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I. INTRODUCTION 

Recently, valuable insights into a method of resolving certain long-standing 
. 

difficulties of the “quark model” have been provided by Melosh. ’ These diffi- 

culties stem from the failure to distinguish between two separate “quark 

models”. 2 In one model, dubbed the l’current quark” model by Gell-Mann, 

operators with the algebra of SUGw are defined as integrals of certain vector 

and tensor densities formed from local quark fields. 3 The SU2 x SU2 subalgebra 

of these operators leads to the highly successful Adler-Weisberger sum rules. 4 

However, careful studies of the way these sum rules are saturated indicate the 

physical hadrons do not fall into multiplets of this algebra.’ They transform 

as reducible representations. 

The second kind of “quark model” treats the quarks as though they were 

constituents (in some abstract sense) of the hadrons. 6 Insofar as spectroscopic 

assignments are concerned, low lying hadron states seem to fall into pure multi- 

plets of an SU6W group involving the unitary spins and Pauli spins of the quarks. 

The Johnson-Treiman relations, ” as well as numerous predictions on transition 

rates, 8 indicate these classifications are also valid for collinear processes. 

The question arises whether this group 

any simple way. 

is related to the “currents” group in 

It has been suggested from time to time that there may exist a transforma- 

tion which takes the set of “current” SU6w generators into the f’constituent” 

SU6 w generators . 9 Melosh has given an example of the form such a transfor- 

mation might take within the context of the free quark model. He arrives at 

the succinct expression’ 

vM 
i = exp 

s 
d% q’(x) arc tan 

7. * FL 

2 - 46) * m (1) 
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The similarity of this expression to the Foldy-Wouthuysen transformation 

suggests a simple physical interpretation. To the extent that in the “constituent” 

quark model hadrons are treated as nonrelativistic bound states of fermions, 

it is convenient to identify the spins of the fermions as those which have a cor- 

rect nonrelativistic limit. The FW construction provides us with such an 

identification. Further, Bitar and Gursey 10 have established that the relation 

of these spin operators to operators relevant to interactions with currents, 

such as the magnetic momentum operator, is also given by the FW transformation. 

An essential restriction recognized by Melosh is that to maintain the collinear 

properties of the symmetry, the FW expression must be modified to have no 

dependence on p, . 

With this transformation it is possible’ to resolve certain of the difficulties 

arising from the naive identification of the two “quark models.” The algebraic 

structure of the transformation is such as to allow the anomalous magnetic 

moments of the 56 L=O baryons to be nonvanishing. With further simplifying - 

assumptions, Gilman and Kugler 11 have gone on to make a series of quantitative 

predictions. 

Since the interesting applications of these transformations involve sum rules 

for matrix elements of charges between infinite momentum states, it is relevant 

to inquire whether the interesting qualitative features of the transformation 

become more transparent if one works directly with the so-called “light-like 

charges. It The virtues of such charges in sum rule work have been discussed 

extensively by a number of authors. 12 For example, it is possible to rederive 

relations previously obtained only by using the p -c 03 limit, such as fixed mass 

current algebra sum rules 13 and the algebraic realization of chiral symmetry, 14 
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without invoking that limiting procedure. The light-cone formalism is reviewed 

in Section II. 

In Section III we will find that there is a large class of possible “light-like” 

transformations that lead from “current” charges to acceptable “constituent” 

charges. The general form of these transformations is 

where F is an arbitrary function of its arguments with the property F(O)=O. In 

the remainding sections of the paper we will examine the interpretation and 

consequences of this nonuniqueness. 

In Section IV we find that the large class of possible transformation in the 

light-cone formulation has a straightforward interpretation in terms of changes 

of possible spin bases. The light-cone formulation permits us to separate these 

purely kinematic aspects of the transformation from the obscuring complications 

due to pair states created by VM in the equal-time formulation. This simplifi- 

cation is possible because v’, Eq. (2), is a “good” operator and does not create 

pairs in the light-cone formulation. We also discuss the manner in which the 

nonuniqueness of the transformation is present in the equal-time formulation. 

The nonuniqueness of the constituent operators has bearing on the interpre- 

tation of the dynamical information supposedly revealed in certain SU2 x SU2 

calculations. We have in mind the notion’ that the correction of (Ga/Gvhucleon 

from its group theoretical value of (5/3) to its experimental value leads to the 

dynamical condition <p2> =m2. 
q 

It is now clear that any transformation with the 

algebraic structure of VM will give some correction to Ga/Gv; but the ‘*dynamic” 

content of the correction depends on the particular representation in which the 

wave functions of the states and the relevant transition operators have been 
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written. Not unexpectedly, one will arrive at a 95ghtt1 ? if one exists when 

consistent interpretation of all matrix elements is possible. These matters 

are considered more extensively in Section IV. 

So far an important fact has been neglected to allow for a clear presenta- 

tion of the essential ideas of the investigation. It is that the light-like “current” 

charges (as defined in Section II) commute with the light-like Hamiltonian, 

whereas not all the equal-time Itcurrent” charges commute with the equal-time 

Hamiltonian. This shows that the light-like “current” charges and the equal- 

time 17currentt1 charges are essentially different operators. Such a possibility 

should be expected since there is no unitary transformation which relates equal- 

time and light-cone commutators. The light-cone commutators contain structures 

which are not limits of expressions away from the light-cone and which there- 

fore cannot be obtained by taking the p -00 limit of equal-time expressions. 

For example, it is known that the light-cone commutators determine the fixed 

mass sum rules;12 the p --cc0 method sometimes fails to convert an equal-time 

commutator into a light-cone commutator. 13 

The differences between the p -03 limit of an equal-time theory and a light- 

cone formulation are irrelevant for understanding the kinematic aspects of v 

discussed above. However, they are important in delineating the classes of g 

which one may wish to consider. In Section III we have taken the simplest 

approach possible: Since the “current” charges are conserved, and the 

“consitutent” charges are to be conserved, a conserved v has been chosen. 

There are other possible avenues of investigation. Section V represents an 

excursion into one of the possible new directions. The conditions the transfor- 

mation must satisfy so there will be a conserved “spin” quantum number in 
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potential theory models are discussed. The details are exhibited for the simple 

case of the two-dimensional transverse oscillator. 

II. LIGHT-CONE ANALYSIS OF SU(6)w CURRENTS 

In this section we introduce our notations for light-cone quantization, 
15 

and define the generators of SU(6)w currents in this formalism. We also give 

the form of the states that transform as representations of this group. 

In addition to the usual quantization on the spacelike plane +O, it is possi- 

ble to quantize a field theory on a hyperplane tangent to the light cone, conven- 

tionally taken to be the hyperplane x+ = t+z/& = 0. The metric tensor is given 
. . . . 

by g* = g--=0, g+- = g-+= 1, glJ=+JIJ; where the standard notation for vectors, 

VE”, is Vf = V”*Vz/$Z, * and V1 for i equal x or y; tensors are treated similarly. 

For the free quark model the Lorentz generators may be written in the 

general form * 

P’ = i [d4x 6(“,““) q(x) ncyu e q(x) Pa) 

t3b) 

The Lorentz generators appropriate for the light-cone quantization’are obtained 

by letting n2=0 and n-=1, n'=O=n' in the above expressions. (We will distinguish 

light-cone operators from the usual equal-time operators by placing tildes on 

light-cone operators. ) These expressions for the light-cone Lorentz generators 

can be simplified by removing the dependent components of the quark field; that 

is, those components that do not obey a dynamical equation of motion. An an 

example of how this is accomplished, consider the light-cone Hamiltonian 
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“H = P”- given by 

“H = S dx- dzL q(x) -it- -i-J -k + q(x) 
8X’ dXJ 

(4) 

We may write q(x) = q (x)+%(x), where q+(x) = P&q(x), and P* are defined by 

p+=Y$ and p ~$?I~ 

Using the Dirac equation it is possible to express q-(x) in terms of q+(x), 

cl-@) = z -IL ;(p&+ti) cl+(x) * 

The operator l/n is defined by f f(x) = $ sdy- E(X--y-) f (x’, xi, y-). The 

dependent components may now be eliminated from “H to obtain 

q+(x) 

(5) 

(6) 

Explicit forms of the other generators are listed in Appendix A. 

The canonical commutation rules for the independent components of the 

field in the light-cone formulation are postulated to be 

The commutation relations involving redundant components of the field follow 

from the above commutator and the constraint equation (5). 

In the free quark model the generators of the SU(6)w of “currents” may be 

written as follows: 

Qi = i sd4x 6 (npfl) 4(x) nF? % q(x) 

Qil = iJd*x d(11~2) q(x) np?YL’Y5 % q(x) 

Qiz = i sd4x 6(n~~) q(x) np? uz 1 q(x) 

(88) 

(8b) 

(8~) 
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The form appropriate when discussing the space-like quantized theory is 

obtained by setting n2 =+l (conventionally nO=l, GO). When n2=+1 only the 

vector charges are conserved. 

The light-like charges are constructed by using n-=+1, n+= ii1 = 0 in 

Eqs. (8) above. It is easy to check that 

[&,B]=o, [Q~~,~]=o, and [Q~,~]=o 

the operator Qiz is equal to the light-like axial charge Qi5. Therefore chiral 

bJ(3) x Sw~lcurrents is a conventional good symmetry in the light-cone 

formulation, as is SU(6)w currents . 
, 

In the free quark model the operators qi and qia! commute with the Lore&z 

generators R3 and 

Bi = pi + ~ijri)/~ ; i= 1,2; e12 =+l . 

Thus it is possible to construct representations of SU(6)w currents for states 
, 

of arbitrary momentum, provided these states are constructed in the ~llight-like 

helicity basis”, 15 defined by 

+iwK 
lp+,FL,A>q = e 

+ip B’ 
3 e 11 m, 

I 
4-9 

This is another indication of the utility of 

T h>=b$p+ 
1’ 

; h)lo> ‘1’ (9) 

working in the light-cone formulation. 

We can go even further and construct direct product states of total mo- 

mentum zero of the general form 

Al.. . n A Q 
f(i&’ - - l 5--,Tl,, . . . J,) ca n 

1 . . . an i=l 



In the free quark model the “wave function I’ 

coefficients C 
hl,...hn 

f(f;;,n) is equal to unity, and the 

aI,. . .an may be chosen in such a manner that the state tians- 

forms according to a given irreducible representation of the SU(6)w currents 
3 

group . The classification of the states will remain invariant if we give them 

nonzero momentum by means of E3 boosts and fi 
1 “boosts” just as in Eq. (9) 

for the single particle state. How much of this can be extended to the case 

where there is field theoretic interaction is not clear; aspects of the situation 

in potential theory are discussed in Section V. 

III. CONSTRUCTION OF THE GENERAL TRANSFORMATION 

In this section we will consider the general form of a unitary transformation 

(in the free quark model) which acts on the SU(6)w of light-like “current” charges 

tc give a set of charges Wi = vG:v-l that satisfy the following set of conditions: 

meaningful between infinite momentum states; 

(b) [-i ] Wo, fi, = 0, in order that the symmetry be collinear; 
. (11) 

lc) = 0, to preserve the spin projection classification;. 

(d) CVC requires that Wi = $; 

(e) Wi has the same “c and f; properties as Gi; 

classify single particle states. 

is a “good” operator. This is the analogue of requiring 

the equal-time W’s to be such that classification will be 

We write ? = exp i?, where ?! is a hermitian operator. The conditions that 

? must satisfy are discussed below. . 

(a) Since W is to be lrgood”, the operator 7 should be lYgoodf’. A “good” 

operator as the term is used in current algebra is one whose matrix elements do 

not vanish between states with infinite momentum. In the light-cone formulation 
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such operators can be written in terms of densities local in x-, involving only 

canonically independent fields. 

We will restrict ourselves to consideration of a form bilinear in the quark 

field, 

? = i S dx- dzL q(x) FO(#,yV,dc,hi) q(x) . 

This assumption insures that W’, does not lead from nonexotic to exotic states. 

The condition that v” is “good” restricts the possible Dirac structure of F. 

to the following form: 

F. = r’ 
(1) 

+ y5 F 
(2) 

+Y F 1 l(3) + Y5YlFl(4)+ gYv+(,)] 

. -I- 
EY+ E ++ rx,.vY F(5) [ 1 (12) 

Since the tensor $ r”,g ‘[ 1 is equivalent to y5 between c&x) and s+ tx) , F (5) is 

not an independent function. Then “Y can be rewritten in terms of the independent 

fields as 

%! = i,f2 Jdx- dzl q:(x) E q+(x) . (13) 

The “goodnessl’ assumption further restricts the functions above so they 

have no derivatives with respect to x’, for these may be written 

-$ q+(x) = ; sdy- E (X--Y-) (-Ff+-“) s, (x+,~l,Y-) = 2q ‘(a” -m2) q+(x) . l 

This expression is nonlocal in x-. 

(b) The condition that [Kg;%:] = 0 can be satisfied with [KS, y] = 0. The 

light-like generator ii, is (see Appendix A) 

iT,=i& s dx- d%‘-- q:(x) 
( 

-I- a x - - x- a 1 

i3x+ 
- - z 
8X- ) 

cl+(x) . 
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We thus require 

[ 

E(x?,y”,ac$), x- -2!- 
8X- 3 

= 0 (x+=0) . 

Since E is a polynomial of finite degree in (a/ax-) by condition (a) above, l6 the 

condition that [E, x- (d/ax-Q= 0 implies that E depends on (x-) and (8/8x-) only 

as a polynomial of finite degree in x- (d/ax-) . N * 
(c) The condition that J3, %i c 1 = 0 can be satisfied with 

light-cone formulation the rotation J3 is 

J,=i& S dx- ds;IqI(x) eij x. -%+$yxq 
l dXJ 

We thus require 

d 
iaxj +$y”yy =o . 1 

This implies that E may be written 

E x- +,-;;‘a2 -ii 0’ 
( dX 

1' 1' 1' 1' = Ftl)(-. -) +r5Ft2+-.) 

+ yi Fi(3)(. * * ) + y5yi Fi& . . ) . 

where 

F it3)(. . .) = xiFt3+. . .) f d, F’ 
ax1 (3) 

(. . .) 

and 

Fi(4)(...) = xiFi4)(.. .) i---&F” 
ax’ (4) 

(...) . 

(d) CVC implies that y is an SU(3) scalar. Thus E depends only on the 

unit matrix of SU(3). 

- 11 - 



I 

(e) The discrete properties of G and % imply that F has P”=+, and E=+ . 

This condition eliminates a number of possible terms. We now have 

(14) 

(f) The final property of #a is that it commutes with “H. Since in the free 

quark model g, G@ = [ 1 0, we have the possibility [y, i?] = 0. 

Using Eq. (6) we find the restriction 

[E, “:;-“] =() . 
This condition implies that E does not depend on x- (a/ax-) or x1. Therefore 

one may express E as 

E = yidl Fy3) (13-l) . 

Thus the most general transformation satisfying the properties (a) through (f) 

stated above may be written as 

where 

There is an additional physical constraint that one should impose on v. 
17 It is 

that when W, acts on states at rest, it is equal to the ffspinff part of y3. In 

general this implies the restriction 

iFL 
.f 

-in3L 
*T 

e 1 fq3 e 1 = _ W 
3 

? 
(where nL is a unit vector in any transverse direction) when the operators act 

on states at rest. In the free quark model, this implies F(0) = 0. 
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Two of the assumptions made in this derivation may have to be relaxed in 

field theory models with interactions: 

1) The light-like charges no longer commute with P”- unless the Fermion 

mass vanishes. Thus the transformation can no longer be constructed to com- 

mute with the Hamiltonian, if we require conserved W. 

2) It may be necessary to include terms in v” that are not bi.linear in the 

quark field. These terms may be required anyway in light of theorems regarding 

the necessity of exotics in the saturation of the current algebra. 18 It will be 

interesting to see if such terms are needed phenomenologically. 

The explicit forms of the operators W constructed using the general trans- 

formations v, Eq. (15), are given in Appendix A. The light-like Melosh trans- 

form corresponds to choosing F = arctan (IT11 /m). Another form which satisfies 

all the conditions above, except F(0) = 0, is F = constant; the resulting W operators 

have many properties in common with the operators introduced by Gilman and 

Kugler in their phenomenological analysis. In particular, we may identify the 

operators, which satisfy in O(5) algebra. Xl Defining Qi and K1 from 

W:, = (cos F) &: - (sin F) K’ , VW 

these operators are, 

Q; = $2 sdx- d;i_ d(x) + q+(x) 

Ki = J2 
S 

*-;jt 7. 
dx- dj;r q’(x) L 

1-k I z-- I 
$ qp> 

iaZ.7’ 
S = $2 dx- dz- Qkx) ’ ’ 

s I TLl 
l q&x> 

tl6b) 

(164 
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and 

(Ht,L*e r i is the isospin operators. ) This algebra can be extended to SU(4) by 

appending the operators 

Q5 = d-2 $ 
u 

dx- d3 d(x) f q+(x) 

K = J2 $dx- di q:(x) 

si = $2 sdx- d?$ q:(x) 
ic 77 

’ ,I 
-3 Ti 

-y s+(x) (174 
Iy ’ 

Finally, it can be extended to give another SU(6) by changing 7i into hi. These 

generators are similar in form to the standard SU(6)currents generators, 

because after all there are only a limited number of possible structures in the 

free quark model. Nevertheless they are not exactly the same because the 

derivatives appearing imply they have different L properties. 

IV. INTERPRETATION AND APPLICATIONS OF v 

The transformation g constructed in the preceding section has a very 

natural interpretation as a change of spin basis. As noted in Section II, the 

states in the light-like helicity basis, Eq. (9), transform as representations of 

SW) W, currents’ independent of the value of their momentum. States trans- 

forming according to the same representation of SU(6)w constituents, which 
> 

is generated by $ and Wi ~, may be constructed from the states of the LLHB 

using ?i: if 

* -I- 
Q’, IP , Pp = cg, IP+, pph’> 
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then 

ti@( VIP+, pI; A>) = c$ (VIP+, ;-; iv>) 

We will now show that the states (Tip+, pl; ti) are simply one particle states 

in a different spin basis. 

First we compute the action of v on the covariantly normalized single 

particle states in LLHB. 

v 1p+, zl; A’> = c 
A 

w,,,@) IP+-, T1; A> 

where 

-Y,,(p) = x;T cos (f/2) - iGlxqsin (f/2)] xA, , 
II 

(18) 

(19) 

and 

S 

iTl- l ‘;i’ 
f= d<le F(lx.1) (20) 

Since v commutes with E, we see it does nothing but rotate the spin of the state. 

Let us construct a state of arbitrary momentum by means of the prescrip- 

tion 

iti, ip 
lp+, T;*sw>= e e ’ 

*it1 iOnl*4 m 
e 

I -5 

The parameters pl and A have the values 

,Z--;*1/2> (21) 
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The remaining parameters 6 and nl are also functions of the momentum, and 

determine the specific spin basis. The prescription Eq. (21) has been adopted 

so the “spin” defined by the construction is invariant under boosts by e, if 0 

and nL are functions of p 
1 

and m only, and not functions of p’. 

These states, Eq. (21), are related to the states in the LLHB in the fol- 

lowing manner: 

lP+* G-- ;&SW> = 

c 
%hS 

W 

where 

I P+$h> (22) 

(23) 

Thus comparing Eq. (18) and Eq. (22), the states lp’,p,, sw> are just the states 

transforming according to SU(6)w constituents, (v lp+,p,, h>), provided we 
, 

make the identifications: 

A 

nj = tjkpk/lFll (24) 

8=f(Jn)- arctan (25) 

For the Melosh transformation, f = arctan , so by Eqs. (20) 

and (25)) 0 = 0. Thus the corresponding spin basis is 

fm>=e 

A similar construction in the equal-time formulation leads to states classified 

by W:,.” = VM F;;‘* V; in a momentum independent manner in the free 

quark model, 
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The “constituent” states corresponding to the “Gilman-Kugler” basis are 

obtained by taking F = o/2, where (Y is a constant, so 0 = a/2 - arctan 

They are 

3e 
iij;. BI m --J2 ict$xJ 

2 e 1 1 I 22 
J-5’ 

5;;11/2> i 
(27) 

These are a complicated mixture of LLH states and “transverse helicity” states 

we will define below. The wavefunctions corresponding to the states (27) are 

<o Iq+(x) IP+, r;i;+ha-, = e 
-ip.x 

utP+, iQq.J 

where 

u(p+, ‘I;I ,&ho) = 1 
49 ! 

(*r/2 [COS (a/2) + i$,X‘i;, sin (u/z)] x,1,2 

(\tp+y2 [ 
cos (a/2) + ij33X Z l 

i 
sin (Q/2) 1 cr x z *l/2 

Now suppose that p’= m/&Z ; and that we pick (Y = 7r/2. Then these spinors take 

u@+, Fl ;+h T/2’ = 

the simple form C’transverse helicity state”) 

+- 
, UtP ,P 

1 
1’ -h T/2’ = z 

- 17 - 
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Y 
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It is straightforward to verify that these are the eigenspinors of the “transverse 

helicity” operator K, Eq. (1’7b). We have, then, that the LLH spinors are eigen- 

spinors of ij5: the spinors u (p+, FL, rth 
42 

) are eigenspinors of K; but unfor- 

tunately the spinors of phenomenological interest, 11 Q! N 7r/4, are in some 

sense in between these cases. It is not clear whether this is of any physical 

significance. 

As mentioned in the introduction, the nonuniqueness in the definition of F 

which is so striking in the light-like formulation has an analogue in the equal- 

time formulation as well. We can see this analogue by constructing new equal- 

time W operators WET = V FETV-I using the equal-time transform 

d3z q’(x) - 
yl.xl 
ITI 

These W s will not commute with the Hamiltonian unless F coincides with FM, 

but the matrix elements of [H, W] vanish when taken between states at infinite 

z-momentum in the free quark model. Thus the theoretically interesting prob- 

lem of classifying states at infinite momentum suffers from the same ambituity 

in the equal-time formulation that is immediately apparent in the light-cone 

quantization. 

Let us now study the constraints placed on the transformation 7 by phenome- 

nological considerations. It is to be expected that matrix elements involving 

zero momentum transfer cannot fully determine a nonlocal function such as F. 

Consider for example the algebraic calculation of (Ga/Gv)nUcleon. It is deter- 

mined by the matrix element of the third isospin component of the axial charge 

between collinear physical nucleon states. These states are complicated 

mixtures of states which transform as irreducible representations of the chiral 

algebra of charges, but fall in an irreducible representation of the “constituent” 
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algebra. Thus one calculates the matrix element 

<N’ -3 
physical IQ5 ’ Nphysical > = <N current I’-’ a5” ’ ’ NLurrent’ 

Tl.T 
F + i - sin F 

v- I 

The ‘mte ’ Ncurrent > is in the same representation under the “currents group 

as the nucleon was under the “constituents” group. This gives a coefficient (5/3) 

as before, but it multiplies the integral (@currents, (cos F)qbcurrents), where 

+ cmrents is the wavefunction of the nucleon in the currents representation. 

The wavefunction in the “constituents” representation is fixed to be the eigen- 

function of the strong Hamiltonian, and is to be considered as unique. 

The integral which modifies (Ga/Gv) from (5/3) to its experimental value 

must be numerically Al/&. This is clearly a constraint on v. For instance, 

F=O is ruled out. However, since $currents itself is an implicit function of F, 

any dynamical explanation of this numerical value of the integral is representation- 

dependent. 

Next consider calculations in which the term involving (sin F) in @-I @ v) 

gives a nonvanishing contribution. This would involve transitions with 

AL=* 1. l, l1 In principle, comparison of the integral of this function to the 

integral of (cos F) between identical wavefunctions could give information about 

F. However, phenomenologically , it seems that the ratio of the integrals 

(+c, (cos F)$c)/(@c, (sin F)ec) M cot 8, where 6 M’ ($,, F$c), when taken 

between low-lying states. 11 This is predictable if the relevant wavefunctions 

are sufficiently peaked in momentum space, and so does not restrict F in any 

clear manner. 
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Let us now examine matrix elements involving first order terms in trans- 

verse momentum transfer, such as the magnetic moments. These matrix ele- 

ments give information on the average value of F’ taken between wave functions. 

The moments may be calculated using the following expressions: 

[ 
M(27r)3 S3(0) 1 flA a= 

-ikxBx 

dx- d’x; e-ikx’xl J&I(x) e *$2M 

S3(0) m= 1 c1T 

(29) 

It is shown in AppendixB that these are kinematically correct light-cone ex- 

pressions using the free quark model with an anomalous Pauli term. The cal- 

culation for the physical nucleons is straightforward, and the details are 

presented in Appendix B. Using 

GM(x) = e/ dx- dzl q (x) q q(x) 

we obtain for the anomalous magnetic moments 

P 
c1A 
N= - $ (1-A) 

PA 

where 

(A. 3) 



I 

In the free quark model where the 3 quarks are at rest A= l/3. The mechanism 

responsible for giving a nonzero result is the same as that discussed by Melosh. 1 

If F is zero, the anomalous moments vanish. 

The ratio of the total magnetic moments of the proton and neutron is shown 

in Appendix B, Eq. (B. 4) to be (-3/2), independent of the form of F. This is 

reassuring, as it is one of the principal results that drew attention to W(6). 

Higher moments of the electromagnetic current give information on averages of 

higher derivatives of F. 

To conclude this section, we stress that the notable qualitative changes in 

the predictions of the quark model effected by v are due to the algebraic 

structure of Eq. (15) under SU(6JV currents. I’ I1 However, to make quantita- 
, 

tive predictions for processes involving nonzero momentum transfer we need 

to know the averages of the derivatives of the function F between wave functions. 19 

For phenomenological analysis this means new undetermined constants must be 

introduced. 

V. ASPECTS OF THE TRANSFORMATION IN MODELS WITH POTENTIALS 

The discussion of the previous section indicates one has considerable 

lattitude to approach models with interaction. In the present section we will 

examine one such approach, allowing the quarks and antiquarks to interact by 

means of a potential. It makes sense to do this because models of this genre 

preserve particle number, a concept vital to the meaning of the “constituents” 

classification scheme of the hadrons. Furthermore, in spite of appearances, 

such theoretics are relativistic in a well-defined sense; namely, that the solu- 

tions span representations of the inhomogeneous Lorentz group. 20,21 b the 

light-cone quantization, the formalism under which relativistic invariance is 

- 21 - 



possible has been discussed in detail by Bardakci and Halpern, 22 and we will 

utilize some of their results below. Cur aim is to see how the conditions of 

relativistic invariance affect the “constituent” to “currents” mixing scheme 

effected by v”. 

Let us first cast the quark field into a form appropriate for examinging its 

properties in first-quantized notation in a simple manner. This involves elimi- 

nating the redundant components from the four-component Dirac spinors, and 

performing a unitary transformation so that in effect the Dirac matrices act 

like Pauli matrices. Bjorken, Kogut, and Soper 15 arrive at the simple 

expression 

+ df (p’ F .h) JZp+ w(-h) eiP’ ’ 
’ 1’ 1 (30) 

where 

1 w(3) = o 
0 

and 0 w(-3) = 1 . 0 

Note that the creation operators give states in the “light-like hel,icity basis,” 

as in Eq. (9). The action of operations on the wave functions <O /q+(x) d’(p+,q, h) IO> 

t t -I---, and <O Iq+(x) b (p , pl;h) 1 O> takes on a simple nonrelativistic form. For example, 

(31) 

Consider next a two-particle system which we would want to correspond to 

a meson at rest: 
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To study the properties of the wave function of such a state under Lorentz trans- 

formations, we write the generators “P 
1’ 

F+ , 3,, g3 and “BI as the sums of the 

generators for the two particles. A representation can be found in which these 

generators do not involve interaction terms. 20,22 All of the interaction 

dependence can be placed in just three generators, H and ?? I’ 
Recall this is a 

virtue of the light-cone formulation of dynamics, for in the equal-time case 

there must be four generators which contain the effects of interaclion. A field 

theoretic example is provided by QED. l5 

The “potential” is just the term added on to the sum of the two particles’ 

free Hamiltonians, 

ti=i-lq+i$+u (33) 

Introducing center-of-mass and relative coordinates and momenta in standard 

fashion, Bardacki and Halpern find that the theory will be invariant under 

Lore&z transformations if the potential is Galilei invariant, and rotationally 

invariant under a set of operators obeying the algebra SU(2) formed from relative 

variables exclusively. Labelling these “internal spin” operators ji, the interaction- 

dependent Lorentz generators % are 

where 

We now focus attention on the action of the generator ?, on the state Eq. (32), 

is at rest. On such a state y3 = j, . Notice that the conventiona .I partition which 

M = (x-)q+ (x-)-q 

A2 = 2HM - (P& m . . 
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into f’orbital” and “spin” angular momentum 

j,=Q,+C = (x1r2 -x27rl)f rq ( ) c3 

3 
- 2 

s 
(34) 

is not unique. Since the transformation v commutes with r3, we may choose to 

write 

j,=V Q3+C 7-l = L3+W3 
( 1 3 

and not destroy the overall Lorentz properties of the system. 

The utility of a particular choice of this splitting is based on being able to 

find E, and W3 such that they commute with j? separately, 

[c3, a]= [w3, “I= 0 . (35) 

In this manner, the %, and W3” classification of the state will be meaningful. 

This imposes conditions on v once the Hamiltonian has been specified. 

Consider first a potential which is a function of the internal coordinates and 

momenta only, and does not depend on the Pauli spins. Since the generators 

y3 and R3 do not involve interaction, the arguments presented in Section III still 

suffice to determine the general form of v given in Eq. (14). In order to be 

rotationally invariant under the %&ernal spins” ji , the potential U must depend 

on both the relative momentum 7rI and relative position x . The constraint 1 

Eq. (35) will then be nontrivial to satisfy, and will give restrictions on 

F (x2 r2 x T ) and F (x 
1 1' 1' 1 1 

2 H, rf ,x1 rl) (which were denoted F; and F; in IYq. (14)). 

A simple example is provided by the two-dimensional harmonic oscillator. 

On states at rest we have 

1 -2 -2 Fi =z 7rl -I- x1 ( ) (36) 
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(in appropriate units for r1 and x1). Consider v” = exp (i?), where “Y is the 

Hermitian operator 

The condition Eq. (35) can be satisfied if 

[ 1 F1, H = 2iF2 ; 

c 1 F2, H = -2iF1 . 

A solution to this system is 23 

WW 

(37b) 

Wa) 

(38b) 

It is amusing that in addition to the sum 

v-1 *z N uz 
-Tv=-r- [iY, $-I+ $[i?, [iY, >]] + $.. 

each term in the sum by itself is a candidate for fl ) 
3q 

up to factors of “iff re- 

quired for hermiticity. Of course, the example, is not intended to be a realistic 

model, but only to show what a nontrivial solution can look like. 

With this type of potential, it is still consistent to use the free form of the 

axial charge, Eq. (31). That is, this axial charge will have all the properties 

it is supposed to have under Lorentz transformations and under parity. It is 

also conserved. This is possible because the interaction conserves particle 

number, and is independent of Pauli matrices. In a field theoretic model, 

e.g., in the linear sigma model, one would have to append the contributions to 

the axial current of the other particles. The terms which break the conservation 

of axial charge will change particle number. 
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Using v it is then possible to construct eigenstates of G5 from the eigen- 

states of the “spin” iii,. For instance, if IM, sz> is a state with a definite 

eigenvalue of W,. v(-l I M, sz> is a state with the same eigenvalue of G5. How- 

ever, it is not an eigenstate of Z,. Neither does it have the same energy as 

IM, sz>. This is how the mixing scheme works in this type of model in all 

cases for which we can find solutions to Eq. (35) (which are essentially differ- 

ential equations). 

The conditions to be satisfied if the potential includes spin dependence are 

much more complicated. A simple way to construct a rotat.ionally invariant U 

is to make it a function of j2. Since the ji include Pauli matrices, U will have 

what looks like “LS” coupling in it. Such a potential will no longer commute 

with 65, but there is still a possibility that a conserved W3 operator can be 

found. The conditions to be satisfied will contain many terms, and it may be 

possible to contrive cancellations. 

In any case, the point here is that one has a well-defined procedure for 

constructing the desired operators W3, c3 once a potential has been decided 

upon on some other physical grounds. It is an analogue of the FW construction 

for interacting field theories, but with the advantage that it focuses on the single 

condition one wants to maintain; namely, the conservation of the “spin” W,. 

Our Lorentz generators are “fixed” in a given basis, and the bound states, as 

well as the vector and axial vector currents, must have the correct covarlnce 

properties with respect to this set of generators. We have seen these Lorentz 

conditions in no way conflict with the construction of W3. 

The problem of finding the representations of the chiral SU(3) x SU(3) charge 

algebra has thus been reduced to finding the operator v such that oQ50-1 com- 

mutes with the Hamiltonian (on top of the other conditions for v given in 
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Section III). Thus, the problem is identical in form to the one solved by Melosh 

in the free quark model, but with the difference that the specific functional de- 

pendence of v depends on the interaction. 

VI. SUMMARY AND CONCLUSIONS 

In the attempt to find economical saturation schemes for charge algebra 

sum rules, one can use states at infinite momentum so that many-particle con- 

tributions to the intermediate states will give nondominant contributions. Alter- 

natively, one can use states at finite momentum, state the sum rules in terms 

of light-like charges, and thus avoid a limiting procedure. The correctness of 

either procedure is tested by the phenomenological success of the derived sum 

rule, 

In the light-cone formulation of the sum rules, as well as in the p - co for- 

mulation, the physical particle states lie in reducible representations of the 

charge algebra. By constructing the unitarily equivalent “constituent” algebra 

under which the particles transform as irreducible representations, the problem 

of finding the “mixture” of charge-algebra representations which make up a 

physical particle is elegantly solved. 

We have found that in the light-cone quantization of the free quark model 

there is a large class of transformations which take us from the current algebra 

charges to such constituent charges. These transformations have a well-defined 

algebraic structure under SU(6)w 
, 
currents as a simple consequence of essentially 

kinematic constraints. The same is true in potential models, since these are 

subject to an identical set of kinematic conditions. 

In phenomenological applications, all of the allowed transformations give 

predictions for processes involving zero momentum transfer in terms of two 

reduced matrix elements involving the function F appearing in v. In first order 
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of momentum transfer, calculation of the nucleons’ total magnetic moments 

gives the usual SU(6) result, (J.L~/~~)~ = (-3/2), independent of the structure of 

V. The ratio of the anomalous moments involves a reduced matrix element in 

which F’ enters. Continuing in this fashion, higher moments of the currents 

give information on the value of higher derivatives of F averaged between 

particle wave functions. 

In addition to attempting to find more detailed information on V phenomeno- 

logically, it is of interest to try to construct V theoretically in models with 

interaction. Such transformations will undoubtedly have a higher algebraic 

structure than those permitted in the free quark model. Indeed, such structure 

may be necessary to do phenomenological analysis for higher-lying states. 11 

Within the framework of potential models, we have seen there are a small 

number of conditions to be satisfied in order to find conserved “constituent” 

z-component of spin once a potential has been specified. In principle, it is 

straightforward to solve the conditions for V, or else show such a V cannot 

exist for the given potential. Even the latter possibility could be very interesting, 

as it could indicate a relation between chiral symmetry breaking and trspin’y 

symmetry breaking. We also note that even in potential models it may be 

possible to introduce more structure in the form of V by introducing more internal 

degrees of freedom, as in dual models. It will be interesting to see if two- 

dimensional models with spin admit a Foldy-Wouthuysen type transformation. 

In interacting field theories, one may have to fall back on the FW procedure 

of constructing V in powers of (m-l), though in general there is no assurance 

this will give us conserved charges. Such solutions will also lead to exotic 

configurations, and will have explicit dependence on the gluon fields. It is an 

open question whether these features are desirable even if they can be made 
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tractable. Finally, once an infinite number of degrees of freedom are admitted, 

with either interacting field theory or dual models, one must allow for the 

possibility that the chiral symmetry is realized in the Nambu-Goldstone 

manner. Even in this case, there can be “algebraic consequences” of the chiral 

SymmeW, 
24 but all criteria based on commutativity with the Hamiltonian must 

be handled with great care, 
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APPENDIX A 

We list the Poincare generators in the light cone quantization of the free 

quark model. In the notation of Kogut and Soper 
15 

Pi=iJ2 dx- dzL G(x) 

P+ = i & 
/ 

dx- d’(; G(x) 3 cl+tx> 

H =ifi )I q+(x) 
Mi+~ Bi=i& 

/ dx- dzL 4.x) i d x - 
i3x- 

Mi E si = i &J, dx-d?;lq$x) m2+-&- a 
sxl i3x. 

1 

-8 yi ia. 
-x q--~ ( yaxj+lm )I q&x) 

Mi E J3 = i &? dx- di C&X) x1 & - X2 

2 

(A- 1) 

(A. 2) 

(A- 3) 

(A. 4) 

(-4.5) 

(A. 6) 

M+- =K3= i J2 j--h- dTl c&9 [+ ($) (m2 + + s)- x- s, - $1 ~tx) 

The Dirac equation has been used to eliminate the dependent components of 

the quark field and to eliminate derivatives with respect to x”. 

We also list in this appendix the general form of the *‘constituent” charges 

where v is given in Eq. (2). We have 

$i$=$=J-iz 
/ 

dx- dz- d(x) ‘i 
2 qt(x) (A- 8) 
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APPENDLX B 

We will first show that in the free quark model the expressions in Eq. (28) 

and Eq. (29) for the total and the anomalous magnetic moments are correct by 

considering an electromagnetic current with an anomalous Pauli term: 

where 

According to Eq. (28), the anomalous magnetic moment is given by 

kxBx -i - 
PA (N)==&<M,q; -5 e &M 

x 43 
s dx- dzL e 

ikx* x 
’ J+EMW 

where 

kxBx 
-i- 

e aM X,x;++ 

a l kx=O 

(N) = J2M (27r)363(0) 

Now for the anomalous magnetic moment we have to first order in kx 

kxxl 

qltx) q+tx) + fi ,-$&ikx) 1 do- dzl q:(x) iyxq+ W ] (I-zj 

M c;+; -> a 1 kx=O 
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+ J2 PA dx- dTl G(x) Y,Q~(x) - i & - 

The generator Bx may be written (at x+=0) as 

Bx = fi ifdx- dzL d(x) x1 $ S(X) 

and the expression for the anomalous magnetic moment becomes (terms with 

x1 give zero contribution) 

$ = J2 i pA -L 
&M 

&, -l/2) Yx p+ UP, +1/z) 

@A =- 
2M Cl/, “y x+1,2 =Gii 

The calculation for the total magnetic moment is also straightforward. 

According to Eq. (29)) it is given by 

If 
dx-d’(; xlJiM(x) “,4;++> 

I 43 

First we note 

Since 

q!(x) =$ 
( 
im+yj -& j ) %Jx) 
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we may reexpress JiM in terms of canonically independent variables 

+x 1 
2712 1 qtx> + ti PA 

a 

YX 
w2 

-i m - iyj 4 q+(x) 

Since between the rest states the xl term and transverse derivatives give zero 

we have 

<z,Tl;-; d?-- G(x) y x - m; q+(x) 
277 II 

. . . -l/2) y, P, U(0, +1/2) -L 
&34 

=.--+c1A. e 

2M2 2M 

These expressions agree with the expected results in the free quark model. 

Consider the calculations of the anomalous and total magnetic moment for physical 

states. We may write 

PA 
m 2M -=d <A; $,cL; -$ie akx 

-iBx zl&- &-- (,wxxl J+EM(X)) 

k 
-iB 

e 
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and 

The electromagnetic current is taken to be that of the free quark model (with 

no anomalous Pauli term) 

AEM i$M(x) = e itx) fl 2 qtx) 

Using the expression for Bx given above and using the expression for 

f 
dx- dzl x1 JiM with no anomalous Pauli term we have 

PA 
(N)m= <A; 2 ,s;-$ 

EM 
dx-dzL xl&eG(x)%q+(x) 

and 

PT 
m - iyJi3. 

(N)rM= < M6 l “;z, l;-z dx- dzl $2 e G(x) 
2712 

m2 _ ad 
+x1---+- q+(x) 

5% I 
I 
B;+q;+;> 

J2 

The physical states A and B which are constructed as simple irreducible 

representations of the strong charges can be related to the states classified 

simply under SU(6)w currents by 

(A strong’ -j$ ’ 1 M 6 ; - ; = <Acurrent;$,‘TL; - i1v-l 

B Bcurrent; $ ,a,; ++> 
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where 

s dx- dzl G(x) 
Tpl 
- 
I Tll 

F 19 i 

j I 

q+(x) 

Thus, in terms of states that transform simply under SU(6)w currents one may 

I 
B 

M 
current’ - ,T ;+f> 

J2 l- 

P. 1) 

and 

q+,(x) B I M 
currents’ 3; 

-51 1 
-+> (B.2) 
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Now consider the neutron and proton magnetic moments, The baryon SU(3) 

octet belong to the representations 

(6,3) Ls=O for spin up and (3,6) Lz=O for spin down . 

Therefore the only terms that may connect (3,6) Ls=O and (6,3) Lz=O have 

(3,s) + (3,3) Lz=O; the contribution of such terms is given below 

i <(3,6) Lz=O current; x, TL; a ,f2 
I J- 

dx- “;;1 q$) 
I 

ehEM 

a 
2 

- (9 i2) (+,b Ifl - y)i q+(x) 1(6,3) Lz=O current; 

and 

4 ‘EM 
(N) m = <(3,6) Ls=O current; 2, T1; al $2 eJdx- dzL G(x) 2 

From these expressions we see that the ratio of the proton to neutron anomalous 

magnetic moments is given by 

4 n= -;(l - A) 

PA 
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where 

A= 

<(3,6) Lz=O current; %, 7 ,I$ is t1 -?)1(6,3) Lz=O current;?, cl> 

(6,3) Lz=O current; 2, Ti> < (3,6) Lz=O current; x , 5; 
a 

Fl sx 
al-a 

(B-3) 

In the free quark limit 

A+ so pi = -1 
-ii 

. 

PA 

The ratio of proton and neutron total magnetic moments is given by 

independent of F . (B.4) 
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