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Abstract 

The 2s1/2 - 2P 
l/2 

energy level shift of the ‘IT - p atom is studied. It is 

- shown that an experimental determination of the 2Q2 - 2P1,2 energy level 

shift accurate to one part per thousand can provide an independent determination 

of the pion charge radius. 

(Submitted to Phys. Letters B.) 



Recently, an experiment was proposed and plauned (1) to measure the 

2s1/2 - 2p1/2 energy level shift in the a - /J atom (pi-muonium) produced in 

the decay of KL ‘--trp v .t One of the contributions to the 2s 
l/2 

- 2P1,2 energy 

splitting comes from the finite size of the pion which can be written as (3) 

43 
AEzs (size) - AEap (size) = -+f--- rf . (1) 

where the reduced mass p = mn rn/ (mx + mp), and rr is defined to be the pion 

charge radius. Up to now, rI is not a very well measured quantity. Electropro- 

duction of a charged pion (4) and e+e--Ir+lr- data (5) favors a small rr of about 

.6F. However, recent UCLA - Serpukhov x+e- data (6) seems to favor a large rx 

of about .9F. tt A measurement of the 2s 
l/2 - 2p1/2 shift in pi-muonium can 

provide an independent measurement of the pion charge radius. From Eq. (l), one 

finds that AE (size) is of the order .5 to 1.0 x lOa eV. Therefore, in order to 

obtain the pion charge radius from the 2s 
l/2 - 2p1/2 shift, one must calculate 

all QED contributions to the energy splitting accurate to the order 10 -4 eV. In this 

note, we calculate all the QED contributions up to 10 -4 eV. This includes all o2 Ry 

and a3Ryttt contributions and the dominant a4Ry contribution comes from the 

fourth order e+e- vacuum polarization. 

A few words about our general philosophy are in order here. We adopt the 

effective potential method of reference(?) where an effective bound state poten- 

tial for a Schrodinger-like eq. is inferred from an on-shell scattering theory. As 

a first approximation, off-shell behavior of the lowest order potential is chosen so 

as to account for as much as possible of the second order Feynman scattering dia- 

grams. For our particular recoil calculations, this method reproduces the results 

of the covariant perturbation theory of Saltpeter (8) and uses an effective potential 

in the Schrodinger-like equation which is well-known as the Breit potential. 
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To order Q! 33 y, the Breit equation solution gives rise to a 2s 
4 

- 2P6 energy 

splitting displayed in the last row of Table A. (10) Note that this formula gives 

the correct infinite mass limits for an atom with two spin 4 particles where this 

term vanishes and for an atom with two spin 0 particles where it is lmown to exist. (10) 

The solution of the Breit equation has no (Y ?R y term in its expansion. However, 

vacuum polarization and other QED effects modify the Breit equation result and 

give rise to the energy splitting to order a! % y. The only significant (to order 

10s4 eV of the energy splitting) 04Ry contribution is the fourth order vacuum 

polarization. 

We display the formula and results for the various contributions aside from 

the pion finite size effect, to the pi-muonium Lamb shift up to order lOa eV in 

Table A. We briefly describe these terms below. 

(A) Second and fourth order e+e- vacuum polarization. 

The e+e- vacuum polarization gives the dominant contribution to the pi- 
+ 

muonium Lamb shift. This is because the e e- vacuum polarization 

modifies the Coulomb potential at a distance of the order of an electron 

Compton wave length h e’ The Bohr radius of the pi-muonium is equal 

4.5 X lo-l1 cm. This is comparable to he which is equal to 3.9 x lo-l1 

cm. So the pion and the muon spend a great fraction of time in the region 

in which the Coulomb potential is modified. The second and fourth order 

e+e’ vacuum polarization were calculated by Di Giacomo in the muonic 

hydrogen problem. (11) Note that this energy level shift is of opposite 

sign to that of the hydrogen atom energy 2s~ - 2P1 level shift. 
a 

(B) Second order vertex correction and vacuum polarization. 

The second order vertex correction for the muon including the correct 
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reduced mass effect and second order p?p- vacuum polarization are 

given by Erickson and Yennie (3) .$ The second order vertex correction 

for pion and X+X- vacuum polarization are calculated using scalar 

electrodynamics for a point scalar particle. Ignoring the pion structure 

in the calculation of these corrections introduces small errors because 

the vertex correction is basically a non-relativistic low-frequency effect, 

and the X+X- vacuum polarization effect is negligible even for a point 

pion. In all these radiative corrections, we consider only Coulomb 

interaction between the pion and the muon. Radiative corrections with 

transverse photon exchange is of order a2 smaller. We also ignore 

relativistic corrections to the wave function which introduces corrections 

of order a2h2 o! smaller to the vacuum polarization term (lam 

Errors in the measured masses also propagate negligibly in the formulas. 

(C) Correction to the Breit Interaction. 

The usual Breit interaction term ignores the energy difference between 

the intermediate and the initial unperturbed atomic states. The correction 

to this term is the same for spinor-spinor system and scalar-spinor system 

to order or3Ry, and is given in Eq. (4.28) - (4.29) of Fulton and &Iartin (13) . 

Note that the pion and muon have almost equal mass, and one cannot make 

the approximation used in the hydrogen atom problem where one particle 

is much more massive than the other. 

(D) Correction to the iteration of the Breit equation for two photon exchange. 

The Breit equation is a good approximation in first order perturbation 

theory. However, one can get quite wrong results when the Breit 

equation is solved to order higher than a2Ry. This is because the 

Breit equation when interated to higher order allows scattered waves 

of negative frequency to propagate forward in time while the rules of QED, 

-4- 



do not allow this. In order to obtain the correct QED contribution to the 

2s 
% 

- 2P+ shift, we calculate the two photon exchange terms using 

the rule of QED, and subtract away from it the Breit equation result 

iterated to that order. $3 Since the Breit equation does not contribute 

to the 2SL 
a 

- 2PI energy splitting in order (u3Ry, the difference between 
z 

the QED solution and the Breit solution can be used to obtain the 2s 
6 

- 

2P 
4 

splitting from two photon exchange. We calculate the double Cou- 

lomb exchange contribution AE cc and double transverse photon exchange 

contribution AETT separately. The results aside from logarithm terms 

are similar to those given by Fulton and Martin (13) in their calculation of 

the positronium problem. Note that as mg-coD, one obtains the same 

results as that of the spinor-spinor case with one particle very massive (7), (8) . 

Adding up all the QED contributions to the 2s 
i 

- 2P 
4 

shift in Table A, one finds 

AE2%(QED)- AE,,$QED)= -. 07945 eV. From our earlier estimate using Eq. (l), 

we see that the pion size effect is about a percent of the total energy shift. The 

fourth order e+e- vacuum polarization is of the same order. So if the 2s 
ii 

- 2P, 
2 

energy shift can be measured to one part in a thousand, and assuming QED to be 

valid to cu4Ry, one can have an independent measurement of the pion charge radius. $$$ 
_-. __- 

An experiment of this type could also check for the existence of any anomalous p - 7r 

interaction. 

The remaining question is: Can one measure the 2s 1 - 2P1 energy shift 
3 2 

in pi-muonium accurate to one part in a thousand? We leave that as a challenge 

to the experimentalists! 
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Footnotes 
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j’ The branching ration for KL - (xp)atom v to KL - xp v is of the order 10 
-7 

(Ref. 2) and the T - p atom can be quite readily detected. (Ref. 1) 

tt The problem with this experiment is that the square of the 4-momentum transfer 

is limited to about .04 GeV2. 

fft Ry is defined as usual to be the Rydberg of the system and is equal to o!2~/2. 

We set h = c = 1 in all our formulae. 

$ See Eq. (4. la) - (4.2) of Ref. 3. Note that the reduced mass effect for this 

contribution is incorrectly given in many places in the literature. 

$3 One can use the usual perturbation formula c 
n’ 

H’;; Hz)/ (Ei - En), 

where i, n, and f denotes initial, intermediate, and final states, and H (2) are 

the second order muon-pion scattering matrix element. Note the n can involve both 

positive and negative energy states. 

$$$ On the other hand, if reliable measurement of the pion charge radius can be 

obtained from other experiments, the measurement of the 2Q2 - 2P1,2 splitting 

may be used as a good test of quantum electrodynamics. 
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TABLE A 

VARIOUS CONTRIBUTIONS TO THE 2s 
l/2 - *p1/2 

SPLITTING IN PI-MUONIUM @) 

Effect FCJrmulfl mg”.itu& (x 10-3 eV) 

1 
1. Second order e+e- AEzs - AEzp = -$ Ry 

vacuum polarization d 
dxa2 (l+;x)(JE) , a=> -76.585 

tJx+aj4 

1 
L. Fourth order e+e- Al3 2s-AE2p=-;Ry 

J- 
dx+ $), a=2 - 0.589 

vacuum polarization@) 0 (&+a) 

3. Second order p vertex 
correction and p+p- 

AEzs - -L&Et ,2L+2-; 
6m2 = 

va,cln”” polarization(c) P I 
2k0(2,0) 6 

I 
0.176 

hE2P 
- 1 a5r3 k, L.QL 

I 

-r.!% 
6rn2 n k0(2. 1) 8 u 

I 
- 0.004 

P 

log Ry/ko(2,0) = -2.811769883 (28) 

log Ry/ko(Z, 1) = +0.030016697 (12) 

- 1 a5r3 pn 

I 

“I 
L. Second order paint 11 &Ezs - li 1 1 

vertex correction and f3rn; n zko(2, 0) +iz+ic 
I 

0.098 

ritlr- vacuum polnri- 
zatiodd) 

h”zp=z * 1&n* 0.0004 
0 9 li 

m2S 1 5 3 
5. correction to the 

Breit interaction 
‘T =3m 

y- g+f”-J=- 

r F I 
kO@. 0) 

I 
0.158 

2P 
mT 

-1 9,3 1 
=3m 12 + 

a5p3 
3n m,mp 

f”& 
( 1 ho@, 1) 

- 0.002 
nC1 = 

i. Con-ection to the rn~&$~ +%p+ h12 - 0.001 
iteration of the lJ 1 
Breit equation r mP-m 

?r 
II 

A. Double Coulomb AEfZ= 0 0 
exchange 

B. Double trans- 
verse photon 
exchange 

A.3 = n5fi3 
TT I 

en (I +;+;(l-l”z) 
4n mpmli 

2P AETT=- 
05fi3 

48n mpmr 

- .061 

- .002 

r(m -IOU4 
7. Breit energy splitting AEzs- AEzp = - ’ 12(mp+mJ 

- 2.638 

(a) Constants a-1 = 137.03602, p = 60.13624 MeV, mr= 139.576 MeV, rnp = 105.6594 MeV. Ry = 1.601168 keV . 

@) p (<) =$ F(G) . 

F(Z)=Z 

+($+Z*-$Z4) [4Li ($j) +ZLi(E)] . 

(c) The last term in AEzs comes from p+p- vacuum polarization. 

(d) The last term in AE2s comes from rr+ri- vacuum polarization. 


