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ABSTRACT 

We consider special critical points in multicomponent fluid mixtures, where 

critical phenomena occur between three phases simultaneously. We show that 

although such points may be the intersection of three lines of critical points, they 

are not in general analogous to the tricritical points originally proposed by 

Gr iffiths. Rather the three lines are part of a single surface of critical points 

and the special point occurs where the boundary of the surface of critical points 

is a maximum with respect to a particular variable selected experimentally 

(usually temperature). We suggest experimental tests to determine whether the 

boundary is singular at the point, making it also a special point. Finally, we 

relate the entire discussion to the recently proposed concept of order for critical 

points and discuss the possibilities of special scaling. 
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I. INTRODUCTION 

In 1970 Griffiths’ proposed the concept of a tricritical point as being the 

point of intersection of three lines of critical points in a phase diagram using 

intensive thermodynamic variables. He further suggested as examples meta- 

magnet s2 , He3- He4 mixtures3, and ammonium chloride’. There has also been 

considerable speculation that similar points might exist and might be found in 

the phase diagrams of complex fluid mixtures. In fact, following a suggestion 

by Kohnstamm’, situations where two phase boundaries become critical simul- 

taneously have been observed by Radyshevskaya’ , Krichevshii7, Efremova 8,9,10 

and their co-workers”. In such cases, a particular phase diagram may contain 

a point where three lines of critical points intersect, and which therefore is 

apparently a tricritical point. 

In this work we analyse, in Section II, a typical sequence of phase diagrams 

for complex fluid systems, one of which shows a tricritical point. We show that 

the lines of critical points generate a single connected surface of critical points. 

In contrast, in the examples given by Griffiths, there are definitely three definite 

and distinct lines (or higher dimensional spaces) of critical points, and it is 

impossible to pass from one line (or space) of critical points to another without 

passing through a tricritical point. 

We therefore suggest that the special points found in the phase diagrams of 

multicomponent fluid systems as exemplified by the example given in Section II 

are best understood not as points with special critical properties, like a tri- 

critical point, 12,13,14 but simply as a point on the boundary of a surface of 

critical points, where the boundary bears some special geometric relation to 
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the thermodynamic axes. Thus the special point is more analogous to a critical 

azeotrope, as discussed by Griffiths and Wheeler 15 , rather than to a tricritical 

pointl. 

In Section III we propose a model surface in a three dimensional space 

which exactly mimics the shape of the real surface of critical points in the full 

four dimensional space of field variables. 

In Section IV we relate the model surface to the experimental results and 

show that it enables one to understand all the behaviour discovered so far in 

terms of the geometry of the line of critical end points (i. e. the boundary of 

the surface of dritical points). In particular, we show that the line of critical 

end points passes through a temperature maximum. 

In Section V we relate the ideas to the concept of order 16 of critical points 

and also to the possibility of special scaling at the special point. 
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II. PHASE DIAGRAMS FOR MULTICOMPONENT FLUID MIXTURES 

Several different experimental arrangements 6-11 
have been used to observe 

complex critical points in fluid mixtures. They are all variations on the simple 

theme originally proposed5, so we will analyse the phase diagram for the funda- 

mental experiment first and consider in detail the relationships and similarities 

between this experimental situation and the others in Section IV below. 

The basic idea is to consider a system where three distinct phases can be 

in equilibrium. These might be three liquids or two liquids and a vapour phase. 

On changing the thermodynamic variables (temperature, pressure, chemical 

potentials of different components) one pair of phases will become critical, in 

the presence of the third. In a binary system this point is the end point of a line 

of critical points which bounds the surface of points where the two phases 

coexist. There are no degrees of freedom and such a point is unique in the 

phase diagram. 

In a ternary, quaternary or more complicated system this point has one or 

more degrees of freedom. Thus a line of “critical end pointsl’ is possible. Such 

a line is the boundary of a surface of critical points where two phases are critical. 

In the particular systems of interest it is possible by varying physical 

conditions to make a different pair of the three phases become critical in the 

presence of the third, thus producing a second line of critical end points. 

Finally by achieving exactly the correct physical conditions it is possible 

for all three phases to become critical simultaneously. In a ternary system 

such a point is unique, there are zero degrees of freedom. In this paper, only 

this and similarly simple cases are considered. 
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Experimentally one has the following kind of arrangement. A tube con- 

taining a three component mixture with a three phase system is cooled to 

observe the appearance of successive phases. We will call these phases A, B, C 

where for purposes of argument pA > pB > pc. The ratio of the various com- 

ponents is varied until the second meniscus appears via a critical mode. This 

could be the lower meniscus in which case phases A and B become critical at 

a lower temperature. If pressure, temperature, and one other intensive para- 

meter are allowed to vary, a phase diagram of the type shown in Figure (la) 

will be observed. At the point P, the phases A and B become critical in the 

presence of a third phase C. If pressure is increased, the lightest phase C will 

disappear and a line of critical points between phases A and B will develop. P 

is the end point of this line of critical points. For increasing temperatures 

above P, there will be a line of critical points bounding the surface of critical 

points which separates the region of light phase C from the region of the heavier 

phase AB. 

By varying the ratios of components appropriately, it is possible, in the 

physical systems of interest, to make the upper meniscus, separating phase B 

from phase C, appear second on cooling. The corresponding phase diagram is 

shown in Figure (1~). Again there is a special point Prr which is the end point 

of a line of critical points for phases B and C, and which is also the end point 

of the line of points where three phases coexist. If the temperature is increased 

above Prr then the coexistence surface separating phase A from the combined 

phases BC will terminate in a line of critical points. 



-6- 

If the transition to the phase diagram of Figure (lc) happens by a continuous 

variation from Figure (la) then there must be a situation where both menisci 

become critical simultaneously. This was the situation postulated by Konstamm5 

and the corresponding phase diagram is shown in Figure (lb). It may be seen 

that the point P of Figure (la) has migrated along coexistence surface to the point 

Pf on the boundary. At the point Pf all three lines of critical points, a (AB 

critical), b(AC critical), and c (BC critical) meet. 

These considerations show that the point Pf where the two menisci become 

critical simultaneously is a tricritical point. However, it is a tricritical point 

of a very different nature from those originally proposed by Griffiths’ (see 

introduction), as is demonstrated by the following assertion: If The lines of 

critical points a, b, c in Figures l(a-c) form single continuous surface of critical 

points bounded by the line of critical end points P, PI, Pff. In fact it is possible 

to go from a point on the line a in Figures (la) or (lb) to a point on the line c in 

Figures (lb) or (lc) without ever passing through the point PI. If 

In contrast, in a metamagnet, it is never possible to go from a point on 

the wing boundaries to a point on the physical critical line without passing through 

a tricritical point, and this shows that the systems should not necessarily be con- 

sidered related as far as properties of the special point are concerned. 

To demonstrate the above assertion, consider a point on line a in Figure (la); 

move continuously through Figure (lb) to Figure (1~). Now move along the line 

a-b to a point at the ffbff end. Now move back continuously through Figure (lb) 

to Figure (la). Still being on line b, we can move along the line b-c to the 11 cl* 

end. Now move continuously through Figure (lb) to Figure (lc) and our assertion 
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is demonstrated. We have not passed through the point Pf and so the lines 

a, b, c form sections of a single continuous surface. A model for this surf ace 

is considered in the next section. 
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III. A MODEL FOR THE CRITICAL SURFACE AND ITS BOUNDARY 

The phase diagrams of Figures (la, b, c) were three dimensional and so 

parametrizing them with an extra field variable introduces a fourth dimension 

to the phase diagram. The connectivity, and other properties, of the surface 

of critical points formed by the critical lines a, b, c of Figure 1 , are most 

easily studied in a three dimensional subspace of the full phase diagram which 

contains the whole critical surface. The shape of the critical surface in such 

a subspace may be determined as follows: 

Consider the critical lines as they appear on the paper in Figures (la, b, c) 

and consider how these lines would form a smooth surface in three dimensions 

if the extra parameter were used to plot the height of the paper, with Figure (lc) 

above Figure (lb) above Figure (la). By this combined projection and motion 

we generate a single connected surface of critical points with a boundary formed 

by the line of points P, PI, Pft . 

A surface which is topologically equivalent to the surface of critical points 

thus obtained is shown in Figure 2. Figure 2 is a contour map of the surface, 

and the heights h of the contours are given by the hyperbolae xy = h. The boundary 

of the surface P, Pf , Pff is represented by the parabola y = - cx2 in the lower half 

of Figure 2. The topological equivalence of the surface of Figure 2 to the surf ace 

of critical points may be seen as follows: 

Consider a section of Figure 2 at constant height h. If h > 0 there are two 

hyperbolae, one in the upper right quadrant and one which terminates on the 

portion of the parabola labelled P in the lower left. This is a representation of 

Figure (la) for which there are two critical lines, one labelled *a* terminating at 

P and another labelled (b-c). 
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If h < 0 there are again two hyperbolae, one in the upper left quadrant 

which corresponds to the line of critical points (a, b) of Figure (lc), and one in 

the lower right quadrant of Figure 2 which corresponds to the critical line c 

terminating at Prf in Figure (1~). 

When h = 0 the hyperbolae degenerate into the three axes, for x < 0, 

y < 0 and x > 0 corresponding to the lines a, b, c of Figure (lb) which terminate 

at PI. 

Accordingly, in Figure 2, the ends of the hyperbolae are labelled a, b, c 

according to the parts of the critical lines in Figure 1 to which they correspond. 

The complete topological correspondence between the sections of the 

surface in Figure 2 and the critical lines of Figure 1 is therefore clear. The 

points P, P* , Pff are a smooth line forming a boundary of the surface of critical 

points, and the point Pf which is the tricritical point corresponds to a saddle 

point of the surface in the projective space. 

It may seem that a very special space has been chosen, and that the boundary 

has been made to go in a very special fashion - through the saddle point. How- 

ever, this is merely in accordance with the following general physical requirements. 

(i) Only one point P occurs in each phase diagram; therefore the boundary 

has to pass from the lower left quadrant to the lower right quadrant without 

passing through through the upper two quadrants. 

(ii) Critical lines only split or end at a point like P. Thus the point P has 

to pass through the origin where the section would otherwise necessarily give 

four lines of critical points intersecting. 

One question that is open is whether the boundary passes smoothly through 

the origin as indicated in Figure 2, or whether the lines P and Pff in Figure 2 
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intersect at a finite angle. This can be decided experimentally by tracing out 

the line of points P, PI, Pff in the four dimensional space and seeing if it is 

smooth. Any projection of the line can also be plotted provided that the direction 

of projection is not tangent to the line at the point P’ . 17 

If the line P, P * , Pff is smooth, the non-uniqueness of the point P’ is 

entirely self-consistent. This can be seen by considering Figure 2; if a dif- 

ferent physical variable had been held constant, then one would be choosing 

cross sections of the surface that were not horizontal, but were a family of 

surfaces one of which was tangent to the critical surface, not at Pf but at a 

different point on P or PII. The new point of tangency would correspond to a 

different point in the full four dimensional field space. Therefore the apparent 

tricritical point would be a completely different point on the line P, Pf , PI*. 

In such cases, the tricritical point’ is not unique, but depends entirely on 

the choice of variable that is held constant to obtain the phase diagrams Figure 

(la, b, c). Under these circumstances, calling Pf a special “tricritical point” 

only serves to obscure the reality of the situation. 

This is the situation which we suggest holds experimentally: that no unique 

tricritical point has been found, but that the boundary of the surface of critical 

points has assumed a special orientation. In the artificial example of Figure 2 

the boundary passed through a saddle point and a maximum of the variable y. 

In the next section different special orientations will be demonstrated. 

It is still possible for the point Pf to be unique. For instance, if the line 

of points [P, Pf , Pff] is not smooth at Pf (as mentioned in Section II) then Pf is 

a special point. 
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There is a second way in which Pf could be special, and that is if the 

critical surface developed a singularity there. In that case the boundary would 

not be smooth either, so this second case implies the first but not vice-versa. 

The way to tell if the critical surface is smooth at Pf is to determine whether 

the three critical lines a, b, c meeting at Pf are coplanar. If they are coplanar 

then the surface can be smooth, whereas if they are not it cannot possibly be. 

The analysis in terms of a saddle point suggests that the lines a and c join 

smoothly at P * , but while this is also possible it could be the result of the pro- 

jection. Thus the coplanarity of a, b, c at Pf (which is a weaker condition than 

colinearity of a’, c at PI) is a better test of smoothness of the surface of critical 

points. 

If either of these two cases is true then the tricritical point P’ is indeed a 

special point, but otherwise Pf is a point on a smooth boundary of a smooth 

surface and should have no special properties. The implications of this for 

scaling are discussed in Section V. 
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IV. RELATION TO EXPERIMENT 

Here we relate the analysis of the two previous sections to the various 

experiments that have been performed on multicomponent fluid mixtures. 6-11 

All these experiments locate the boundaries of a region where three phases 

coexist and look for special critical points thereon. Systems of at least three 

components are used, for reasons explained in Section II, and the constant 

pressure, constant temperature phase diagram data have been reported in terms 

of the relative proportions of the three or four components, i. e. in terms of 

the usual triangle or tetrahedral phase diagram. It is easy to make a qualitative 

translation from these phase diagrams to the form in terms of intensive field 

variables (relative chemical potentials of the components) which Griffiths and 

Wheelerl’ suggested were more useful for the study of critical phenomena. 

However, the latter are more difficult to determine experimentally than the 

usual phase diagrams. 

The first system to be investigated specifically to look for the phenomenom 

of the simultaneous appearance of two menisci by a critical mode was the system 

butane, water, acetic acid. 7 Between the temperatures 152’ and 185’ there 

are two critical points possible, one between two lighter phases in the presence 

of a heavier “liquidl’ and another between two heavier phases in the presence of 

a lighter ‘*gas. I1 As the temperature approaches 185’ the compositions of the 

phases involved at the different critical modes approach each other and above 

185’ it is no longer possible to have three different phases in equilibrium. This 

was interpreted 798 as being a point where two different lines of critical end 

points intersected. From our point of view we propose that this should be 



-13 - 

regarded as a point where a single line of critical end points passes through 

a temperature maximum; i. e. a tangent to the curve at the special point is 

perpendicular to the temperature axis. This is in qualitative agreement with 

the experimental data7 ; it is also indicated by the extremely rapid variation 

in composition of the critical end points near the special point. 

A corollary of this interpretation is that the liquid, liquid critical 

phenomena, are very similar to the liquid gas critical phenomena (i. e. same 

exponents) since they are part of the same surface of critical points. 

A system similar to the one just described is carbon dioxide, methanol, 

water. 839 Here again there are two critical end points at the same temperature 

which approach one another as the temperature is increased to 45’C. Above 

this temperature there are no compositions where the three phases may be found 

in equilibrium. We again interpret the special point as a point where a single 

line of critical end points passes through a temperature maximum. 

For the system carbon dioxide, methanol, water the larger number of 

phase diagrams provided (Figures 1,2,3 of reference 9) enables one to see 

clearly that the various lines of critical points do indeed form a single connected 

surface, and this provides confirmation of the arguments of Section II. In terms 

of the model surface, Figure 2 of Section III, we have chosen the variable y as 

the temperature. For y < 0 (T < T special) the surface of critical points is 

cut into two disconnected lines ending at two different critical end points which 

in turn are joined by a line of points where three phases coexist (c. f. Figure 2 

of reference 9) and for y > 0 (T > T special) there is a single line of critical 

points. When all are combined there is only a single surface of critical points 

with a continuous boundary. 
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Another aspect of the system carbon dioxide, methanol, water, which 

deserves comment is that when a constant volume specimen (i. e. a sealed tube) 

of precisely the correct composition is increased in temperature, one does 

not observe the simultaneous disappearance of two menisci. Instead’ one 

meniscus disappears critically and simultaneously a second appears critically. 

This remarkable behaviour does not change any of our geometric conclusions, 

because it can be interpreted as follows: the constant volume, constant com- 

position path does not follow the line of points where three phases coexist in 

Figure (lb). Instead it passes from one coexistence surface (A, B) to another 

(B, C) directly through the point PI. 

The other class of systems where the special points have been observed 

are four component systems. 6 Here the phase diagrams make it clear from the 

start that there is only one surface of critical points and that there is an 

extremum beyond which the system does not exhibit three phases but only two. 

Thus the special point is again an extremum on a line of points where three 

phases coexist. Experimentally a temperature maximum was observed for the 

existence of three phases in the system ammonium sulphate, water, ethanol, 

benzene. In this kind of experiment the role of the fourth component is to obviate 

the need to vary the pressure’, making experimental apparatus and procedures 

much simpler. If the pressure was also varied in this or similar systems, 

even more interesting critical behaviour could conceivably be found. 
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V. ORDER AND SCALING 

In this section we are concerned with the order of the critical points 

discussed in the last three sections, and also with the related property of scaling. 

Order of spaces of critical points 16 was introduced to classify spaces of 

critical points in complex magnetic systems. Specifically, the order of a par- 

ticular space of critical points was defined to be one more than the order of 

the spaces of critical points which intersected these, and ordinary critical 

points were defined to be of order 6’ = 2. Thus a tricritical point is of order 

d = 3. In the examples given in reference 16 the points of order 3 are stable 

under changes of a parameter: thus the tricritical point remains a tricritical 

point; for He3, He4 mixtures as the pressure is changed, and in metamagnets 

as the interplanar interaction strength is varied. In one example, the model 

analysed by Nagle and Bonner, the tetracritical point (where four lines of 

critical points intersect) splits into two tricritical points as a parameter is 

varied; it was pointed out that the tetracritical point is a point on a smooth line 

of tricritical points and arises because a hypersurface of the full four dimen- 

sional space which is tangent to the line of tricritical points has been chosen. 

Thus the special f’tetracritical” point arises because of a special geometry and 

not from any intrinsic special properties of the point. Indeed by taking different 

hypersurfaces, of the four dimensional space, any other point on the line of 

tricritical points could be made to appear a tetracritical point. 

A similar case is occurring here: under the variation of a parameter the 

tricritical point is splitting, in such a way that all the critical lines form a single 

surface, Figures (la, lc) as opposed to Figure (lb). Further if the point P’ is 
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a point on the smooth boundary of a smooth surface, as suggested in Sections 

III and IV, then different points on the boundary could also be made tricritical 

points by choosing different thermodynamic variables to be constant. Since 

P’ is never the point of intersection of different spaces of critical points of 

order two, but is merely the point of intersection of different subspaces of a 

single space of critical points, it should not be classified as a critical point of 

order three. Rather it should be described as a point on the boundary of a 

space of critical points of order two, and whether it is associated with a singu- 

larity of the boundary (and is therefore a special point) must be determined 

experimentally; 

One way that a critical point of order three could develop in these systems 

would be if the sequence of phase diagrams was Figure (la), Figure (lb) and 

back to Figure (la) again. The point P migrating to the boundary of the coexistence 

surface and then back on the same surface. Here the line of critical points a 

would form a distinct critical surface different from that swept by the line of 

points b, c. The two distinct critical surfaces would intersect at P1 which 

would therefore be a critical point of order three. 18 Note that usually there are 

three different spaces of critical points intersecting at critical points of order 

three but here there would only be two. 

The definition of order of a critical point depends only on the phase diagram. 

However it has recently been shown that scaling laws may be valid at all spaces 

of critical points because of the existence of fixed points of the renormalisation 

group in the space of all Hamiltonians. If order is a fundamental property of 

spaces of critical points it should be related to properties of critical spaces 

dedeuced from the renormalisation group approach. 
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In all the examples known to the authors, and as proposed in reference 16, 

the order of a critical point is equal to the number of relevant scaling field 

variables. If this is taken as an alternative definition of order, then one has a 

separate criterion to classify the order of the point P’ . 

If P’ is a special point of the surface and/or the boundary, there may be 

an extra scaling hypothesis valid at P1 and no where else. It may possibly be 

an isolated critical point of order three. If, however, PI is a point on the 

smooth boundary of a smooth surface of critical points, there should be no 

special scaling hypothesis valid at P’ unless one is also valid at P and PYJ, 

then the whole boundary could possibly be of order 3. This is a very interesting 

experimental question, and suggests that investigation of the scaling exponents 

on the critical surface and at the boundary of the critical surface of experimental 

systems would be worthwhile. 

I 
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VI. CONCLUSION 

We have shown that for the class of experimental systems considered, 

the lines of critical points form a single continuous surface, and that the 

special points suggested by Kohnstamm and found experimentally are probably 

points where the boundary of the surface of critical points has a special 

orientation with respect to the thermodynamic variable axes. 

The universality hypothesis implies that critical point exponents are the 

same at every point of the surface and we conclude that surprisingly, there 

are not necessarily any special critical properties at the special points, ana- 

logous to those at the tricritical points. l-4,12-14 

Secondly, we have suggested experimental measurements that would decide 

whether the tricritical point P* was really a point on the boundary of a smooth 

surface or whether the surface and/or the boundary possesses a singularity 

there. If both the boundary and the surface are smooth, as was the case for 

the particular model given in Figure 2, any special property of the point P* 

should be a property of the whole boundary (P, Pr, P**). If the scaling exponents 

were found to be different at P’ , then in this case they should be different for the 

whole boundary. 

Alternatively, failure to find special scaling at the point P* should not be 

taken to indicate the failure of scaling at tricritical points in general, but only 

that one should be very careful to consider at which critical points to investigate 

the validity of special scaling hypotheses. In particular the tricritical point 

s hould be a genuine critical point of order 3, that is to say, it should be stable 

under small variations of a parameter instead of degenerating into different end 

points P and Prr. 



-19- 

ACKNOWLEDGEMENT 

We wish to thank Professor R. B. Griffiths for a most stimulating 

conversation. 



-2o- 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

REFERENCES 

R. B. Griffiths, Phys. Rev. Letters 24, 715 (1970). 

V. A. Schmidt and S. A. Friedberg, Phys. Rev. Bl, 2250 (1970). - 

F. Harbus and H. E. Stanley, Phys. Rev. Letters 29, 58 (1972) and Phys. - 

Rev. _B (to be published). 

G. Goellner and H. Meyer, Phys. Rev. Letters 2, 1543 (1971). 

W. B. Yelon, Phys. Rev. B (to be published). 

P. Kohnstamm, “Handbuch der PhysikJJ Vol. 10, 271 (1926). - 

G. S. R. Radyshevskaya, N. I. Nikurashina and R. V. Mertslin, Russian 

Journal of General Chemistry 32, 673 (1961). 

I. R. Krichevskii, G. D. Efremova, R. 0. Pryanikova and A. V. Serebryakova, 

Russian Journal of Physical Chemistry 37, 1046 (1963). 

G. D. Efremova and A.. V. Shvarts, Ibid. 40, 486 (1966). 

G. D. Efremova and A. V. Shvarts, Ibid 43, 968 (1969). 

G. D. Efremova and A. V. Shvarts, Ibid 46, 237 (1972). 

N. I. Nikurashina, G. I. Kharitonova, and L. M. Pichugina, Ibid 45, 444 (1971). - 

E. K. Riedel, Phys. Rev. Letters 2, 675 (1972). 

A. Hankey, T. S. Chang, and H. E. Stanley, Phys. Rev. Letters 2, 278 (1972). 

E. K. Riedel and F. Wegner, Phys. Rev. Letters 29, 349 (1972). - 

R. B. Griffiths and J. C. Wheeler, Phys. Rev. A2, 1047 (1970). - 

T. S. Chang, A. Hankey, and H. E. Stanley, Phys. Rev. B8 (to be published). - 

In concrete terms this means that temperature should not be included in the 

variables used to plot the position of point P. 

Note that Eq. (1.1) of reference 16, I would be satisfied as an inequalitv. 



-21- 

FIGURE CAPTIONS 

Figure 1 Phase diagrams exibiting an end point of a line of critical points 

where two phases are critical in the presence of a third. The 

axis t is temperature, while v,u are pressure and a chemical 

potential. Three phases A, B, C exist in the regions indicated and 

coexist on the various surfaces, labelled 2X2 in the notation of 

reference 16. The coexistence surfaces are bounded by lines of 

critical points a, b, c labelled 2Rl, also in the notation of reference 

16. 

(a) The line of critical points a ends at P. 

(b) The lines a, b,c end at a JJtricritical point” P’. 

(c) The line c ends at the point PJJ . 

Figure 2 A, contour map of a model surface equivalent to the surface of 

critical points of Figures (la, b, c). Experimentally the variable 

y is temperature. 


