

Robert R Cabo and E Milliam Colqlazier Stanford Limear incelarator center. Stanfozd. Calife 94305

AESNBACT

Cascade odels for quast and hadron fequentation are displayed. mese models illustrace antof the predictioms of the parton odel for inclusive reactions wultiplicities are comstructed to go as $C_{h} \ln \left(s / h^{2}\right)$ in hadron-hadron collisiams andas $C_{e} e^{-1 n\left(0^{2} / 2\right.}$ in erem ansinilation inpluing a
 Hovever feynean s conjectare that quar quantum unbers are retained. on the aterage in the parton fragentation region is not necegsarily true This as ficst moted by farrar and Bosnec in a wodel then men emsion only the conjecture (as a qeaceal principle) is shown to fail as well mith baryon emission included if ultiplicities grow no faster than logarithelcally. In cascade rodels a eakr version of Fernman's confecture is found to be true in general and this version is accessible experimentally. Also. triality is Eound to play a siqnificant role guggestisq fete meed not equal C_{h}. otber implicaticas of cascade rodels are also explored for hadron- hadron collisions. andinilation. and lepto-production for both sull and large tranverse momentu of the prodaced particles.

* mort supported by the 0.5 . Atomic Bnergy Comission (Submitted to Phys. Rev.)

I. INTBODUCTION

The hypothesis of limiting frageentation or feynman 2 scaling has been enizently successful in describing high energy collisions when only one final state particle is observed. The hypothesis suggests that at very high enerqy a struck hadron will fraqeent in a fashion independent of the enerqy and type of the particle striking it. Hore precisely, for a final state particle vith longitudinal momentur a finite fraction, z, of the beam momentur, the Lorentz invariant inclusive cross section. $\frac{E}{\sigma} \frac{d \sigma}{d^{3} p}$. is expected to become a function only of z and the transverse momentum. p_{1}. In parton models, sitilar behavior is predicted for the parton stuck by the current in lepto-production or produced in ete- annihilation. In these instances, an isolated (and unobservable) parton is converted into observed final state hadrons, which are anticipated to have a distribution independent of the initial state and determined only by the parton type and by kinematic variables analogous to p_{\perp} and z^{7}

Two characteristic features of badron fraquentation are the existence of a flat plateau in rapidity $\quad(d z / z$ distribution for $s m a l l z$) and the retention of quantur numbers, on the averaqe, in the fraqmentation reqion. Berman. Bjorken, and Koqut and Feynman have sfeculated that parton fraqmentation should also develop a plateau. In addition. Fevaman ${ }^{5}$ has suqqested that the quantun numbers of the (quark) parton are retained, on the averaqe, in the fraquentation reqion. The existence of aflat, non-zero plateau
yould inply a $\ln Q^{2}$ contribution to the multiplicity in eteannihilation and in lepto-production from the current 8
fragmentation region. The retention of fractional quark quantur numbers, on the average, in the parton fragmentation region would be a striking indication of a quark sub-stracture for the hadrons even if guarks are not seen. A dyanical mechanism hich conld produce a plateau in the current fragentation region is not at all understood; in fact wost traditional calculable models lead to finite ultiplicity- that is a zero plateau - for this region. However, we shall assume mith Feynman that the qultiplicities from current fragmentation are logarithmic in Q^{2} (which makes possible Feynean scaling wile avoiding the probler of observing particles with quark-like quantum nusbers). With this constraint, we construct cascade models to describe parton and hadron fragmentation which are useful for stedping Feynman's quantur number retention hypothesis as well as other properties of inclusive lepton-hadron reactions.

We find that Fepnan's quantum nuber conjecture for parton fragmentation is not true in general in our models, although it could happen naccidentally". This mas first 10 noted by Parrar and Rosner in a model in which fragmenting partons produce only mesons. Although a sall amount of
baryon enission can save the conjecture, the multiplicity is then forced to increase too guickly ith Q^{2} (see Appendiz) Gith logarith⿴ic multiplicities, only a weaker version of the conjecture is valid (see below), but it does provide an experimental test although not as striking as that of the original proposal.

The ajor conclusion is that triality plays a central role in cascade processes. 111 triality +1 cascades evolve into a particular asymptotic form which is the charge conjugate of the asymptotic for of triality -1 cascades. but not necessarily related to the aspaptotic form of triality zero cascades. Thus the coefficients of in Q^{2} and In s in the rultiplicities in ete- annihilation and pp collisions need not be the same. In general, the quantum number retention hypothesis need hold only for cascades wich becoze eigenstates of charge conjugation asymptotically, as in the triality zero cascade from a fragmenting hadron. In the case of triality +1 cascades, the difference between the quantum numbers of the quark and those left in its framentation region is a constant, independent of the quark type. That constant is not necessarily zero and is not known a priori. Consequently. the barpon number or electric charge left in the parton fragmentation region cannot be predicted.

The models we use to describe fragmentation may heuristically be described as cascades. The fast moving hadron or quark which fragments is pictured as throving off particles in a cascade which proceeds tovards lower rapidities. Feynman ${ }^{5}$ introduced the concept to avoid the problem of observing particles vith quark-like quantun numbers. Consider for example, ete- annihilation into hadrons which proceeds via a $q \bar{q}$ intermediate in the quark-parton model. If asymptotically each guark fragments into a finite number of hadrons separated by a gap in longitudinal momentur, the fractional guantum numbers wust appear in the final state. Consequently, Feynman proposed that the quark and the anti-quark initiate cascades which terminate when they leet by annihilating the quark-like quantum numbers. As Peynan speculated, the quantum numbers of the quark could be retained in the fragmentation region on the average.

These cascades may be thought of as a step-wise process that deposits final state hadrons for partons which are then converted into final state hadrons) at each step in rapidity. For example, if the cascade occurs stepvise though enissions (like $q \longrightarrow q \|$ and $g \longrightarrow \bar{q} \bar{q} B$ where M is a meson and B is baryon) in which the products (including the quarks which continue cascading) share the initial momentur.
then each step corresponds to a finite step in rapidity. The density of emitted particles per unit rapidity is presured to become constant away from the initiating end of the cascade (the assumption of a plateau).

We are not prepared to sap wether such a stepuise process ought to be imagined to occur in physical space-time or whether it is really a memomic for some transformation between two representations of physical states - one as hadrons and one as quark-partons. A literal interpretation in space tine way lead to problems if the q and \bar{q} systems get so far apart at high energies that annihilation and revoval of the quark quantua numbers are impossible. However, the use of the cascade to represent the transformation of the fragmenting particle into final state hadrons is more general than a specific space-time evolution.

An example of cascade and its athematical description can be seen by reformulating a wodel given by Peynman ${ }^{5}$ in his book. Peynman considers a simple model for ete- annihilation in which the rapidity gap between the initial quark and anti-quark is filled mith N isosinglet $g \bar{q}$ pairs (N \propto rapidity). Adjacent guarks and anti-quarks (beginning at either end) are then assumed to convert into pions (see fig. 1a). Peyngan uses a density matrix formalise to show that, on the average, the z-component of

$$
-6-
$$

isospin of all the pions to the left (insensitive to where in the plateau the average is stopped) is the I_{z} of the leftwoving fragmenting quark. This model can easily be cast into cascade formalisi to derive the same results. The first step of the cascade is the initial guark throwing coff the first pion and producing a quark which then initiates the second step, etc. (see Pig. 1b). Various alternatives are offered at each step depending on the type of pion (π^{+}, π^{0}, or π^{-}) produced. since a particular state after a certain nuber of steps is uniquely labelled by the initial guark (produced incoherently in the parton model) and the position and type of each pion in rapidity, there is no interference between states. Consequently, probabilities can be usedin the place of amplitudes to describe the cascade. foreover, the guantum numbers deposited in the hadronic final state after n steps is calculable solely frow mowledge of the initial quark and the quark present at the nth step. Thus a probability vector representing the type of quark present at a particular step and a matrix describing the transition to the next step are sufficient to describe the cascade process. The quantum numbers deposited in the fragmentation region are equal to those of the initial particle if the probability vector at the end of the cascade $(N \rightarrow \infty$) is neutral in those quantum numbers. With only p and n quarks, as in Feynman's example, the
probabilities for emission at each step are

$$
\begin{align*}
& P\left(p \rightarrow p \pi^{+}\right)=1 / 3 \\
& P\left(p \rightarrow n \pi^{+}\right)=2 / 3 \tag{I}\\
& P\left(n \rightarrow n \pi^{0}\right)=1 / 3 \\
& P\left(n \rightarrow p \pi^{-}\right)=2 / 3
\end{align*}
$$

Then if the probability of having a p or n quark present at the N th step is represented by a two component vector.

$$
\begin{equation*}
P_{N}=\binom{P(p)}{P(n)} \tag{2}
\end{equation*}
$$

the probability vector at the $N+1$ st step is

$$
P_{N+1}=\left(\begin{array}{cc}
1 / 3 & 2 / 3 \tag{3}\\
2 / 3 & 1 / 3
\end{array}\right) P_{N} \equiv T P_{N}
$$

The eigenvectors of T are $u_{1}=\binom{1}{1} \quad$ and $\quad u_{2}=\binom{1}{-1}$
with eigenvalues $\lambda_{1}=1$ and $\quad \lambda_{2}=-1 / 3$
respectively. Thus if

$$
\begin{equation*}
P_{c}:\binom{1}{0}=\frac{1}{2}\left(u_{1}+u_{2}\right) \tag{4}
\end{equation*}
$$

then,

$$
\begin{equation*}
P_{N}=\frac{u_{1}}{2}+\left(-\frac{1}{3}\right)^{N} \cdot \frac{u_{2}}{2} \xrightarrow{N \rightarrow \infty} \frac{u_{1}}{2} \tag{5}
\end{equation*}
$$

Therefore, the z-component of isospin carried by P_{∞} (limit of P_{N} as $N \longrightarrow$, is zero which implies that the isospin of the initial quark is retained, on the average,
in the fragmentation region. Feynman's hypothesis works, in this model. for the z-component of isospin."

However. Parrar and hosier shoved that in certain cases Feynman's hypothesis is not true for electric charge. Their devastatingly simple argument paraphrased in terms of the above model ${ }^{12}$ is that P_{∞} carries electric charge. i.e.

$$
Q\left(P_{\infty}\right)=1 / 6,
$$

so that the average charge left in the fragmentation region (ΔQ) is

$$
\begin{equation*}
\Delta Q=Q\left(P_{0}\right)-Q\left(P_{\infty}\right)=1 / 2 . \tag{6}
\end{equation*}
$$

This counterexample destroys the hypothesis as a general principle.

When λ quarks are included, $Q\left(P_{\infty}\right)$ can be zero if $S 0(3)$ is exact: but this is an unlikely assumption since many more pions than kaons are expected in the plateau (in analogy with hadronic reactions). The general model with cascade steps of the for $q \longrightarrow \boldsymbol{H} \boldsymbol{H}$ is described by the following probability vector and cascade matrix:

$$
\begin{gather*}
P_{N}=\left(\begin{array}{c}
P(p) \\
P(n) \\
P(\lambda)
\end{array}\right) \\
T=\left(\begin{array}{ccc}
a & b & c \\
b & a & c \\
1-a-b & 1-a-b & 1-2 c
\end{array}\right) \tag{7}
\end{gather*}
$$

The largest eigenvalue and its eigenvector are:

$$
\lambda_{1}=1 \quad ; \quad u_{1}=\left(\begin{array}{c}
c \tag{8}\\
c \\
1-a-b
\end{array}\right)
$$

so that $C\left(P_{\infty}\right) \neq 0$ unless $a+b+c=1$ and $c \neq 0$ (the second condition insures the leading eigenvalue is non-degeneratel.

That Feynman's hypothesis fails for models with only mesons emitted is obvious fro consideration of baryon number. Since baryons are not produced, baryon number $1+1 / 3$ for $g_{\theta}-1 / 3$ for \bar{q}) cannot be retained in the fragmentation region contrary to the hypothesis. Moreover, the failure for electric charge then follows from the Gell mann Nishijina relation since the hypothesis holds for I_{z} and fails for $Y=B+S$ (unless there is a compensating failure for S. as in the exact $S u(3)$ version of the meson emission model).

This suggests that the hypothesis night be valid if baryon ewission is included. In fact, as ve show in the Appendix. any amount of barion emission resurrects feynan"s hypothesis in models where the cascade is a discrete branching Markop process (quarks cascading independentiy). Unfortunately, the independence assumption causes an avalanche of quarks resulting in a maltiplicity which grows as a power of Q^{2}. The reason for the success of the
mypothesis in these models is that the number of quarks in the cascade increases so rapidly that the densities of quarks and anti-guarks become equal. fowever, we mast examen the consequences of baryon eqission in more cealistic wodels were the cascade saturates fore there is a finite number of quarks in the aspaptotic cascadel to produce a logarithmic wultiplicity.

Ge display next an eraple of a cascade with baryon eqseion and logarithsic multiplicity which can be solved in a Eashion sinilar to the meson emission case. Once that is
 conples nodels with more degrees of freedon. Consider a wodel in which the "quarks" are S (3) singlets. carrying only baryon nuber, $+1 / 3$ for quarks and $-1 / 3$ for anti-quarhs. \quad gain suppose a single guark g has been isolated, as in ete- annihilation or electroproduction. Now箴 shall suppose that in a cascade step the q can emit a meson. H. and continue as a g. or emit a baryon. B, and continue as a $\overline{9} \bar{q}$ state. The $\overline{9} \overline{9}$ state we shall assume can enit a meson (or mesons) and continue as $\bar{g} \bar{g}$. or enit an anti-baryon and continue as a q. Thus we have a closed system (setting aside the enitted hadrons), which asymptotically produces a constant density of final state hadrans in rapidity. Also we way use probabilities rather than ariplitudes since there is no interference. Let the
probabilities for emission at each step be ${ }^{14}$

$$
\begin{align*}
& P(q \rightarrow M q)=\alpha \\
& P(q \rightarrow B \bar{q} \bar{q})=1-\alpha \\
& P(\bar{q} \bar{q} \rightarrow M \bar{q} \bar{q})=\beta \tag{9}\\
& P(\bar{q} \bar{q} \rightarrow \bar{B} q)=1-\beta
\end{align*}
$$

Then if the probabilities of having a q or $\bar{q} \bar{q}$ present at the nth step are represented as a vector

$$
P_{N}=\binom{P(q)}{P(\bar{q} \bar{q})}_{N}
$$

we have

$$
\begin{aligned}
P_{N+1} & =\left(\begin{array}{cc}
\alpha & 1-\beta \\
1-\alpha & \beta
\end{array}\right) P_{N} \\
& =T P_{N}
\end{aligned}
$$

The eigenvectors of T are $u_{1}=\left(\begin{array}{c}1 \\ 1-\alpha \\ 1-\beta\end{array}\right)$ and $u_{2}=\binom{1}{-1}$ with eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=\alpha+\beta-1$ respectively. Thus if

$$
\begin{align*}
P_{0} & =\binom{1}{0} \\
& =\frac{1-\beta}{2-\alpha-\beta}\left[u_{1}+\left(\frac{1-\alpha}{1-\beta}\right) u_{2}\right] \tag{12}
\end{align*}
$$

then

$$
\begin{equation*}
P_{N}=\frac{1-\beta}{2-\alpha-\beta}\left[u_{1}+\lambda_{2}^{N}\left(\frac{1-\alpha}{1-\beta}\right) u_{2}\right] \tag{13}
\end{equation*}
$$

If either α or β is less than one, λ_{2} is also less than one and the eigenvalues are non-degenerate. Thus

$$
\begin{align*}
\lim _{N \rightarrow \infty} P_{N} & =P_{\infty}=\frac{1-\beta}{2-\alpha-\beta} u_{1} \\
& =\binom{\frac{1-\beta}{2-\alpha-\beta}}{\frac{1-\alpha}{2-\alpha-\beta}} \tag{14}
\end{align*}
$$

The baryon number carried by P_{∞} is

$$
\begin{equation*}
\frac{1}{3}\left(\frac{2 \alpha-\beta-1}{2-\alpha-\beta}\right) \tag{15}
\end{equation*}
$$

so that the baryon number emitted is

$$
\begin{equation*}
P_{0}-P_{\infty}=\frac{1-\alpha}{2-\alpha-\beta} \tag{16}
\end{equation*}
$$

Feynman's conjecture that the baryon number of the original quark $(+1 / 3)$ is left in the emitted hadrons fails unless $2 \alpha=1+\beta$. Since there is no a prior reason for this constraint we see that the conjecture is not a general property of cascade models with logarithmic multiplicities.

Consider on the other hand a system with triality zero. Suppose that initially we have a gq (=B) state which undergoes a cascade winch connects this state with $q \bar{q}$ ($=$ ($)_{\text {) }}$ and $\bar{q} \bar{q} \bar{q}(=\bar{B})$. In a fashion analogous to that above we have

$$
\left(\begin{array}{l}
P(q 9 q) \\
P(\overline{q q}) \\
P(q \bar{q})
\end{array}\right)=\left(\begin{array}{ccc}
\alpha & \beta & \gamma \\
\beta & \alpha & \gamma \\
1-\alpha-\beta & 1-\alpha-\beta & 1-\alpha \gamma
\end{array}\right)\left(\begin{array}{l}
P(9 q q) \\
P(\bar{q} \bar{q}) \\
P(q \bar{q})
\end{array}\right)
$$

$N+i$

The eigenvalues and eigenvectors of the cascade matrix are:

$$
\begin{array}{ll}
u_{1}=\left(\begin{array}{c}
\gamma \\
\gamma \\
1-\alpha-\beta
\end{array}\right) & , \lambda_{1}=1 \\
u_{2}=\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) & , \lambda_{2}=\alpha+\beta-2 \gamma \tag{18}\\
u_{3}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) & , \lambda_{3}=\alpha-\beta
\end{array}
$$

Ezcluding special cases which produce degenerate eigenvalues, P_{∞} is proportional to u_{1}. since $u_{\text {, }}$ carries no baryon nubber, the initial baryon number qust have been emitted into hadrons, on the average, unlike the case of a fragmenting guark. of course, the retention of quantu numbers in hadronic fragwentation region is well-known from the ideas of lisiting fragmentation and Regge-fuellerise.

In terws of a cascade, the reason for the quantur number retention for triality zero and not for triality ± 1 is charge conjugation invariance. The matrices describing the triality +1 and zero cascades transfora under charge conjugation as follous:

$$
\begin{align*}
& C_{0} T_{0}^{-1}=T_{0} \\
& C T_{+1} C^{-1}=T_{-1} \tag{19}\\
& C T_{-1} C^{-1}=T_{+1}
\end{align*}
$$

For triality zero, non-degerate eigenvectors of T_{0} eust be eigenvectors of C with eigenvalue +1 . As a result, \mathbf{P}_{∞} wast be neutral in additive quantum nubers like B, which then implies the quantum number retention hypothesis. For non-zero triality. P_{∞} is not an eigenvector of C and. consequently, not necessarily neutral with respect to or
Q. Another way of stating the condition sufficient for satisfying the hypothesis is as follows: if a particle and its antiparticle are connected through the cascade, then the quantum numbers of the fragmenting particle are retained in its fragentation region. Fox exarple, a cascade step cannot connect a q with a $\bar{q}(q \longrightarrow \bar{q}+f i n g l$ state particiesi or else fractionally charged particles mould appear in the final state. In the case of hadronic fraguentation, particle and anti- particle can be connected through the cascade. (Note that in a special model where baryons and anti-baryons are not connected through the cascade, then the quantur number hypothesis fails for hadronic frageertationg this case corresponds to a cascade matrix with degenerate leading eigenvalues.)

The above results can be generalized as follows: ve assume that cascades develop in a stepwise process of the form $P_{N+1}=T_{t} P_{N}$ where t is the triality $(\pm 1,0)$. The probability vectors P_{N} give the probabilities for various states. vhich ve assume to be finite in number, to be occupied after N steps. He assume that the cascade matrix T_{t} has a migue leading eigenvector, which ust have an eigenvalue unity. Physically this means ve assume there is a unique cascade for each triality which develops asyaptotically. For example, a cascade begun vith p quark uill develop asymptotically into the same cascade as an or λ quark or
any state with triality +1 . The asymptotic state, p_{∞}^{t}, is independent of the fragmenting particle except for its triality. Because $C T_{+1} C^{-1}=T_{-1}$, the asymptotic cascades for triality +1 and -1 are simply charge conjugates. let the asymptotic probability vectors be $P_{\infty}^{+}, P_{\infty}^{-}$and P_{∞}^{0} for triality $+1 .-1$, and 0 . a cascade begun. say, by a p quark could be represented by

$$
\begin{align*}
& P_{N+1}=T_{+1} P_{N} \tag{20}\\
& P_{0}=(\operatorname{Prob}(p)=1, \operatorname{Prob}(n, \lambda, \bar{P} \bar{n}, \text { etc. })=0)
\end{align*}
$$

The amount of any additive quantum number, Q. left in the fragmentation region would be $\Delta Q=Q\left(P_{0}\right)-Q\left(P_{\infty}^{+}\right)$. Peqnean's hypothesis was that $Q\left(P_{\infty}^{+}\right)=0 \quad$ for all additive quantum numbers Q. If this were the case then ΔQ would be the quantum number of the quark initiating the cascade. As we have seen, this is not necessarily true. What we can expect is that if we con pare cascades initiated by different states with the same triality, then $\triangle Q-Q\left(P_{0}\right)$ is universal. This result follows from the uniqueness of the asymptotic state; the quantum number hypothesis fails when this state is not neutral. In other words,

$$
\begin{align*}
\Delta Q(p)-Q(p) & =\Delta Q(n)-Q(n) \tag{21}\\
& =\Delta Q(\lambda)-Q(\lambda), \text { etc. }
\end{align*}
$$

For example, the electric charge left in the fragmentation region of a quark should be one greater than that left in the fragmentation region of an n quark or a λ quark. Similar results follow for the other additive quantum numbers. Also note that charge conjugation implies $Q\left(P_{\infty}^{+}\right)=-Q\left(P_{\infty}^{-}\right)$ so that $\Delta Q(q)=-\Delta Q(\bar{q})$. of course a similar argument in the case of triality zero cascades implies the asymptotic state P_{∞}^{0} is neutral, ie. $\triangle Q$ (hadron) $=Q$ (hadron).

For the case $Q=I_{z}$ the situation is somewhat different from the cases $Q=B$ and $Q=\Psi$. Since T_{t} must be invariant under a reflection in isospin space (charge symmetry). p_{∞}^{+} - P_{∞}^{-}and P_{∞}° must have $I_{z}=0$, i.e. the z component of isospin is retained in the fragmentation region. Thus $\Delta I_{z}(p)=\frac{1}{2}, \Delta I_{z}(n)=-\frac{1}{2}$, etc., as Feynman found. on the other hand. I_{t} need not be $S O(3)$ symmetric so we cannot draw any conclusions about Y.

Summarizing the results for cascades initiated by a single quark, we have for the quantum numbers left in the fragmentation region:

$$
\begin{array}{ll}
\Delta I_{z}(p)=\frac{1}{2} & \Delta B(p)=\Delta B(n)=\Delta B(\lambda) \\
\Delta I_{z}(n)=-\frac{1}{2} & \Delta Y(p)=\Delta Y(n)=\Delta Y(\lambda)+1 \tag{22}\\
\Delta I_{z}(\lambda)=0 &
\end{array}
$$

where $\Delta I_{z}, \Delta B$, and ΔY are the average amounts of the quantum numbers observed in the fragmentation
region. The electric charge and strangeness are related to the above via the Gell-man - Nishijima relation: $\Delta Q_{e l}=\Delta I_{Z}+\frac{\Delta Y}{2}$ where $\Delta Y=\Delta B+\triangle S$. The fragmentation region need not be precisely defined since the adjoining plateau is neutral at very high energies.

The experimental quantities ΔQ can be represented in the notation of Groan. Randal, and Zarmi as follows:

$$
\begin{align*}
& \Delta I_{z}(q)=\sum_{h} \int d z D_{q}^{h}(z) I_{z}(h) \\
& \Delta B(q)=\sum_{h} \int d z D_{q}^{h}(z) B(h) \tag{23}\\
& \Delta Y(q)=\sum_{h} \int d z D_{q}^{h}(z) Y(h)
\end{align*}
$$

where the sum is over hadrons h and $D_{q}^{h}(z)$ describes the probability of a park producing a hadron with a fraction z of the montum of the quark. Our assumption that there is a unique cascade for the system with triality +1 gives $D_{p}^{h} \sim D_{n}^{h} \sim D_{\lambda}^{h} \sim \frac{a}{z} \quad$ for small 2 . Where a is the same constant in all three cases. In other words, the plateau height, which determines the dominant contribution to the logarithmic multiplicity is the same for all fragmenting states of the same triality. (The plateau heights are the same for triality +1 and -1 by C invariance.) In particular, since there is no relation between triality zero and triality ± 1 cascades, the constants multiplying $\ln \mathrm{s}$ in the multiplicities in e teannihilation and pp collisions need not be equal. ie. $C_{e^{+} e^{-}} \neq C_{h}$. However, the height of the current plateau in electro- or
neutrino- production is equal to that in ate- annihilation (see Fig. 2), so that the multiplicity in lepto-production at high Q^{2} and/or high W is

$$
\begin{equation*}
\langle n\rangle \simeq C_{e^{+} e} \ln Q / m^{2}+C_{n} \ln (w-1) \tag{24}
\end{equation*}
$$

The length of the parton fragmentation region is determined by the non-leading eigenvalues in the cascade picture. If each cascade step corresponds to fixed rapidity interval L, then non-asymptotic contributions should vanish as $\lambda^{N} \sim \lambda^{Y / L}$ where λ is the second largest eigenvalue. The correlation length is $\ell \sim L /(-\ln \lambda)$. An order of magnitude estimate is $\ell \approx 2$ (as in hadronic fragmentation). $L \approx \ln 2$ (if two particles share the momentum of the initial one) so that $\lambda \approx 0.4$.

The experimental consequences of the weaker version of the quant number conjecture (eq. 22) can be tested in inclusive neutrino reactions. ($\nu N \rightarrow \mu h X)$. These processes permit a determination of the type of quark ejected. For example, at high energy, the left-handed \quad t boson $\left(\sigma_{L}\right.$, takes only a n or λ quark into a p. while a right-handed $W+$ boson $\left(\sigma_{R}\right)$ takes only a \bar{p} into a \bar{n} or $\bar{\lambda}$. The strangeness changing processes, which are suppressed by the Cabibbo angle, can be separated in principle (although it may be extremely difficult in practice) by observing the strangeness of the final state.
III. \quad IGG ENERGY PROCESSES MTHIN CASCADE MODELS To clarify the preceeding section and to extend the dynamical framework, we outline how a number of high energy processes would be described in the context of our cascade models. The essential features of the wodels are that the cascades exist among states of the same triality and proceed to nnique asyeptotic state (for that triality) and that the hadrons are emitted by the cascade in a step-wise Eashion leading to a constant density in rapiaity. Alhough many of the results obtained are not new, it is interesting to view then fron this different perspective.

```
et e- Annihilation
```

In ete- annhilation, the time-like virtual photon decays through a qg intermediate with each guark having an initial rapidity $\ln (0 / M)$ in the relative center of mas (rapidities being measured vith respect to the g \bar{q} axis). The g and \bar{q} cascade independently for about N steps where $N \sim O(1 n(Q / B))$. If N is large the cascades will be given approzisately by p_{∞}^{+}and $p_{\infty}^{-}=C p_{\infty}^{+}$. Thus the heights of the cascades are the sane and the quark-like quantum numbers disappear when the two cascades "reet.
Deep Inc? antic rept production

For $\quad \nu P \rightarrow \mu^{-h} X \quad$ and $\quad e P \rightarrow e^{-h} X$ we follow
Feynman and work in a frame in which q, the virtual cry omentum, is purely spacelike and defines the negative z-axis. If the target's momentum is P and the observed hadron's omentum is p, the standard invariants are

$$
\begin{aligned}
& M_{\nu}=P \cdot q \\
& M_{K}=p \cdot P \\
& M_{1}=p \cdot q \\
& Q^{2}=-q \cdot q \\
& w=2 M \nu / Q^{2}=1 / X \\
& w_{1}=2 \mu \nu_{1} / Q^{2}
\end{aligned}
$$

Thus in this frame $Q^{2}=q_{z}^{2}$ and $-2 x p_{z}=q_{z}$. The target hadron cascades according to the prescription of the previous section for triality zero until the cascade reaches the point at which it contains a parton of mon tum xp. The virtual photon strikes this parton let us assume it is ap quark) and precisely reverses its notion. The hadron cascade is thus transformed into a sister of triality - 1 which proceeds via T_{-1} wile the struck parton decays via T_{+1}.

In this same frame, the initial hadron rapidity is $Y \simeq \ln \left(2 L^{Q} Q / M\right)$, When the virtual photon strikes the cascade, the

Abstract

cascade rapidity has descreased to $\sim 1 n(2 / M)$. The struck parton begins its cascade with approxifately the negative of this rapidity, while the hadron inus the guark continues from $Y=\ln (Q / M)$. For large Q / H the cascades meet as before in ete- annihilation, with C invariance guaranteeing that they have the same height. (Fig. 2 c) ${ }^{15}$ mote that the hadron inus the quark has the guantum numbers of a \bar{q} and asymptotically develops the same plateau (P_{∞}^{-}).

Hadron - Hadron Scattering

As described in the previous section we iagaine that hadrons evolve into final states through a cascade si西ilar to that by wich ganch-partons turn into hadrons. The cascade prescripaion guarantees that a neutral plateau is present in the center of was of the colliding high energy hadrons, and that this plateau is universal independent of the colliding hadrons. The quantua nubers are retained in the respective fragmentation regions.

According to Fernaan's parton model, the dominant scattering mechanism producing the above picture is the exchange of "weew partons - partons with finite c. \quad. monenta

- resulting in a final hadrons distribution wth linited transverse momenta. In addition there may be mard" parton-parton scattering resulting in partons knocked out

With large transverse momenta. A similar description of this process in the parton model has been given by savit, but se shall review the analysis in terms of the cascade. Suppose two hadrons each having a c.m. energy $E \simeq \sqrt{5} / 2$ collide such that the partons with momenta P, and p_{2} suffer a hard collision and exit as p_{1}^{\prime} and p_{2}. Let us focus our attention on p_{1} and p_{1}. We shall consider the cases of large fized $P_{\perp}^{\prime} \quad\left(P_{i \perp}^{\prime}=E_{i}^{\prime} \sin \theta_{1} \gg M\right.$ but $E_{i}^{\prime} \gg P_{1.1}^{\prime}$, and fixed angle $\left(E_{i}^{\prime} \simeq P_{1 \perp}^{\prime}\right)$ and the relation to limited transverse momenta $\left(p_{i L}^{\prime} \simeq\left\langle p_{\perp}\right\rangle\right.$).

Pirst we boost to a frase in uhich p_{1} and P_{1}^{\prime} are collinear and oppositely directed. Partons moving initially in the same direction as p_{1} and uith $x>0$ are also collinear fith p, and $p_{\text {' }}$ in this frame. Setting aside the partons associated with p_{2} and P_{2}^{\prime}. the partons in this collinear frame have the same distribution as they would if they gere the result of lepto-production. with p_{1}^{\prime} being the struck parton momentur and p_{1} being the hole mosentum. sccordingly we expect them to evolve into hadrons in the same fashion as they do in this previously considered situation. Thus, typical hadron mementa will have lisited transverse components in the collinear frame. What does this look like in the c. m_{o} ? Boosting back, we find that a mfragent of the holem will also have limited transferse © onentum with respect to the original beam direction. If we
consider fragment of the struck parton the hadron mentum lies near the direction of the struck parton and also with a spreadn $\left\langle p_{1}\right\rangle$ away frow this axis. The two cylinders centered on the hole and struck parton directions will overlap for final state hadrons with a c_{0}. energy E_{0} such that $E_{0} \sin \theta_{1} \sim\left\langle P_{\perp}\right\rangle$ (θ_{1} is the parton scattering angle ess before). The hadrons with $E<E_{0}$ are not simply associated uith just the hole or the parton. It is natural to assume that the dynmics in this region are those of triality zero, i。e. governed by T_{0}. In this heuristic pictrre, me see a triality -1 and a triality +1 system merging and continuing as triality zero systems. The extent of the this triality zero sisten depends on E_{o}. For Einite $\theta_{1}, E_{0}=\left\langle p_{i}\right\rangle / \sin \theta_{1}$ is finite. on the other hand. if p_{1}^{\prime} of the parton is large and fixed uhile $E \rightarrow \infty, \theta_{1} \sim \frac{P_{1 \perp}}{E}$, and there is an increasing domain $E<E_{o}$. in which the hadrons are controlled by triality zero dynamics.

* virtue of this description is that if we let pí decrease tomards $\left\langle P_{\perp}\right\rangle$, the triaility zero syster engulfs the tritility non-zero systems and we move continuously to the case in mich all transverse monta are limited. (See fig 3). \quad fe find directly that the \quad ultiplicity is given
by ${ }^{16}$

$$
\langle n\rangle \simeq C_{n} \ell_{n}\left(S / M_{\perp}^{2}\right)+2 C_{C^{+}} e^{-} \ln \left(M_{\perp}^{2} / M^{2}\right)
$$

This formula makes manifest the smooth transition to the limited transverse momentum domain.

IV. COZCLOSIOMS

me have presented a framework for parton cascades which reproduces many of Feynman's conjectures. In particular. hadron plateaus are universal independent of the initiating hadron. Similarly, plateaus initiated by quarks are universal. independent of quark type and dependent only on triality. However, there is no required connection be tween the triality zero and triality nonzero plateaus, suggesting that the coefficients of the logarithmic multiplicities in pp collisions and ere- annihilation may well be different. The two distinct cascade types triality zero and triality non-zero - play fundamental role in the description of a variety of high energy processes.

Within the context of our models, all of which have logarithmic multiplicities, Feynman's quantum number
e ant ion hy: othasis fur pacion fragmentation nerd not necessarily buld. A geaker form (see eq. 22) is obtair: , which qould cequire, for ample, that the electric chacge in the pata fraymentation region be one greater than that in the moguark or λ quark fragmentation regions. In all our models. I_{z} is retained in the fragaentation region. unlike Y and B. Agoin, triality seems to play central role in deteraining that guantum numbers must be retained in the frageentation region of a hadron but not necessarily in the fragmentation region of a quark.

While it is encouraging that a framevork consistent tith many postulates of the parton model can be produced, the far more difficult problew of understanding the actual dynames remains.

ACKROWLEDGERTS

le are very grateful for man helpful discussions with J. D. Bjorken, G. R. Parrar, R. P. Peynang and M. Kugler.

APPRNDIX

Te display here a class of models different from those in the min text. Here ve assume all quarks and anti-guarks act independently. This scheme is a specific type of markoy process called a discrete branching process. It suffices to consider the number of the various kinds of quarks in the cascade at each step. We find that Feynman's conjecture is satisfied as long as there is baryon production (unlike the situation in the farrar-Rosner model) but that multiplicities grow geometrically rather than logarithmically.

We can express the population of the cascade by a
colum vector:

$$
P=\left(\begin{array}{l}
P_{p} \\
P_{n} \\
P_{\lambda} \\
P_{\bar{P}} \\
P_{\bar{n}} \\
P_{\bar{\lambda}}
\end{array}\right)
$$

The average value of some additive quantum number carried by the cascade is

$$
\begin{equation*}
\langle Q\rangle=\sum_{i} P_{i} Q_{i} \tag{A2}
\end{equation*}
$$

Where the sum is over quarks and anti-quarks. Under hat conditions does $\langle Q\rangle$ vanish so that Peynman's conjecture is satisfied? Obviously it suffices to have $P_{P}=P_{\bar{p}}$.
$\mathbf{p}_{n}=p_{\bar{n}}$, and $p_{\lambda}=p_{\bar{\lambda}} \quad$ i.e. $\mathbf{C} p=p_{\text {. }} \quad$ If ye consider only T_{z} and $Y_{\text {g }}$ it suffices to have $P_{p}=P_{n}$ $=P_{\lambda}$. etc.. i.e. su(3) symmetry.

He recapitulate the Farrar-fosner counterexample of Peynan's confecture in this formalism as follows. The gap between $a q$ and \bar{q} arising in ete- annihilation is filled in with isosinglet $q \bar{q}$ pairs. Neighboring pairs recombine to form esons which break up the isosinglet pairs. Thus for the cascade initiated by $\bar{q} \bar{q}$, we have: $\bar{q}(q \bar{q}) \quad(q \bar{q}) \ldots$ $(q \mid \bar{g})(q \bar{q}) \ldots$... The quarks to the left of the break for the residue of hadrons and the first anti-quark to the right cf the break is the cascade. Thus the probability vector is

$$
P=\left(\begin{array}{c}
0 \\
0 \\
0 \\
a \\
a \\
1-2 a
\end{array}\right)
$$

Clearly Pequan's hypothesis fails for B and is satisfied for \quad cnly in the $S O(3)$ limit (though, of course, always working for I_{z} in any event).

Suppose on the other hand that there is some baryon emission. Thus in addition to processes in which a quark is transformed into another quark with meson emission ($\mathrm{q} \longrightarrow \mathrm{Mg}$) , there are processes in which a quark turns into two

possibly more complex processes (eng. $q \longrightarrow \mathbb{G q} \bar{q}, q \longrightarrow B \bar{q} \bar{q} \bar{q} q$. etc.). If we suppose that each quark cascades independently, the development of the cascade can be described by

$$
\begin{equation*}
P_{N+1}=T P_{N} \tag{AB}
\end{equation*}
$$

where T is 6×6 matrix. By C invariance of the strong interactions. T is necessarily of the form

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \tag{A4}\\
T_{2} & T_{1}
\end{array}\right)
$$

Where the rows and column are labelled by $p, n, \lambda, \bar{p}, \bar{n}$, and $\bar{\lambda}$. By isospin invariance, $T_{i} i=1,2$ is of the form

$$
T_{i}=\left(\begin{array}{lll}
a_{i} & b_{i} & c_{i} \tag{A5}\\
b_{i} & a_{i} & c_{i} \\
d_{i} & d_{i} & e_{i}
\end{array}\right)
$$

Using the orthogonal 6×6 matrix

$$
U=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{Ab}\\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

we have

$$
P^{\prime}=U P=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
p+\bar{p} \tag{A7}\\
n+\bar{n} \\
\lambda+\bar{\lambda} \\
p-\bar{p} \\
n-\bar{n} \\
\lambda-\bar{\lambda}
\end{array}\right)
$$

and

$$
T^{\prime}=U T U^{-1}=\left(\begin{array}{cc}
T_{1}+T_{2} & 0 \tag{A8}\\
0 & T_{1}-T_{2}
\end{array}\right)
$$

In this representation, Feynman's hypothesis is satisfied if as $n \longrightarrow \infty$

$$
P_{N}^{\prime} \rightarrow\left(\begin{array}{l}
\alpha \tag{A9}\\
\alpha \\
\beta \\
0 \\
0 \\
0
\end{array}\right)
$$

While the Farrar-Rosner model yields

$$
P_{N}^{\prime}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
a \\
a \\
1-2 a \\
\pm a \\
\pm a \\
\pm(1-2 a)
\end{array}\right)
$$

for all N except the initial state.

It is straightforward to find the eigenvectors, ${ }^{\text {j }}$ (which are not orthogonal in general) and eigenvalues λ_{j} of a matrix of the form (A5). They are

$$
\begin{aligned}
& V_{1}=(p-n) \quad, \quad \lambda_{1}=a-b \\
& V_{2}= p+n+\frac{\lambda}{2 c}\left[e-a-b+\sqrt{(e-a-b)^{2}+8 c d}\right] \\
& \lambda_{2}=\frac{1}{2}\left[a+b+e+\sqrt{(e-a-b)^{2}+8 c d}\right] \\
& V_{3}= p+n+\frac{\lambda}{2 c}\left[e-a-b-\sqrt{(e-a-b)^{2}+8 c d}\right] \\
& \lambda_{3}=\frac{1}{2}\left[a+b+e-\sqrt{(e-a-b)^{2}+8 c d}\right]
\end{aligned}
$$

Thus the eigenvectors of T are

$$
\begin{array}{ll}
u_{1}=\binom{v_{1}(t)}{0} & u_{2}=\binom{v_{2}(t)}{0} \\
u_{4}=\binom{0}{v_{1}(-)} & u_{3}=\binom{v_{3}(t)}{0} \\
u_{5}=\binom{0}{v_{2}(-)} & u_{6}=\binom{0}{v_{3}(-)}
\end{array}
$$

where $\nabla_{1}(\pm)$ is given by (A 10$)$ with p replaced by $(p \pm \bar{p}) / \sqrt{2}$
etc., a replaced by $a_{1} \pm a_{2}$, etc, Now if the initial
probability vector is

$$
\begin{equation*}
U P_{0}=P_{0}^{\prime}=\sum \alpha_{i} u_{i} \tag{A13}
\end{equation*}
$$

then

$$
\begin{aligned}
P_{N}^{\prime} & =\left(T^{\prime}\right)^{N} P_{c}^{\prime} \\
& =\sum \alpha_{i}\left(\eta_{i}\right)^{N} u_{i}
\end{aligned}
$$

where η_{i} are the eigenvalues: $\eta_{1}=\lambda_{1}(t), \eta_{2}=\lambda_{2}(t), \eta_{3}=\lambda_{3}(t)$, $n_{4}=\lambda_{1}(-), n_{5}=\lambda_{2}(-)$, and $\eta_{6}=\lambda_{3}(-)$,

The feynman hypothesis is satisfied if the differences $\mathrm{p}-\overline{\mathrm{p}} . \mathrm{n}-\overline{\mathrm{n}}$, and $\lambda-\bar{\lambda}$ tend to zero asymptotically, i.e. if η_{4}, η_{5} are less than unity. Since $\eta_{6}<\eta_{5}$, it
suffices that

$$
\begin{equation*}
\eta_{4}=a_{1}-a_{2}-b_{1}+b_{2}<1 \tag{A15}
\end{equation*}
$$

and

$$
\begin{align*}
\eta_{5} & =\frac{1}{2}\left(a_{1}-a_{2}+b_{1}-b_{2}+e_{1}-e_{2}+\sqrt{\left(e_{1}-e_{2}-a_{1}+a_{2}-b_{1}+b_{2}\right)^{2}+8\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right)}\right) \\
& <1 \tag{A/6}
\end{align*}
$$

The significance of the elements of $T_{1}-T_{2}$ can be determined by considering what happens to a p or λ quark after single cascade step. He have for these one step processes:

$$
T\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
a_{1} \\
b_{1} \\
d_{1} \\
a_{2} \\
b_{2} \\
d_{2}
\end{array}\right) \quad T\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
c_{1} \\
c_{1} \\
e_{1} \\
c_{2} \\
c_{2} \\
e_{2}
\end{array}\right)
$$

From these vectors we calculate the average baryon number emitted by a quark per cascade step:

$$
\Delta B(p)=\frac{1}{3}-\frac{1}{3}\left(a_{1}+b_{1}+d_{1}-a_{2}-b_{2}-d_{2}\right)
$$

Similarly the hypercharge of the hadrons edited by p quark per cascade step is

$$
\begin{equation*}
\Delta Y(p)=\frac{1}{3}-\frac{1}{3}\left(a_{1}+b_{1}-2 d_{1}-a_{2}-b_{2}+2 d_{2}\right) \tag{A19}
\end{equation*}
$$

In the same fashion we find

$$
\begin{aligned}
& \Delta B(\lambda)=\frac{1}{3}-\frac{1}{3}\left(2 c_{1}+e_{1}-2 c_{2}-e_{2}\right) \\
& \Delta Y(\lambda)=-\frac{2}{3}-\frac{2}{3}\left(c_{1}-e_{1}-c_{2}+e_{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\left.+\frac{1}{2} \sqrt{(\Delta Y(p)+2 \Delta B(p)-\Delta Y(\lambda)+\Delta B(\lambda))^{2}-12[\Delta B(\lambda) \Delta Y(p)}+\quad-\Delta B(p) \Delta Y(\lambda)\right] \tag{A21}
\end{equation*}
$$

He can expect quite generally that $\Delta Y(\lambda)<0$ and $\Delta Y(p)>0$
i.e. quarks produce more negative hypercharge hadrons than positive and vice-versa for p quarks. Aditionally, ve expect that $\Delta B(p)>0$ and $\Delta B(\lambda)>0$. i.e. λ and p quarks produce more baryons than anti-baryons. From the expression for χ_{5} we see that the introduction of a small amount of baryon production reduces η_{S} from unity to a value less than one, thas guaranteeing the success of Feynman's conjecture in these models.

The eigenvalues η_{4} and η_{6} can be expressed similarly:

$$
\begin{align*}
\eta_{4}= & 1-2 \Delta I_{z}(p) \\
\eta_{6}= & 1-\frac{1}{2}(\Delta Y(p)+2 \Delta B(p)-\Delta Y(\lambda)+\Delta B(\lambda)) \tag{A.2.2}\\
& -\frac{1}{2} \sqrt{(\Delta Y(p)+2 \Delta B(p)-\Delta Y(\lambda)+\Delta B(\lambda))^{2}-12(\Delta B(\lambda) \Delta Y(p)-\Delta B(p) \Delta Y(\lambda))}
\end{align*}
$$

yhere $\Delta I_{z}(p)$ is the average z-component of isospin of the hadrons enitted by a p quark per cascade step. of course we expect $\Delta I_{z}(p)>0$. We see now that the requirement $\eta_{4}<1$, $\eta_{5}<1$, and $n_{6}<1$ are met quite generally. of the siz elgenvectors. only u_{4} carries $I_{z} \neq 0$. Thus the equilibration of I_{z} is governed by η_{4}. since u_{5} carries both B and y and since $\eta_{5}>\eta_{t}$. the equilibration of these quantum numbers is governed by η_{5}. Since η_{5} is reduced below unity only by the strange particle and baryon production we anticipate that $\eta_{5}>\eta_{4}$ and thus I_{z} should equilibrate more quickly than Y or B.

In the fartar - Rosner oodel $\Delta B(p)=0$ and $\Delta B(\lambda)=0$, so
that $\eta_{5}=\eta_{2}=1$. Here we have two degenerate systems which are completely independent: the system initiated by quarks and the one initiated by anti-quarks. When $\eta_{5}<1$ we have also $\eta_{2}>1$ so that the number of quarks in the cascade grows as $\left(n_{2}\right)^{N}$. Consequently the number of hadrons emitted per step grows as $\left(\eta_{2}\right)^{N}$. This geometric particle growth is incompatible with a flat plateau and is the primary motivation for constraining our cascades discussed in the main text to have a bounded number of quarks at each step.

1. J. Denecke et al. Phys. Bey. 188. 2159 (1969).
F. T. Chou and C. W. Fang. Phys. Rev. Letters 26. 1585 (1970).
2. R. D. Yeynane phys. Rev. Letters 23. 1415 (1969). and in"High Energy Collisions" (Gordon and Breach. Eeq York. 9969). P. 237.
3. See for example, J. C. Sens in Proceedings of the International Conference on High Energy Collisions, J. R. Swith ed. (Rutherford High Energy Laboratory. 1972). p. 177.
 855 (1970).
S. M. Berman. J. D. Bjorken, and J. B. Kogut. Phys. Нет. D4. 3388. (1971).
4. R. p. Feynman talk given at yeutrino 72 Conference, Balatonfüred. Hungary. and" Photon Hadron Interactions." (4. (4. Benjamin. 1972).
5. M. Gronaug Fo Ravndalf and I. Zarmi. Nuc. Phys. B51. 618. (1973).

7．Scaling in the parton fragmentation region has been tested experimentally by C．N．Brown，et al．，Harvard preprint．Jan．， 1973 and C ．Bebek et al．Rarvard preprint．May 1973. For a discussion of scaling structure functions，see E．V．Colglazier and F．Ravndal．Fhys．Rev．D7． 1537．（1973）．

8．The＂current fragmentation region＂is not a finite length in rapidity in the Bjorken limit becanse of the large virtual mass of the current．In lepto－ production $(y A \rightarrow \mu h X$ and $N \rightarrow E X$ ） this region is of length in $\left(Q^{2} / /^{2}\right)$ and consists of two finite fraqmentation regions（those of the parton and its hole）and central plateau．Current fraqmentation for a time－like current is fust the annihilation process（ $e^{+} e^{-} \rightarrow K X$ ）．See J．D． Byorken in＂procesdings of the Fifth International Symposium on Electron and Photon Interactions at High Energies，at Cornell University，1971．W．B． Mistry，ed．L aboratory of Nuclear Studies，and Phys．Rev．D7， 282 （1973）．See also．R．H．Cahn． J．日．Cleymans，and E．加．Colglazier，Phys．Lett． 43E． 323 （1973）。
9. S. D. Drell and T.-H. Ian. ref. 4. S. S. Shei and D. M. Tov. Rhys. Bev. Letters 26. 470 (1971). and J. Kcgut D. K. Sinclair, and L. Susskind, Institute for advanced studies preprint. G. Altarelli and L. Maiani, preprint INPN-Rome-421.
10. G. R. Farrar and J. L. Rosner, Phys. Rev. D7. 2747 (1573).
11. \quad ithin the cascade formalisw. the model is eaily generalized to include λ quarks coupled to the photon even if only pions are produced in the plateau. rake $a, b=1$ and $c=1 / 2$ in eq. 7; the result for isospin is unchanged.
12. Although we use their basic argument, we do not use their formalism which is not correct in general. Knouledge of particle ratios does not necessarily determine the cascade protabilities.
13. One way of achieving this yould be to require first

 resons and all gqg triplets into baryons, etc.; before the next step begins.
14. Since crossing is required to relate $g \longrightarrow \bar{q} q \bar{q}$ and $\bar{q} \bar{q} \longrightarrow \mathrm{q} \overline{\mathrm{B}}, \quad /-\alpha$ is not necessarily equal to $1-\beta$.
15. In R. N. Cahn, J. W. Cleymans, and E. W. Colglazier, ref. 8 , this smooth joining of the two levels was seen to be necessary for the Lorentz invariance of Feynman's model.
16. R. Savit, Phys. Rev. to be published.

1. (a). A simple model for hadrcnic final states in e+eannihilation. The rapidity gap between the initial quark and anti-quark is filled with N isosinglet $q \bar{q}$ pairs (N rapidity gap). Adjacent quarks and anti-quarks (beginning at either end) are assumed to convert into fions.
(b). The above model pictured as a cascade. The first step is the initial quark throwing off the first pion and producing a quark which initiates the second step.
2. (a). Parton distributions before and
(b). after interaction with a virtual photon in the Breit frame of the virtual photon and struck parton.
(c). The inclusive distribution. $\frac{1}{6} \frac{d d}{d y}$. versus the rapidity. Y, for deep inelastic leptoproduction at large $\omega \quad\left(w_{\perp}\right.$ is the average transverse mass).
3. (a). Parton distributions before and after whardm parton-parton scattering which produces large transverse momenta events in hadron-hadron scattering.
(b). Schematic representation of the final state hadron distribution in a large transverse momentum hadron hadron scattering event. The triality of each cascade is indicated for an event in which a quark and anti-guari suffer the hard collision.

(a)

(b)

Fig. 1

Fig. 2(a)

Fig. 2(b)

Fig. 2 c

Fig. 3

