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I 

I. INTRODUCTION 

The scaling behavior observed in deep inelastic electron-proton scattering 

has motivated a series of parton models of photon-hadron interactions. 1 All 

of these models postulate that the hadrons are built up of certain point-like con- 

stituents (partons) which carry the electromagnetic current. The partons are 

understood to be underlying fields of some future field theory, but need not have 

a particle interpretation. 2 Some authors3 identify the partons with quarks 

which throws a bridge to strong interaction dynamics. 4 But this conjecture still 

awaits an experimental test. 

Recently a further attribute of photon-hadron amplitudes has been estab- 

lished. The high-energy data of forward nucleon Compton scattering require, 

in addition to the standard Regge terms, the presence of &O fixed poles, whose 

residues agree with the Thomson limit’ 

T!&,-2, TGp%o . 

This provides a sensitive test of existing parton models and the quark-parton 

picture at all. The simple three-quark model of the nucleon would give 

TpW=$Tn& , TLFp= -6 

which obviously contradicts Eq. (I. 1). In the more general case, the parton 

model is much less specific, but it always predicts a nonzero fixed pole con- 

tribution of the neutron.’ This points out that the parton model in its present 

form fails to explain the fixed poles, which has interesting theoretical 

consequences. 

The fact that the fixed poles seem to be sensitive only to the total charge 

indicates that some kind of self-consistency condition between the constituent 

currents and the total electromagnetic current might be involved. On the one 
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hand, the scaling behavior requires a composite theory of the hadrons while, 

on the other hand, the fixed poles are closely associated with the (noncomposite) 

Born terms. 7 This “duality” comes as no surprise to us. There is strong 

evidence that at least the low-lying hadron states are governed by bootstrap 

principles, 8 which has to be respected by any future field theory. In the boot- 

strap picture the “Born singularities” and multiline connected parts are inti- 

mately related allowing for both scaling graphs and (fixed pole) Born terms. 

In view of this it seems l-o be attractive to consider the alternative that 

partons are ordinary (bootstrapping) hadrons. It has been argued recently by 

Zachariasen’ that the scaling behavior does not necessarily lead to pointlike 

constituents. This can best be understood from some model calculations 10 

which indicate that the constituent form factors need no longer vanish as q2M-m 

when both legs are off-shell. So, even in the bootstrap picture some internal 

lines represent more elementary entities. 

In this paper we shall demonstrate that scaling and the %-ight” fixed pole 

behavior can be explained in terms of bootstrap elements. We will base our 

discussion on S-matrix theory although we have something like. a Bethe-Salpeter 

equation in mind. For our aims we need not go into dynamical details of the 

bootstrap program. Dashen and Frautschi 11 have shown that the bootstrap cur- 

rents fulfill a current algebra. This provides a q2-normalization condition of 

the current-current amplitudes which is all we need. 

In order to avoid spin complications we shall restrict ourselves to a pion 

target. But we believe that our conclusions can be carried over to the spin l/2 

case. 

The paper is organized as follows. In Section II we define invariant ampli- 

tudes free of kinematical singularities and zeroes that describe pion Compton 
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scattering, For these amplitudes a Mandelstam representation is assumed, on 

the basis of which we derive t-channel partial wave dispersion relations for the 

double-helicity flip amplitude (Section III). The partial-wave series is continued 

to the physical region of the s-channel by means of a Sommerfeld-Watson trans- 

form. In Section IV we discuss the current algebra constraint, It gives rise to 

a J=l fixed pole in the odd amplitude which imposes decisive reat,rictions on the 

dynamical input. Then, by incorporating this information, we calculate the &O 

fixed pole and show (in Section V) that our model gives rise to nontrivial scaling. 

In these cases the partial wave dispersion relation can be solved explicitly. 

Finally, in Section VI we add some concluding remarks. 

II. COMPTON AMPLITUDES 

We consider the process 

r;(q) + 7aP) - ,,pw + &P’) (II. 1) 

where y Q! P y 
P’ v 

may be neutral or charged isovector photons. Isoscalar photons 

are not taken into account since they do not contribute to the fixed poles and in 

the deep inelastic limit as will be shown later. This, however, is not true in 

the case of nucleon Compton scattering. Our notation will be 12 
s = (q+P)2, 

u = (q -p’)2 and t = (q -q1)2. The scattering amplitude is given by 

Tcr@fP = i 
PV J d4x eiq”x 6 (x) <f(p’) I [j:(x), j;(O)] 18(P) > (n.2) 

Due to crossing and isospin invariance it can be reduced to three independent 

t-channel isospin amplitudes (the upper index labeling the isospin) 

T(O) = 2 
W 

Cclv (s, t) + Cpv (u, t) - Npv 
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I 

T(l) = C (s t) - C 
PV w ’ 

(u t) 
PV ’ P. 3) 

(u t) 
PV ’ 

+ 2N 
PV 

whire C =T -+,+ 
PV CLV 

, i.e., the tensor associated with tlchargedf’ Compton scat- 

tering off 7~+, and N = Too, o 
PV w 

corresponding to %eutra.l” Compton scattering 

off 7r”. This representation will prove to be very useful. It is evident that N 
CLV 

gets no contribution from the pion pole terms and related diagrams. The cur- - 

rents are assumed to be conserved and to satisfy the current algebra which 

gives 

4c1Tt”, 2, = Tt”, 2)q,v = 0 
W CLV 

qp,(‘) 
lJV 

= ‘I+) qtl-l = 2A F(t) 
VP V 

(II. 4) 

(II. 5) 

where A = ptp’ and F(t) is the pion electromagnetic form factor. 

Next we express the tensors T 0) 
P 

in terms of (independent) invariant ampli- 

tudes free of kinematical singularities and zeroes. 13 These amplitudes are the 

most suitable ones having a Mandelstam representation without ad hoc subtrac- 

tions. Let us first consider the isospin 0 and isospin 2 case. Here the method 

of Bardeen and Tung 14 can be applied. We obtain 

where 

+Ov2) = 5 In Ato 2, 
PV n=l pv n 

I2 
PV 

= qq q’ APAv - q. A q;(aE, - qt.AApqv -t q-4’*Agpv 

(II- 6) 

I3 
PV 

= q-q’ qpAv - q2q;A,, - qt.Aqclq,, + q2WAgpv 
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I4 
I-@ = q. q’ j$, - q- A q;lq; - qt2 Apqv + qr2 q- A gkv 

I5 2 
PV = 4.q’ qpq; - q crp; - 9’2qp4; f q2qt2 gccv (II. 7) 

In forward direction and for equal photon mass the An are related to the usual 

invariant amplitudes Tl, T2 by (omitting the isospin) 

2 
Tl+;i. 

’ vT2=-Al-q2A5 , 
q 

T2 = 4q2A2 . 

01.8) 

In the isospin 1 case we can proceed similarly. Instead of the gauge condition 

(II. 4) we have to incorporate the current algebra constraint (II. 5). We find 

T; = il Lf*nv A!’ (II. 9) 

where 

L2 =AA 
CLV CLV 

m = 1,3,4,5 

(11.10) 

L6 
PV = g;LAv + ac,qv - q. A gpv 

(1) Here only five of the invariant amplitudes An are independent. We have 

A(l) - 1 
6 - s (2 F(t) - q. A A;‘) (II. 11) 

HI. DISPERSION RELATIONS 

ti) Our basic assumption will be that the invariant amplitudes An satisfy an 

unsubtracted Mandelstam representation for q2, qf2 < 4. This is quite a natural 

assumption from the bootstrap point of view which we will hold throughout this 
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I 

work. On the other hand, there are no subtractions required on the basis of 

low-energy theorems. 

Since our further discussion will mainly be concerned with the invariant 

amplitudes A (9 
2 ’ we shall restrict our attention to these amplitudes only. The 

(i) Mandelstam representation for the A2 can be written 

f- 1 tJ= 1) 

A;’ = ;I& $(s’) (A - -&-) + +js’ldt Pp:!~;‘t’) (-& - -$-) 

‘7 ds’ // 

(1) 
1 p3 @‘,u’) 

d”’ (s’-s)(u’-u) . @I. 2) 

The crossing conditions as expressed by Eq. (II. 3) are explicitly satisfied for 

(09 2) pp 2+s’, u’) = p3 (~1,s’) and pp’ (1) (s’,u’) = -p3 (u’, s’) . Single dispersion 

0392) integrals are not allowed for A2 because they would exceed the unitarity 

bound. l5 The spectral functions apparently depend on q2, q’2 and so do the 

boundary curves. 

The single spectral function integrals in Eqs. (III. 1) and (III. 2) represent 

the pion pole terms and the whole set of associated bootstrap diagrams as 

shown in Fig. 1. The pole terms which are responsible for the low-energy 

theorems are given by 

Ato) = 2 
2P (s-l) (u-l) F(s2) F&V21 3 
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I 

At21 = ’ Ato) 
2P “Z 2P ’ 

ti) corresponding to the &function part of pl . It has already been pointed out 

that the contributions connected with the single spectral function integrals come 

entirely from C 0) 
PV l 

So, we expect that the pl are related to each other similar 

to the pole terms (III. 3). This is indeed the case. We have 

1 (0) _ (1) _ (2) 
TP1 -P1 --P1 PI* 4) 

which can be verified by evaluating T (2) in the infinite momentum frame 
W 

( Ia’1 -+a; s,t,ufixed). Here the leading contribution is proportional to 

q. qf Af ’ 2, and Ar’ respectively. The single spectral function part of 

q.q’ A;p2) may be written 

to (0, 2)(s’) Q) 

cl’ q’ 
J 

Pl 
ds’ (&?I-@(g-u) = - ; 1 ds’ PI / 

(OS 2)(s’) (A+ &J 
1 

co co 
(s’, u’) 

+ (s’-s)(u’-u) (III. 5) 

where pl -(Oy 2)(s’, u’) = G(s’-u’)(s’-1) p1 (OS 2)(s’). By comparison with Eq. (II. 3) 

this gives the desired result. 16 Equation (III. 4) will become important in the 

next section where we shall discuss the restrictions imposed on pl @) by self- 

consistency requirements. 

0) It will prove to be useful to analyze A2 in terms of t-channel partial wave 

amplitudes. The At’ correspond to the t-channel helicity-flip amplitudes: 

T(0*2) = a (tmq2-qf2) (t-4) sin2 6’ Ary2) 
+- 
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T(l) = i (t-4) sin2 8 A;’ +- 

This naturally leads to the definition of helicity am.plitudes free of kinematical 

singularities and zeroes: 

M@) = At) 
+- @I* 7) 

which have the partial wave expansion 

Mf’ = 2 (Z&l) ff’ (t) (1 +eis@+Q) 
Q (ps 0) 

Q=2 sin2 0 
(III. 8) 

where 

+ @.@+3) Ipe-,(z) - 4@-I) p,(z) 
3 - 

5 (Ia. 9) 

(i) The singularities of the partial-wave amplitudes fil are then completely deter- 

mined by the Mandelstam representation. 

0) For fe we can write down partial wave dispersion relations. However, we 

must be careful about the branch cuts due to unequal mass kinematics. In the 

following we set q2 = q’2. @) - Then we have fe as t-4 or 4q2 

which. gives rise to a branch cut from t = 4 to t= 4q2. We see that for physical 1 

(i.e., (1) 1 even for i=O, 2 and odd for i=l) only fm has an extra branch cut. In this 

case and for general I we draw the branch cuts along the positive real axis. So 

we can write generally 

0) (9 1 tL fQ 03 = fJlJQ(V + ';; -m '3' t1-t s [ 1 f(i) @I) 
dt’ “tl t + 
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where we have projected out the Born term 

Here 

and 

(09 2)@‘) 
fg2)(t) = - &-&y-p) ($L$&,,3) i 1 wds’ 2s,-2+t-2q2 gQ(z’) / 

Pl 

00 
(1) fBQ(t) = - J&-& $f-$ti$ii?) + 1 ds’ pl (s’)%(z’) J (1) 

(III. 11) 

gQ(z’, = (%-I) Ql+2W) + (a+31 Qe-2W - 4(Q-1) Q,W 

In the physical region unitarity tells us 

f(O, 2)(t) 2 1 Q t2 

so that no subtractions are needed. 

The left-hand cut starts at 

tL = & [40 q2 - 4(q2)2 - 361 . P. 13) 

(III. 12) 

Its discontinuity has the form 

p$s', t') 
tt-t 

pf)(s’, u’) 

s’+u’-2+t-2q2 
PQW 

-2 
/ 

ds’ p$’ i (s’, 2-s’-t+2q2) L&?&z’, 
1 
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where 

gQ(z’) = 
[ 
(B-1) P1+2(z’) + (2e+3) Pmm2(z’) - 4(1-l) P&z’) 1 8 (l+z’) 8 (l-z’) 

On the right-hand cut we shall use elastic unitarity I7 (p(t) = j-Tzm> 

Im f!‘(t) = p(t) f!)(t) t(i)* Q tt1 (m. 15) 

where tf) is the elastic isospin-i ~7r amplitude. We believe that this approxi- 

mation is justified for our aims. 0) Later on we are only interested in fm at t-=0. 

For tf’ we make the ansatz 

t;)(t) = 
p tt, 

&t) - Q 
(III. 16) 

(9 where pn. (t) (generally complex) is only restricted by unitarity. In the case 

0) when there is no extra branch cut and fBm is continuous at t=4, the dispersion 

relation (III, 10) can be solved by standard methods 18 (provided that the left- 

(9 hand cut integral, for short fU, is known). The solution is 

ti) (9 (9 fQ tt1 = fBQW + f,W 

Im D$t’) 

t’-t fi;(t’) + f$t’) + PO 
D;’ (t) 

(III. 17) 

where (formally) 

I (V) - Q - 2ip (V) /3;) (I?) 
00 1% 

&t’) - Q t’-t 11 
(III. 18) 
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The polynomial P(t) must be zero if DQ (O’ 2)(t) 5 t2- ’ and Di’)(t) s t’-e; otherwise 

this would conflict with Eq. (III. 12). In the case of unequal mass branch cuts 

(which will concern us later) one has to take care of the discontinuities of ff’ 

across this cut which gives a slightly different solution. 19 Equations 

(III. 16) - (III. 18) can easily be generalized to include several Regge poles. 

Equation (III, 8) will be continued to the physical region of the s-channel by 

means of the Sommerfeld-Watson transform assuming analyticity in Q: 

ii;i(i) = 1 J d! (-cos 8 ) +- -E A- (2&l) fji’ 2o c sind sin2 8 
w. 19) 

Here %f! are amplitudes of definite signature (signature (-l)l). The contour 

C of the integration is shown in Fig. 2. The leading Q-plane singularities are 

0) given by the zeroes of Da ti) (see Eq. (III. 17)) and the finite parts of fQ at Q=O, 1. 

The former lead to moving poles while the latter correspond to(right- or wrong- 

signature nonsense) fixed poles. 

IV. FIXED POLES 

The current algebra constraint (II. 5) requires the existence’of a Q=l fixed 

pole in the isospin 1 amplitude 20 

A(l) 2 99 
2FP= s (Iv. 1) 

This can be read off (alternatively to the original derivation) from Eq. (II. 11). 

(1) The highest fixed pole that may occur in A6 behaves like l/s corresponding 

to the largest possible right-signature nonsense point. So the form factor must 

(1) asymptotically be cancelled by A2 . 

We shall now evaluate the Q=l fixed pole contribution in terms of Eqs. (III. 2) 

and (III. 10) and discuss what kind of restrictions Eq. (IV. 1) imposes on the 
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spectral functions. This forces us to solve Eq. (III. 10) for i, Q=l. From 

Eq. (III. 14) we deduce that there is no left-hand cut contribution in this case. 21 

The first term of the discontinuity across the left-hand cut vanishes because 

of the factor 4-l (note that there is an additional factor 4-l coming from 

d-5 2. cos e), see Eq. (III. 8)). The second term, corresponding to the su-double 

spectral function, does quite generally not contribute to the right-signature 

points which results from the following symmetry properties under the substitution 

S' -L 2-s’ -t + 2q2 (of course, this term gives rise to wrong-signature fixed poles): 

p(l)(s’ 2+1-t+ 2q2) - -p3 (s’, 2-s’-t+2q2) , (1) 
3 ’ 

(Iv.3 
2' - -z' , iifQ(Z') - -eid i4fQ(zf) 

Here the factor Q-l (as well as the factor Q which becomes significant as Q - 0) 

is cancelled by the pole of QQ 2. The same holds also for the Born term. So, 

if we absorb the a-1 of Eq. (III. 9) into fQ (‘I by defining $(I) = 4-l f$), we 

obtain the very simple integral equation 

f 
2 4q2 
x T(1)(t) = J--!---&j +r 1 Yls~ Ppts’~ + f 4 1 J J [3 

P (t’) 
dt’ ;tmt 

The only unknown parameter (besides the right-hand cut parametrization) is 
00 

R:=+ 1 
J 

(1) ds’ pl (s’) . Since the fixed pole is the leading term in the high- 

energy limit, we obtain from Eqs. (III. 2) and (IV. 1) 

(1) 

J (1) ds’ pl (s’) -t ds’ J / dt’ 
P.2 (s',t') 

tt-t = F(t) o-v.3 

which tells us that R has to be independent of q2. 
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We are now looking for a solution of Eq. (IV. 3) which meets the require- 

ment (IV. 1). That means 

(TV.51 

Therefore it is convenient to deal with the once subtracted dispersion relation. 

We make a subtraction at t=O and fix the subtraction constant by the constraint 

(IV. 5). The solution of this equation has the form22 (taking proper care of the 

right-hand cut singularities): 

00 
4 

Im D?)(V) 

- jw) D?)(t) * 
dt’ (v-t) t’ (R + w (1-R)) 

t P(t) 

+ ,/sj D?‘(t) 
(IV- 6) 

Let us first assume D?)(t) s const. Then we observe that Eq. (IV. 6) is con- 

sistent with Eq. (IV. 5) if R=l and P(t) = 0. In this case the solution can be 

rewritten23 

$ 2 

y’(t) = 23 D y’ (0) 

jq) D?)(t) ’ 
W* 7) 

where (in our approximation) Dl (l)(O)/Df)(t) corresponds to the pion electro- 

magnetic form factor, If D?)(t) --bit we notice that R=l and P(t) = 2 J 5 bi 

is a solution which fulfills Eq. (TV. 5) (and similar for any higher power). Here, 

Eq. (IV. 6) can again be written in the form 24 (TV. 7). Now we show that R=l is 

- 14 - 



also a necessary condition. 

Since ‘y)(t) has to be finite 

Therefore we consider the 

at this point, we must have 

limit q2 -0, t#o. 

W Im D(l)@‘) 
(1-R) 

&D$t, ’ 4 dt’ J (t’-&’ kjm 

(Iv.81 

which can only be fulfilled if R=l and F(t) = 0. Thus the current algebra con- 

straint normalizes the single spectral functions to a fixed value. This looks 

quite similar to the usual parton model but the parton lines are replaced by 

the diagram shown in Fig. 1. 

In the second part of this section we shall calculate the &O fixed pole con- 

tribution to the isospin even amplitudes using the normalization condition of the 

single spectral functions as input. That is (by means of Eq. (III. 4)) 

J (0) &’ pl (s’) = -2 / (2) ds’ pl (s’) = 2 cN.9) 

The formal manipulations will be much the same as in the Q=l case. The 

@,a dispersion relation for f. again has no left-hand cut contribution for the same 

reasons as before (we only have to replace Q-l by Q in our arguments). If we define 

we obtain the integral equation (not allowing for “Kronecker delta” terms) 

+L2)(t)=- zJz+L r("*2)(t') p(t') pr'2+t')* 

0 J (L4)(L4q2) 7r 4 
O” &I 0 t’ t (N* 10) 

- (-Jo9 2) (t’)* 

where C?(O) = 2 and c?(~) - - -1. Here are no extra branch cuts involved. We 

solve Eq. (IV. 10) for q2 < 1 which gives 19 

f(O, 2$) = _ 
0 (Iv. 11) 
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The polynomial term (i. e. , the solution of the homogeneous equation) has been 

omitted which corresponds to the view that the photons couple to the pions only 

as illustrated in Figs. 1 and 3. The polynomial term must be zero if Do (07 2) I 

const which is the most likely behavior (i.e., no Q=O, isospin 0,2 resonance; 

see Eq. (III. 12)) and, ingeneral, it does not affect the fixed pole residues at 

t=q2=0 because dio(cos e)/sin2 8 - t-4q2. 

For t=O the solution (IV, 11) can be rewritten in a similar manner as in the 

Q=l case23S 24 giving 

@, a (43) 
p(o’2)(o) = a &W) 0 
0 

8q2 DIP ) 2, (0) 
(Iv. 12) 

where (higher powers in t will not be considered in the following) 

D(O) 2, 0 (t) if If* 2)(t) 5 const 

Dto* 2+t) _ b;’ 2t 
0 

if Dr’ 2)(t) =bi’ 2t 

Equation (IV. 12) now predicts the following fixed poles (t=O) 

&0,2) $0' 2+4s2) 
A!‘&- - 

S2 D(” 2+O) 0 

and (by means of Eq. (II. 8)) 

(Iv. 13) 

(IV. 14) 

0 q22 0 
T;FP=-TB 

( 

B(O)(4q2) S2)(4q2) 

D(o) - 
0 S2)(0) 0 1 
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The fixed pole contribution to the amplitude Tl can be calculated from Eqs. (II. 8) 

and (TV. 14). The highest right-signature nonsense point of Al+q2A5 is k-2 so 

that Tl has to cancel the fixed pole contribution of A2 (a similar situation has 

led to Eq . (IV. 1)). Thus we have 

2 
Tl$‘p = - 3 T2Fp (l-v. 15) 

First of all we notice that the fixed poles coincide with the Thomson limit 

at q2=() B('s 2)(O) = D('a 2)(()) 32 7r" 
0 0 , i.e., T lFP N -2 and TIFp 2 0, which ‘lgrees 

with experiment5 (we do not believe that the inclusion of spin and minor changes 

in the isospin description will make any difference). Secondly, we obtain that 

the residue of the fixed poles is not a simple polynomial in q2 although it goes 

to a constant at large negative q2 as has been argued by several authors. 7,25 

The residue has a cut along the positive real axis starting at q2=l (=m>, so that 

the polynomial behavior very likely breaks down near this cut. 

We shall now discuss what else our model predicts for small q2. Therefore 

(0) we go to the realistic case where DQ contains several Regge poles and where 

0$2’h as no resonances (because of the absence of exotics). We furthermore 

assume 6(” 2, = D(” 2), i.e., Dr* 2! 5 const. 0 0 Then D(‘)(4q2) will have a zero 0 
where (say) the f trajectory af(4q2) passes through zero (for our following argu- 

ments it can be any other trajectory with intercept > 0). This is expected to be 

somewhere between -1 (GeV/c)2 < 4q2 2 0. (4 2 On the other hand, Do (4q ) is very 

likely a slowly varying function without any zeroes in this region. So the residues 
f f 

of _TTFp and T” 2FP have a zero for small negative q 2 if DIP’ (4q2) reaches at 

least half its value at q2=0 after it changes sign. 26 This is exactly what comes 

out in recent finite-energy sum rule calculations 27 (again for protons). The 
0 0 

residues of TIFp and TiFp have no further zeroes at small q2 (besides that at 

q2=O). 
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We still have to show that isoscalar currents do not contribute to the Q=O 

fixed poles. It is obvious that the isoscalar currents only enter into the double 

spectral functions. This means that the integral equation (IV. 10) will not be 

altered by the inclusion of these terms. So we can conclude that they do not 

contribute at all. 

V. DEEP INELASTIC SCATTERING 

We shall now discuss the scaling limit. In this limit q2 --co and (IFO) 

cos 8 N- - w t-v* 1) 

Here we consider only the scaling function vW2 given by (omitting the isospin) 

vW2=-dImA 7r cv.2) 

In order to calculate W1 and WL we had to go through the same kind of calcula- 

tions for Al and A5 as for A2. 

The scaling function vW2 is made up of the Regge-pole terms and the back- 

ground integral (Eqs. (III. 17) - (III. 19)). We solve the integral equation (III. 10) 

(in this case for general Q) as before and then continue the solution to q2 -, -03. 

In this limit the left-hand cut integral vanishes relative to the Born term for a 

large range of Q which can be verified as follows. We assume that the integrals 

JJ ds’ dtf pF9 2)(s’,tf) and SJ dsf du’ or’ 2)(sr,ut) are finite for all q2< 4. 

This should be true in order to fulfill the unitarity bound (III. 12). Then, for 

fixed t we get the asymptotic behavior (Eqs. (III. ll), (III. 13) and (RI. 14)) 

f(% 2) 5 1 
LQ 

(s214 
(within logarithms of q2) 
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For those values of Q which are involved in the Sommerfeld-Watson transform 

(III.19) (i.e., ReQ( 1) fz2’ decreases at least by a factor of (q 
2-5/2 ) faster 

than fgi 2). The main reason behind this is that the left-hand branch point 

moves to -03 as q2d -00 bL 
2 -- 

; (s2J2) l s 
o we have the same situation as 

in the parton model. That is, only the ffhandbagff diagram as shown in Fig. 3 

contributes in the scaling limit. 
1 The solution has the asymptotic form 

(again neglecting the possible polynomial term) 

f(O) 2)(O) N - (-i) -Q ,/-lr &Q-l) Q(Q+l)(Q+2) J? (Q-l) ($4 2) 

Q 4 @Q-l) (2Q+l) r(Q-+) (,@)“” 

Df,‘,,,, ’ / dt’ 

Im Df’ 2)(tf) 

t’ w. 4) 

where we have taken the q2 limit under the integrals. Equation (V. 4) reduces 

to the simple expression 

(v.5) 

if we write 

D(‘s2)(t) =a0$2+bjs2t+l 
Iln do9 2+t’) 

Q Q 
&I 

71 J 
i t (v.6) 

092 In the following we shall set aQ = 1 (provided aQ OS 2 # 0). This can always be 

achieved since the normalization of DQ to, 2) (t) is not determined by the integral 

equation. 
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The scaling function vW2 can now be written down explicitly. By using 

Eq. (V. 1) and the asymptotic expansion of Eq. (III. 9) we obtain from Eq. (III. 19) 

,w(O,2) = L 
26 

(0,2) 
2 ( 

$0,2) wa(O’2)(o)-l 

Q-l 

dQ (‘3 2cO) sin TQ - tw - (v. 7) 
DQ 

where [ 1 -1 

,,(O, 2) = aD(” 2)(O) 
Q 

8Q Q&O* 2+O) 
(v. 8) 

The contour of integration is parallel to the imaginary axis with 0 > Re Q > - f . 

(2) If we assume that there are no Regge-poles in DQ this gives for scattering off 

charged and neutral pions (including several Regge-poles in DQ (0)) 

f 
vwz”=-~ 

( c a!O)(O)-1 
p w 1 

i i 

0 
VW; =$ 

( 

c 
o!!O)(O)-1 

p w 1 
i i 

+Im[&~dQ&j--$-j-& -(W--W) (v.I-O) 

) I) 

For large w the background certainly can be neglected leaving only the 

familiar Regge terms. However, near threshold, i. e. , w - 1, the background 

integral becomes important. It is responsible for the threshold behavior and 

suggests a new type of Drell-Yan relation. 28 For 0 = 1 the contour can be 
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shifted back to the original contour around the positive real axis provided that 

(DjO’ 2)(0))-1 vanishes at infinity. This cancels the Regge terms and, because 

the integral along the positive axis is real, gives vW2(w=1) = 0. The same can 

be done for the derivatives 

anvw2 ( i ho 
n 

w=l 

whenever the integral over the semicircle vanishes. This would give 

vw2 - const (w-l) Ml 

w- 1 

Because the derivatives get extra factors of Q under the integral the highest n 

is determined by the asymptotic behavior of DQ (” 2, (0). In the case where 

,-,t’, 2, 
Q contains only Regge poles and no cuts there is a simple relation between 

the asymptotic behavior (in Q) and the number of Regge poles. This will be 

discussed in a forthcoming paper. 

We shall now show that VW, satisfies the Adler sum rule 29 

* dw J @,a = 1 to,21 

1 -;;-vw2 YP 1 
Dr7 2)(O) 

w. 11) 

if (Y(” 2)(O) < 1. Therefore we consider the background integral and perform 

the integration (Eq. (V. 11)) over w . Since a(” 2)(O) < 1 the integral exists 

and gives 

(Jf 1 i7iQ l-Fe 
D(” 2)(O) sin XQ ‘-’ Q 3 

(v. 12) 

Now we displace the contour C to the (original) contour along the positive real 

axis (here (19i7 2)(0))-1 has to vanish at infinity again 1 as before. Then only 
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the pole at Q=l contributes to the imaginary part giving 

1 P (092) 1 zz / de 1 (092) W)to) (Q-1) = -z l3 1 (v. 13) 
co DQ Dry 2)(O) 

where Co is a small circle around Q=l. This proves the sum rule (V. 11). 

Finally we derive the fixed pole sum rule 

lim Tf!,!,:) = - lim 

q2-WJ q 

I 
= 2 dw vwFp2) -c p 3 2) w- 14) 

i ,(09 yo) i 
i 

where 

do9 2)(o)-1 
vq7(o¶2) = v~to¶2) _ c ~6w~yfL2) w 1 

2 2 (v. 15) 
i 

This sum rule has been derived in a slightly different form by Cornwall, 

Corrigan and Norton 25 and Brodsky, Close and Gunion. 1 The integral in 

Eq. (V. 14) exists since Re Q ~0 in the background integral. The integration 

over w gives 

. 

de 1 1 +elaL 
D(‘~~)(O) sin 7rQ ’ Q I 

Now the contour can be displaced as before which gives back the Regge terms 

and a contribution from the pole at Q=O. Then the right-hand side of Eq. (V. 16) 

- becomes 

i 
c 

1 +w + 1 
i $4 yo) i Df’ 2)(O) 

w. 17) 
i 
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This proves the sum rule if we remember that we have chosen the normaliza- 

tion 

lim 
q24-m 

$0’ 2)(4q2) = 1 

(Eqs. (IV.3) and (V.6)). 

In the scaling limit isoscalar currents again do not contribute. This 

follows from the fact that the left-hand cut integral vanishes, so that the argu- 

ments given at the end of the last section hold. 

VI. CONCLUSIONS 

We have presented a bootstrap approach to Bjorken scaling and Q=O fixed 

poles in virtual Compton amplitudes. The characteristic feature of this 

approach is that it only deals with physical particles and provides a connection 

between the Regge and the scaling region. Scaling is a direct consequence of 

the property of the (bootstrap) currents to fulfill the (SU(2)) current algebra. 

In the scaling region’this approach turns out to be equivalent to the parton 

model from the point of view of perturbation diagrams’ (only the %andbagft 

diagram contributes). The single dispersion integrals of the Mandelstam 

representation (III. 1) take over the role of the parton propagator, i. e., 

pl(sl) = const (independent of q2) , 

and lead to the same point-like structure as the parton model. The scaling 

function vW2 is completely determined by the denominator functions DQ of the 

~7r amplitude (in our approximation). Near threshold (i. e. , 0 - 1) 

vW2 2 const (w-1) m where m is given by the asymptotic behavior (for integer m) 

DQ(0) N Q”. At large W, vW2 is Regge behaved: vW2 3: y w o!-1 . 
Q- 
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The fixed pole sum rule (V. 14) differs from the Cornwall, Corrigan and 

Norton25 and Brodsky, Close and Gunion’ sum rules with respect to the fixed 

pole residues which have to be taken here at q2 = - 03. The sum rule (V. 14) 

does not require a polynomial residue (in q2) as in the parton model6 which 

is indeed not the case. 

We found that the Q=O fixed pole residues have a cut in q2 starting at q2=1. 

The residues behave like a polynomial for q2 - - 00. But near the cut the 

polynomial behavior breaks down. Such a behavior is strongly supported by 

the Regge-pole analysis of forward virtual Compton scattering. 27 The specific 

form of the residues is a direct consequence of t-channel unitarity. This need 

not apply in the parton model (can partons be produced?). If not, the parton 

model definitely gives a different behavior (e.g. , polynomial residues6). 

At q2=0 the fixed poles coincide with the Thomson limit. This is in 

excellent agreement with experiment. Further tests of this model will be 

discussed in a subsequent paper in which this approach is applied to deep 

inelastic e+e- annihilation. 
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FIGURE CAPTIONS ‘\ 
‘~\ 

1. Single spectral function contribution to the Mandelstam representat>n. 
\. \ 

2. The contour of integration of the Sommerfeld-Watson transform showing 

the background and fixed pole contribution (Cl) and one Regge pole (C,). 

3. Diagram contributing to the fixed poles and to the Bjorken limit. 
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FIG. 3 


