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ABSTRACT 

We introduce a parametrization of loop momenta which allows us 

to perform one of the Feynman integrations in a very transparent way. 

This leads to expressions which can easily be related to terms resulting 

from time-ordered perturbation theory in the infinite momentum frame. 

To exemplify our method we consider some simple Feynman integrals. 

As another example we discuss the covariant expressions of Landshoff, 

Polkinghorne, and Short for the scaling graph and the electromagnetic 

form factor. We indicate how to substitute the Sudakov parametriza- 

tion in their work in order to simplify their discussion and to make 

comparisons with the work of Gunion, Brodsky, and Blankenbecler 

more convenient. Finally we derive an elegant form of the bound state 

Bethe-Salpeter equation in which one of the Feynman integrations is 

performed. 
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I. INTRODUCTION 

The infinite momentum frame in connection with time-ordered perturbation 

theory’ was a very powerful tool in the discussion of numerous problems, e.g., 

of ele ctromagnetic scaling , 2 of the question of fixed poles, 3 of quantum electro- 

dynamical calculations, 4 of the eikonal approximation, 5 and recently of high 

energy fixed angle scattering in exclusive and inclusive reactions. 6 Whereas 

Lorentz covariance and the connection to the corresponding Feynman diagrams 

is easily established for low order diagrams - especially because the infinite 

momentum limit restricts the number of diagrams, the bookkeeping becomes 

complicated in higher orders. The covariance structure of nonperturbative 

insertions, e.g., Bethe-Salpeter type vertex functions obtained from an integral 

equation in the time-ordering formalism, is not obvious. 
- 

On the other hand successful attempts have been made to handle the type 
7,lO 

of problems enumerated above in a manifestly covariant way. Normally the 

results of these works are very similar to what one obtained in the previous 

formalism. It seems desirable to have a method which allows establishment of 

systematical relations between the two approaches. 

Our method in this work will be to perform one 

tions with a special choice of the loop momentum k. 

parametrization of k: 

k2+k2 
k= xP+ b 2iPx ’ k 1’ XiP 

\ 

of the Feynman loop integra- 

We propose the following 

with arbitrary x and P --cm. The loop integration then transforms as 

(1) 

(2) 
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The first three integrations look very similar to the integration variables of 

time-ordered perturbation theory in the infinite momentum frame. Indeed the 

k2 integration can be easily done as a Cauchy contour integral closed with a 

semicircle at infinity picking up propagator poles. We end up with an integra- 

tion range in x as in time-ordered perturbation theory if we parametrize the 

outer particle momenta in the usual way in the infinite momentum frame. 

Actually all our calculations do not really depend on the infinite momentum 

limit P -00. If we parametrize k as* 

k 
k2+k; 

1’ 
xIP-- 4xtP (3) 

and similarly the outer momenta (e. g . , p = ( il? + m2/4 D?, 0, P - m2/4 U?)) one 

can have arbitrary [P and the relation (2) is unchanged as all relations we are 

going to write down. In the following we will use the parametrization (1) and 

the usual form of outer momenta which saves us some writing. But we should 

always keep in the background of our mind that the calculation looks quite the 

same for arbitrary finite P (which is not a difficult point since our final expres- 

sions do not contain II? anymore). 

We exemplify the method in Section II in the case of the triangle graph 

corresponding to the electromagnetic form factor and for the crossed box graph 

which plays an important role in the work of Gunion, Brodsky and Blankenbecler 

(BBG) . 6 We indicate how covariant vertex functions should be handled. 

In Section III we demonstrate that the discussion of Landshoff, Polkinghorne 

and Short (LPS) of the scaling graph and the electromagnetic form factor in a 

covariant formalism can be considerably simplified with the new parametrization 

substituting their choice of Sudakov variables. Again a comparison with infinite 

momentum calculations is very transparent. 

-3- 



In Section IV we formulate a new form of composite state Bethe-Salpeter 

equation, With a suitable choice of outer particle momenta we are able to 

perform one of the loop integrations. The resulting equation for a spin 0 bound 

state wave function has a very elegant form. We can check that the known 

solutions of the Bethe-Salpeter equation fulfill this equation. 

We restrict to spin 0 intermediate states in all examples. The application 

of our method to graphs with, e.g., spin l/Z, is straightforward in principle 

though technically more involved. ’ 

II. EXAMPLES FOR THE INTEGRATION PRESCRIPTION 

As our first example we calculate the electromagnetic form factor graph 

of Fig. 1 for scalar particles. With 

i m2 \ P= P+z;p, 0, p , 

and k as given in (1)) we get for the large 0- or 3-components according to 

Feynman rules 

2K’ F(q2) = i 
(W4 

s 
d2ki & dk2 21px 

where the first two denominators correspond to the propagators in k2 and (k+q)2 

and represent poles in k2 in the lower k2 half plane, whereas the third one 

-4- 



- connected to the pole in (p-k)2 - leads to a k2 pole in the upper or lower half 

plane depending if (l-x)/x is positive or negative. In the second case we can 

close the integration contour in the upper half plane pushing a semicircle to 

infinity and we end up with zero. Thus x is restricted to the interval 0 < x < 1. - - 

If we close the contour in this case we can do it in the upper or lower half plane 

picking up one pole or two poles respectively. Both expressions of course have 

to be equal. The result is 

w12) = & Sd2kl i1 3% m2 x(l-x;~~! ,;, _ m2(l 1 1 - 
x) 

x( l-x) 

m2 x(1-x) - (kl - (l-x)qL)2 - mT(l-x) 2 -m x 2 
(5) 

This exactly agrees with the form given by time-ordered perturbation theory 

in the infinite momentum frame. 

The rearrangement graph of Fig. 2, discussed extensively in the work of 

BBG, where the variables are parametrized as 

( m2 pl= [P+flJ IP 
i 

t 
p2= Ip-l- 

m2+rf+ q2 
1 

2u? , rl+qly 
P 

1 

m2+q2 
Pz=P+ 2[p1 ,q 9 \ 

ip 
) 

m2+r 2 

p4= p+ 2ipL,r13 ) 

(6) 
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with t = -q2 2 
1' u = -r 

1’ 
rl.ql = 0, canbe writtenas 

i 
J- 

d4k ’ 1 1 1 
k2-mf+ic (k-pl)2-mi+ie (k+p3-pl)2-m~+ie @-p4)2-mi+ie 

= &ld2kL [lm & dk2 /k2-mi+it[’ 1; (m2x(l-x)-k:-k2(l-x))- rni+itr’ 

(k2-(I-x)q2-2k *q -m2+it- x(1-x)-k;-k2(1-x)-x2r+r l l k,x)- mi+i E 1 
-1 

1 111 I 

There are two pairs of poles in k2 now, one pair corresponding to the propagators 

in k2 and (k+p3 - p 1)2 and always in the lower half plane and another pair which 

is in the upper half plane for 0 5 x < 1. For x outside this region we again can 

close the integration contour in the upper half plane without picking up a pole 

and get zero. Closing in the upper or lower ha!f plane’ for 0 LX 2 1 we pick up 

a pair of poles and obtain the result 
. 

(7) 

with 

Sk kl 1 = 
kr+ mf(l-x) +mix 

x( l-x) 

This is the same expression one calculates as the sum of four time orderings in 

time-ordered perturbation theory. 

We remark that II? does not appear anymore in our final expressions (5) and 

(7). As discussed in the introduction we could have equally well calculated with 

finite P and the parametrization (3) and with analogous changes in Eqs. (4) and (6). 
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Up to now we did not introduce vertex functions $. In a covariant calcula- 

tion one would introduce Bethe-Salpeter vertex functions $(k2, @-k)2) dependent 

on the off shell masses of the parton constituents. Performing the k2 integration 

in (4a) or (6a) one has to take into account also singularities in k2 of +. This 

can be done by an DGS type ansatz for $. 11,12 Then, however, the integration 

becomes rather complicated - e.g. , in our second example one has to intro- 

duce four $ representations (though the calculation in some cases of interest 

simplifies if one takes the relevant asymptotic C#I behavior for large off shell 

masses outside the integral). l3 A different (but related) possibility would be 

to use the ansatz @(K~) of Drell and Lee 10 where 

K2 = m2k - ml@-k) 
m +m = qk2+ (l-$@-k)2 -m2y(l-r)) 

1 2 

(r = m2/ml+ m2) is the continued c. m. s. momentum square. 

If one neglects the k2 singularities inside $, the result of the analog of the 

calculations given above depends on if we close the integration contour in k2 

above or below the real axis - which of course is very bad. 

From the relation 

k2+kf 
+ 

@_W2+k; _ 2 

X l-x -m (8) 

we see that fixing k2=mt or @-k)2 = rni leads to 

@-k)2 = 
m2x(l-x) - kf - mT(l-x) 

or k2 = 
m2x( l-x) - k: - mix 

X l-x 

respectively. This is very similar to the arguments of $ functions in the 

formalism of BBG, differing by a factor l-x and x only. It indicates that a de- 

tailed comparison of both methods will have to deal especially with the factors 

x and (l-x) appearing in both approaches. 
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III. SCALING GRAPH AND ELECTROMAGNETIC FORM FACTOR IN THE 

EXPLICIT COVARIANT FORMULATION OF LPS 

Landshoff, Polkinghorne, and Short’ have derived scaling from the graph 

of Fig. 3. The loop there is formed by partons. 

LPS make the following ansatz 

T- = -!- Jd4k AF ((k+q)2+ie) (2k+Qp (2k+q)v T-(s’+ie,k’+ie) 
I-iv (27r)4 

(9) 

where AF is the parton propagator AF ((k+q)2) = 13 
-CT 

with $p (g) & = 1 

and where T (s’, k2) is the untruncated parton-particle amplitude depending on 

the parton mass k2, by assumption strongly peaked at small k2, and the energy 

variable s’ = @-k)2. With 

( 2 
P= p+&, 9, lP’ 

1 

4 = ( 2v 
Fp, cll, O) 

where 

s-m2+q2 1 
V,= 2 and s = b-m2 , 

and with k as given by Eq. (1) we deduce 

s’ = (p-k)2 = (l-x) m ( 

uf = (p+k)2 = (1+x) 

s’4.l v’ = - = - 
k2+k; 2 

2 --mx 
X 

(k+q)2 = 2xv - q; + ( k2 - 2kl . ql j , 
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We can now perform the k’: integration with our parametrization of k instead 

of the Sudakov parameters in LPS. The singularities in k2 and (k+q)2 are in 

the lower k2 half plane. ForO<x<land-lLx(Othes’andu’cutsinT _ _ 

respectively are in the upper half plane in k2 and we have to take the contour 

around them, giving an integral over this absorptive part of T-, if we want to 

close the integration contour with an semicircle in the upper half plane. 

In the scaling limit v -+ co, q2 = -qT --t - 03, 2v/-q2 = w fixed and for 

I k2 I = I p2 I -CC q: we have (k+q)2 - xqf (w-x-l) and we can take it out of the 

integral in c and integrate over (T. For the component Too we obtain in this 

limit 

T00 - = p2T, = 

‘19(x) 0(1-x) ImTy s’= (l-x) 1 (11) 

+ 6 t-x) 8 (1+x) Im Tr \u’ = (1+x) irn2 -J+$)‘+ 5, ,zii. 

Here the p2 integration is constrained by S’L so for TR and by u’ 1. u. for T L 
. 

The imaginary part W; is given by substituting a d-function for the denominator 

-1 -1 
(w-x 1 

s 
d2kl dx d,u2x2 6 (w -1 

-x) 

1 ~3 (x) 8 (l-x) Irn Ty(s1,p2) + 8 (-x) 0 (1-f-x) Im Ty(ut,p2) (12) 

=&J 1 i - d2k &2 Im TR(s1,p2) 0 (w-1) + Im Tr(u’,/~~) 8 (-w-l) 
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In taking out of the integration the denominator in (11) we had to assume that 

the p2 integration is rapidly convergent. The kl integration is limited because 

of relations (10) and st 2 so, ut )uo. 

For x -0, i.e., large w, v’ becomes large, and with the assumption 

Im Ty(s’,p2) b f(,u2) vtQ! 

for large vt, we can evaluate Eq. (12) as 

F;(w) = VW; = w -$A d2kl a2 fN2) (-EL2 -k;)o 

(13) 

(14 

where C refers to the constraint 

For x -+l, i.e., W- 1, the condition st 2 so results in p2 5 &so. We 

therefore have large 1~~ I. In order not to invalidate the derivation of (11) we 

have to fulfill 1~ I 2 << q:, on the other hand, i. e. , we have to increase qf to get 

scaling . 

With the ansatz 

2 -y 
h-l +AP2) - gts’) + i 1 pO 

for large Ip I 2 , we derive (s’ 1 so) 

VW, F=l (w-1)y-I 

w” 
s 

d2kl ds’ g(s’) 

(15) 

(16) 
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The form factor can be written in an analogous way. According to Fig. 4 we 

have 

c2 F(q2) = 2 J d 
ml4 

kl dx Q2 
i 
8 (x) e (l-x) 

Im TR sf,p2,p2=X -( t= -q2 
1 

- 8 (-x) 0(1+x) Im TF t= -q2 
1 )i 

where T is now the parton particle amplitude with parton masses p2 and 

-2 /J = (k+q)2 and momentum transfer q2, and where the integration range again 

is given by the cuts in s f and u’ . 

For q2 = 0 we can use the crossing relation Im TL(u’) = Im Ty (st) and write 

with 

7rx @T(X) = vw27(x=w-1) e 

Here T, is the antiparton-particle amplitude appearing in the crossed graph 

analog of Eq. (11) and vW2+ the corresponding structure function. 

For large q2 the Regge behavior in v 1 near x=0 analog to Eq. (13) with a 

dependence (- (p2+k:),xjo(-q” or some reasonable large angle behavior for 

very large q:) suppresses strongly a contribution of this region to the integral 

(17). With an ansatz 

(19) 
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which is a natural generalization of ansatz (15)) we obtain 

In Eq. (20) the contribution near ~1 should be suppressed, e.g. , by a (Jo 2 -Y/2 ) 

behavior for large p2. Assuming further the independence of g on t in leading 

order in the interesting region of small sf the comparison of (16) and (20) leads 

us to the Drell-Yan relation between the power behavior of F(q2) (up to eventual 

logarithmic factors) for large q2 and the behavior of F2(w) for w - 1. 

Our discussion of the form factor differs from the one given by LPS since 

we argue that the Regge behavior is not important in explaining the limiting 

behavior for q2 - - 03. 17 The limit of large p2 is the same which is responsible 

for q2 - --co in composite particle models where 

T- = %(k2, s’) ~((k+q)~, s’) (s’-/J~) . (21) 

IV. DERIVATION OF A NEW FORM OF THE BETHE-SALPETER EQUATION 

The most direct approach in modifying the bound state Bethe-Salpeter 

equation given graphically in Fig. 5 with p2 = m2 as bound state mass would be 

to perform the k2 integration in the k-loop on the r. h. s. of the equation. 

However in general one then has to encounter singularities of the unknown 

function and thus runs into complications. In some cases of physical interest 

one can handle the dependence on one of the constituent of shell masses in a 

simplified way by truncating the kernel as done by Brodsky. 14 In this kind of 

approach one introduces an asymmetry in the constituent masses which is 

easiest seen from Eq. (8) fixing k2 or (p-k)2 respectively. 
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Let us consider a different approach. We look at the graph, of Fig. 5 

from a different side and in a different notation (Fig. 6). Our procedure will 

be to write the equation first for negative q2 and then to continue it to positive 

bound state masses. Though the actual bound state q2 of course has some 

positive value m2 it is totally permissible to formulate the equation for 

negative q2. Another equivalent way to arrive at our equation would be to write 

first the Bethe-Salpeter equation for the scattering amplitude T of Fig. 7 at 

negative q2, to continue this equation to q2 > 0 and to factor out the bound state 

equation afterwards. Let us now write down the equation corresponding to 

Fig. 6. With the choice 

I 
tP*q/2) = h + $4 + ;;/2J2 , * 9, Ip 

1 

q= wq’ 
\ 

2)2 (p q/2)2 - - 
2iP 9 ql’ 0 ) 

( p= P-t 
g/4 + lp+ q/2)2 + (p-q/2) 2 

2 
2lP , 0, E’ 1 

the equation for a scalar bound state wave function of scalar constituents reads 

&Fq’2)2, @-s/2)2,q2) = + f d2k, $j- dk2 
(24 (k+q/ 2) 

; 
-m y+i e 

1 1 
@-q/2)2-mi+ic Cp-k)‘-mi+ie 

0 (Ml/m29 oi-s/a29 9”) (22) 
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where 
’ 2 k2+k2 

@-k)2 = (l-x) 4+ @+q/2)2 ; @-q12J2 _ ___i ql _ k; 

= (l-x) 

2 2 
T * .Ps/2)2 - @ 

2 -q/2)2) - (kl rt 2j2 . c=w 

From (22) and (22a) one can conclude that the singularity in p2 of the left-hand 

$ and hence consistently the singularity in k2 of the $ ((k+q/2)2, (k-q/2)2, q2) 

inside the integral is in the lower half plane if x < 1. In this case however we 

have 0 5 x 2 1 because otherwise all singularities are in the lower half k2 plane 

and we could close the integration contour with a semicircle in the upper half 

plane without picking up a singularity. This proves consistency for a solution 

where the x-integration is in the range 0 < x < 1 and where we can close the - - 

integration contour around one single pole given by the “potential” 

l/(p-k)2 - mi+ie . Equation (22) then results in 

@ ((pts/2)2, tJ?-s/2)2A2j = $3&g /d2$ 

x(1-x) - 

-1 

- mix - mF(l-x) 

I 
tq -+-q, ml --+m2 i 

-1 

& ,@+s/2)2 x(1-x) - 
41 

kl + (1-x) 2 --a ml-m2 
i 

(23) 
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We now continue Eq. (23) in ql: 

q1 - igl (24) 

thus arriving in kl region of positive q”=qT =m2. A simultaneous rotation of 

the integration path in kl 

k -ik 
1 1 (25) 

keeps real arguments of @ in the integrand. With the replacement of $ by a 

wave function Z/J defined by 

zci jpd2$!, (p-q,2j2, m2t = 
2 

+ h+q/2) , @-s/2)2, m2 t 

{ (ptq/2)2-m2,}{~-q/2)2-m~} 
(26) 

we obtain the final equation 

Pa (1 d kl $ ) l-x 

q 1 -r-q, ml-m2 - 
I 

(27) 

with qT=m2 as the bound state (mass)2. Singularities in the integrand are passed 

with obvious ie prescriptions. We remark that a potential 
/ 

dp2 p (,u2)/ @-k)2-p2+ie 

would allow a very similar derivation. The corresponding generalization of 

Eq. (27) would contain another integration in p2. 

Equation (27) looks quite different from the usual form of the Bethe-Salpeter 

equation. It does not contain the ladder potential explicitly anymore and involves 

only three integrations. We can check that the known solutions of the spin zero 

bound state Bethe-Salpeter equation fulfill (27). In the case of vanishing mass 

of the exchanged particle m3 exact Wick 15 solutions are known. For the bound 
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state mass m2=0 and m:=mi=p2, we have the equation 

(I? -p2r $(Tr2, = =$ a’& f d2kl $(‘x’z+k’) (28) 

with 

(p*q//)) = Ii2 

which has the solution 

7)<7r2, - (2 -p”i-” 

easily checked by integration together with the eigenvalue equation 

h -= d 
(27Tj3 7T l 

In the case m2 + 0 an ansatz 

(29) 

$- /d$dY 
a( Y) 

( YtP+s/2)2 + t~Ym-q,212 - a)3 
(31) 

leads to the one variable integral equation for g(ac, y) = B@-p2) g(y) first derived 

by Wick. l5 The variable x seems to play the role of a Feynman parameter. 

We have also checked that in the more general case of exchange particle 

mass m3f 0 the ansatz (31) leads to the two variable integral equation for g(o, y) 

given by Wanders. 16 

I would like to thank R. Blankenbecler and S. Brodsky for many inspiring 

conversations and reading of the manuscript. I also would like to express my 

appreciation for the useful discussions with R. Savit and G. Schierholz. I 

gratefully acknowledge the kind hospitality at SLAC and financial support by 

the Max Kade foundation. 

- 16 - 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

REFERENCES 

S. Weinberg, Phys. Rev. 150, 1313 (1966). 

S. D. Drell, D. J. Levy, T. M. Yan, Phys. Rev. 

Phys. Rev. D L, 1035, 1617 (1970). 

S. J. Brodsky, F. E. Close, J. F. Gunion, Phys. Rev. D 2, 1384 (1971); 

Phys. Rev. D 5, 177 (1972). 

S. Brodsky, R. Roskies, Phys. Letters e, 517 (1972); 

J. B. Kogut, D. E. Soper, Phys. Rev. D I., 2901 (1970). 

J. D. Bjorken, J. B. Kogut, D. E. Soper, Phys. Rev. D3, 1382 (1970). 

J. F. Gumon, S. J. Brodsky, R. Blankenbecler, Phys. Letters E, 

649 (1972); Report No. SLAC-PUB-1183, Stanford Linear Accelerator 

Center (1973). 

J. F. Gunion, S. J. Brodsky, R. Blankenbecler, Report No. SLAC-PUB- 

1053 and SLAC-PUB-1140, Stanford Linear Accelerator Center (1972). 

R. Blankenbecler, Lectures at the 1972 Canadian Summer School, 

McGill University, Montreal, Canada. 

P. Landshoff, J. C. Polkinghorne, R. Short, Nucl. Phys. z, 225 (1971); 

(hereafter called LPS). See also S. J. Brodsky, F. E. Close, J. F. Gunion, 

Report No. SLAC-PUB-1243, Stanford Linear Accelerator Center (1973). 

In this work a covariant notation is based on a generalization of finite order 

time-ordered perturbation theory calculations. 

This remark is due to S. Brodsky. After completing this work we realized 

that the approach of Chang and Ma, Phys. Rev. 180, 1506 (1968) is very 

similar in spirit though their parametrization with light cone variables 

kof kg is somewhat different. We thank Ling Fong Li for drawing our 

attention to this paper. 

- 17 - 



9. Spin effects and complicated 2 graph contributions in the time-ordered 

perturbation theory can be discussed in a very effective manner with our 

method. For a technically more involved field of applications see a recent 

paper by S. J. Brodsky, R. Z. Roskies, R. Suaya (PITT 108, May 1973). 

In an appendix they also discuss methods in case of the appearance of 

divergent integrals. 

10. S. D. Drell, T. D. Lee, Phys. Rev. D 3 1738 (1972). 

11. S. Deser, W. Gilbert, E. C.G. Sudarshan, Phys. Rev. 115, 731 (1959); 

M. Ida, Prog. Theor. Phys. 23, 1151 (1960); 

N. Nakanishi, Prog. Theor. Phys. 26, 337 (1961). 

12 M. Ciafaloni, P. Menotti, Phys. Rev. 173, 1575 (1968). 

13. P. V. Landshoff, J. C. Polkinghorne, DAMTP72/43 (1972). 

14. S. Brodsky, private communication. 

15. G. C. Wick, Phys. Rev. 96, 1124 (1954). 

16. G. Wanders, Helv. Phys. Acta 30, 417 (1957). 

17. But the discussion is similar to a discussion in a later paper: 

P. V. Landshoff, J. C. Polkinghorne, DAMTP72/38. 

- 18 - 



p-k 
2317Al 

,, 

FIG. 1 

t 

, 



I 
I 

p4 -k 

p2 p4 

p,-k 
2317A2 

FIG. 2 



2317A) 

FIG. 3 - - 

. 



j 

2317A4 

FIG. 4 



2317A5 

FIG. 5 

, 



I 

p+9/2 P-42 

q/2/-/ k-q/2 

p+9/2 p-q/2 
2317.46 

. 

FIG. 6 
/ , 

,: 
..P’ 

4 

/  . .  . . -  . -  
_^^.. ._ .  -  -_ . . . . ,  ”  _, _“._. 

.  



FIG. 7 

k+q q/2 

P42 p-4/2 
2317A7 

- SN. 

\ 

1 - 

-. ~._. -- .I. 

. -. -11” ,-.. ._ ,__. 

i 


