenvalues in the cascade
picture. If each cascade step corresponds to a fixed
rapidity interval L, then non-asymptotic contributions should
vanish as ﬂﬂ ~ 2?1 where A is the second largest
eigenvalue. The correlation length is £ ~ éyéﬂénwl) .

An order of ragnitude estimate is ) {(as in hadronic
fragmentation), /. <~ {nJ (if two particles share the
mosentum of the initial one) so that A= 04 .

.The experimental consequences of the weaker version of
the'guantun number conjecture (eq. 22) can be tested in
inclusive neutrino reactions, (VVA/~?f/hX/). These
processes permit a determination of the type of guark
.ejected. For example, at high energy, the left-handed U+
boson ( 01 ) takes only a n or A quark into a p ,
while a right-handed W+ boson ( O, ) takes only a p into a
n or 5f. The strangeness changing processes, which are
suppressed by the Cabibbo angle, can be separated in
principle ( although it may be extremely difficult inm
practice) by observing the strangeness of the final state.
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ITIT. RIGH ENERGY PROCESSES WITHIN CASCADE HODELS

To clarify the preceeding section and to extend the
dynamical framework, ¥e outline how a number of high energy
processes would be described in the context of our cascade
godels. The essential features of the models are that the
cascades exist among states of the same triality and proceed
to a unique asymptotic state (for that triality) and that
the hadrons are emit;ed by the cascade in a step-vise
fashion leading to a constant density in rapidity. Although
sany of the results obtained are not new, it is interesting

to view them from this differeat perspective.

e+ e~ Annihilation

In ete- annihilation, the tise-like virtual photon
decays through a qq intermediate with each gquark having an
initial rapidity 1in(Q/M) in the relative center of mass
(rapidities being measured with respect to the qq axis).
the q and g cascade independently for about N steps where
N~0{in{Q/M)). If N is large, the cascades will be given
approximately by P}, ana P, = ¢ PZO . Thus the heights
of the cascades are the same and the guark-like quantua

nuebers disappear vhen the two cascades %meet™.

_ll-



Deep Ine'sstic Tept - production

For v P — V'h X and éfe—éhx ve follow
Peynman and vork im a frame in which g, the virtmal ® cr )]
nomehtua,is purely spacelike and defines the negative
z-axis. 1If the target's mozentur is P and the observed

hadron®s mcosentum is p, the standard invariants are
ﬁ%»’ = l?"?
Mg = p- F
PP
¢ -39
w =AM/ = /X
w = 2pN/g*

Thus in this frame Qz: ?; and - 2 X % = %2 .

il

#

il

1§

i

The target hadron cascades according to the
prescription of the previous section for triality zero until
the cascade reaches the point at which it contains a parton
of momentum xP. The virtual photon strikes this parton (let
us assume it is a p quark) and precisely reverses its
motion. The hadron cascade is thus tramsformed into a
systes of triality -1 which proceeds via T_, vhile the
struck parton decays via T_,.

In this same frame, the initial hadron rapidity is

Yy *1n{wwQ/H), hen the virtual photon strikes the cascade, the

—Qi_



cascade rapidity has descreased to ~1ln (Q/H). The struck
parton begins its cascade with approximately the negative of
this rapidity, while the hadron minus the gquark continues
)fron vy =~ 1n {(Q/H). For large Q/H, the cascades meet as
before im e+e- annihilation, with C invariance guarantesing
that they have the same height. (Fig. Zc)'suote that the

hadron minus the guark has the guantum numbers of a g and

asyrptotically develbps the same plateau (P, ).

Hadron - Hadron Scattering

ké described in the previocus section, wve imagine that
hadrons evolve into final states through a cascade similar
to that by which guark-partons turn into hadrons. The
cascade prescription guarantees that a neutral plateau is
present in the center of mass of the colliding high energy
hadrons, and that this plateaum is universal independent of
the cblliding hadrons. The quantus numbers are retained in
the respective fragmentation regions,

According to Feynaman®’s parton model, the dominant
scattering mechanism producing the above picture is the
exchange of "wee®™ partons - partons with finite c.®. momenta
- resulting in a final hadrons distribution with limited
transverse momenta. In addition there may be "hard"

parton-parton scattering resulting in partons knocked out

.-;{3_.



vith large transverse momenta. A similar description of
o
this process in the parton model has been given by Savit,

but ve shall reviev the analysis in termes of the cascade.

suppose two hadrons each having a c.m. energy E = ﬁ@&
collide such that the partons with momenta P,

and p, suffer a hard collision and exit as p’ and f{l
Let us focus our attention on p, and Bf . We shall

consider the cases of large fized ,D,Ji ( p,= E"s/"n e >oM
but Ei/>> Hl ) and fixed angle ({( £;':'H1 } ., and the
relation to limited transverse ﬂGﬁeﬂta(’ZiiZ <f§>)‘

First we boost to a frame in which p, anrd p’ are
collinear and oppositely directed. Partons moving initially
in the same direction as p, and with x >0 are also
collinear with p, and p:in this frame. Setting aside the
partons associated with pzand p; . the partons in this
collinear frame have the same distribution as they would
if they vere the result of lepto-production, with pf heing
the struck parton momentum and p, being the hole momentun.
Accordingly we expect them to evolve into hadrons in the
sase fashion as they do in this previously considered
situation. Thus, typical hadron scmenta will have limited
transverse comrponents in the collinear fragme. Fhat does
éhis look like in the c.B2.? Boosting back, we find that a
“fraguent of the hole™ will also have limited transverse

gopentum with respect to the original beam direction. If we
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consider a fragment of the struck parton, the hadron
acmentum lies near the direction of the struck parton and
also vith a spread~<pravay fros this axis. The two cylinders
centered on the hole and struck parton directions will
overlap for final state hadrons with a c.m. energy E, such
that £, sin®, ~ {p)y ( 6 is the parton scattering angle
as before), The hadrons vwith E < B, are not siaply
associated with just the hole or the partom. It is natural
%b assume that the dynamics in this region are those of
triality zero, i.e. governed by T, « In this heuristic
picture, we see a triality -1 and a triality +1 systea
gerging and continuing as a triality zero systems. The
extent of the this triality zero system depends on E, .

For finite 6, EO=A<R£75“19' is finite. On the other

J

7

hand, if p,l of the parton is large and fixed while E-700, 6~ f"—;f-,
and there is an increasing domain , E< E . in which
the hadrons are controlled by triality zero dynamics.
B virtue of this description is that if we let pﬁL
daecrease towards <P,y , the triaility zero system engulfs
the triality nom-zero systems and we move continuously to

the czse in which all transverse momenta are limited. {See

fig 3. We find directly that the multiplicity is given
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by

; : X 2,
<y~ (G {n (5'//"7_5') + 2 Cere- On (M/M?)

This fcreula makes manifest the smooth tramsition to the

lirited transverse momentum domain.
IV. CORCLUSIOHNS

Be have presented a framework for parton cascades vhich
reproduces many of FPeynman®s conjectures. In particular,
hadren plateaus are universal independent of the
initiating hadron. Similarly, plateaus initiated by quarks
are universal, independent of guark type and dependent
only on triality. However, there is no required connection
be tveen the triality zero and triality non-zero plateaus,
suggesting that the coefficients of the logarithmic
sultiplicities in pp collisions and ete- annihilation Bay
well be different. The two distinct cascade types -
triality zero and triality non-zero - play a fundamental
role in the description of a variety of high energy
processes.

¥ithin the context of our models, all of which have

logaritheic multiplicities, Feynman®'s quantum number

—-vié‘_-



reloatlon hyiothasis fur pacton fragmentation necd ot
nacaesgarily hold, 1\ weaker fors (3See eq. 22 ) is obtain-A4,
vhich would cequire, for ~vample, that the electric chavge
in the p yuack fragymentation region be one greater than that
iu the n-quack or A guark fragmentation regions. 1In all
our models, I, is retained in the fragmentation region,
unlike Y and B. Again, triality seems to play a central
role ih determsining that guantum numbers rust be retained in
the frageentation reqgion of a hadron but not necessarily in
the fragmentation region of a gquark.

#hile it is encouraging that a framework consistent
with many postulates of the parton model can be produced,
the far more difficult problem of understanding the actual

dynamics remains.
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APPERDIX

¥e display here a class of models different from those
in the main text. Here vwe assume all guarks and anti-guarks
,act independently. This scheme is a specific type cof Harkovw
ptocess_called a diécrete brarching process. It suffices to
consider the number of the various kinds of gquarks in the
cascade at each step. We find that Feynman's conjecture is
satisfied as long as there is baryom production ( umrlike the
situation in the Farrar-Rosner model), but that multiplicities
grow geometrically rather than logarithmically.

He can express the population of the cascade by a

column vector:

P - A (A1)

The average value of some additive guantum number carried by

the cascade is

~

<Gy = § 1 G, (AQ)

where the sum is over quarks and anmti-quarks. Under what

conditions does<{Q)vanish so that Feynman's conjecture is

satisfied? Obviously it suffices to have Py = P§ ’
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we consider only Tz and Y, it suffices to have Py
= P, s €tc., i.e. SU(3) symmetry.

We recapitulate the Farrar-Rosner counterexample of
1Eeyﬂﬁan's conjecture in this formalism as follows., The
gap between a q and g arising in e+e- annihilation is filled
in with isosinglet qq pairs. Neighboring pairs recombine to
form mesons which break up the isosinglet pairs. Thus for
the cascade initiated by a q, we have: g (gq) (qQq) ...
(gl 9y 1{g9) ... . The quarks to the left of the break
forn the residue of hadrons and the first anti-quark to the
right ¢f the break is the cascade. Thus the probability

vector is

-o
1
PHTOO0

1)
o
o

Clearly Peynman®s hypothesis fails for B and is satisfied
for Y cnly in the SU(3) limit (though, of course, alwvays
vorking for I, in any event).

Suppose on the other hand that there is some baryon
esission. Thus in additicon to processes in which a quark is
transforeed into another guark with meson emission (g-—>Mq),
there are processes in vhich a quark turns into two

anti-guarks with the emission of a baryon (g—>B3q), and

—QQ‘



possibly sore complex processes (e.g. gq—>Mgq3, g—>B3gqq,
etc.). If we suppose that each quark cascades
independently, the development of the cascade can be

described by

P - TP (A3)

where T is 6 x 6 matrix. By C invariance of the strong

interactions, T is necessarily of the fora

T 0
T=\r T

t

(A%)

where the rows and columns are labelled by p, n, A, P, D,

and A . By isospin invariance, Ti i=1,2 is of the form

CLA, b‘ CA' .
—[:L - b, Cl.bl C, ( A 5 )
d; d, €

Using the orthogonal 6 x 6 matrix

As)

[~

sl- i



we have

P+P
n+n
. B (AT
Pl UP = g [Arx )
n-n
A- X

and

T T ¢ |
T =UTU = ( o 1“,—'T1> %)

In this representation, Feynman's hypothesis is satisfied if

ag n==> o0
X
/ 5 Aq)
o
o
While the Farrar-Rosner model yields
aQ
ol - 1 [% .
= = “Ld (0
=N s (A1)
£Q
E(1-1a)
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for all N except the initial state.

It is straight-forwvard to find the eigenvectors, v

guhich are not orthogonal in general) and eigenvalues ;Ei of

a matrix of the form (AS) . They are

V' (P‘n) X»i:q’b

/

y i

, A _ PN I
v,z prn o+ o [e-a-bVea-b) + Scd |

it

i )
A, = j{:a4-b+ e +x(e-a—bf4~8cd] (An)

G prn A [ea-b-faoyr]
Ag = i‘[_(k-%b‘i'e*\m}

Thus the eigenvectors of T' are

) (V:(f')) o (Vl()r)) W = (V:a““))
wW=1{ o L= A E O
' . (A1)
we (o) (C\ (S0
v.() s = L Ve Uy = | e
vhere v, (1) is given by (A 10) with p replaced by (p:DP)//g
etc., a replaced by a, ¥ &, , etc. Now if the initial
probatility vector is
UP = po’ = 2% U (413)
then FL/ i ('T’}N F{' |
(Ai4)



vhere I, are the eigenvalues: N, = A‘(ﬂ ,Y\z = }\2('4') , s = A3(+))
n#': kj(—)) Mg = 12(') ; and Ny = 136’),

The Feynman hypothesis is satisfied if the differences
p - Pen -mn, and A- N tend to zero asymptotically, i.e.
if?h+lqs are less than unity. Simnce 1n <N , it

sufficés that
Ny = a,-0, b, +b, < (A15)

and

e

Ng = é( a,-a, +b -b, re -€, + \ICC,-ez'-C{i+a,_—bi+b2\lr%(c,'cz\(d,—d;))
< | (AlL)
The significance of the elements of T]~'TL can be
detersined by considering wvhat happens to a p or A gquark

after a single cascade step. We have for these one step

processes:
i a, o <
o) b, O C,
— { -—
Ts] = |4 Tio) =1 (A7)

o A ) o] <
o 32 b C,

2 el
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From these vectors vwe calculate the average baryon

number esitted by a p quark per cascade step:

AB(P) = -% - 1‘3(6\‘+bl+d,'—a2’b2~0&15 (/}/3)
Similarly the hypercharge of the hadrons emitted by a2 p
quark per cascade step is
DY % - hlasheadabead) (A9
In the same fashion we find
ABY = 5 -3 (2¢, +6 - AC-6) (A20)
Y= R g e -cre)
In terms of these guantities,
o= - 5 (BY(p) F2 AB - AT () + BOY) (A21)
-*LQM&MAWP)
'AB(P)AYG\BJ

+ 1 \J(aY(p) + 20B(p) - AY(R) + ABOY)

We can expect quite generally that AY(\)< C and AYqﬂ>ND



i.e. gquarks produce more negative hypercharge hadrons than
positive and vice-versa for p quarks, Additionally, we
expect that ABpyoand ABAYO, i.e. A and p quarks produce
more baryons than anti-baryomns. Froam the expression for 14
;e see that the introduction of a small amount of baryon
production reduces Y|, from unity to a value less than one,
thus guaranteeing the success of Feynman's conjecture in
these models,

The eigenvalues 1, and ", can be expressed similarly:

Ny = I - Q AIQ’(P)

i

an | - % (AY(py + 2AB(p) - AT(3) HB(N) (A22)

= SV (AY(p) + 2 8B(p) - BYOWIBONY - 12(ABOY AY(p)-AB(p ATAY)
vhere AI;@) is the average z-component of isospin of the
hadzrons emitted by a p gquark per cascade step. Of course we

expect AI#Qy>O » We see novw that the requiresment n+<1

:}5<[ )Qnd‘hb< | are met guite generally. Of the six
aigenvectors, only u¢ carries Iz¢r? « Thus the
equilibration of I, is governed by 'y . Since wy carries
both B and Y and since N >, , the equilibration of these
guantue numbers is governed by M5 . Since N 18 reduced
below unity only by the strange particle and baryon
production, we anticipate that ?157*1+ and thus I, should
equilibrate more quickly than Y or B.

In the Farrar - Rosner model ABq»:C>and AB(A) = © s0

-35-



that Mg=m,=1 . Here ve have two degenerate systems vhich are
coppletely independent: the system initiated by quarks and
the one initiated by anti-guarks.

When ng<| we have also /,>! so that the nuamber of
quarks in the cascade grovs as (Qiﬁ” . Consequently the
pumber of hadrons emitted per step grows as (WQW . This
geometric particle growth is incompatible vith a flat
plateau and is the primary motivation for constraining our
cascades discussed in the main text to have a bounded number

of quarks at each step.
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2.

(a) .

(b) .

(a) .
(b) -

{c) .

PIGURE CAPTIONS

A simple model for hadrcnic final states in ete~
annihilation, The rapidity gap between the initial
quark and anti~quark is filled with N isosinglet

qq pairs ( N of rapidity gap). Adjacent guarks

and anti-quarks (beginning at either end) are

assumed to convert into rioms.

The above model pictured as a cascade. The first
step is the initial gquark throving off the first
pion and producing a quark which initiates the

second step.

Parton distributions before and
after interaction with a virtual photon in the
Breilt frame of the virtual photon and struck
parton.

. . . . 1 old 4
The inclusive distribution, 2‘;57 s, Versus
the rapidity, y, for deep inelastic lepto-

production at large o (m, is the average

transverse mass) .
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3.

{a) .

(b) .

Parton distributions before and after a ®hard®
parton-parton scattering which produces large
transverse momenta events in hadron-hadron

scattering.

Schematic representation of the final state

hadron distribution in a large transverse

ropentum hadron hadron scattering event. The
triality of each cascade is indicated for an event
in which a quark and anti-guark suffer the hard

collision.
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