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ABSTRACT 

Using model independent sum rules it is argued that the sharp peak 

near the kinematical boundary observed in some inclusive spectra and 

the increase of total cross sections are due to the same mechanism. 

Both phenomena are quantitatively described in proton-proton scatter- 

ing, in terms of diffractive excitation into high mass states with a 

triple-Pomeron coupling. This coupling is then incorpora%.ed in a two . 

component model. In this way we obtain a total inelastic proton-proton 

cross section which agrees with the data from s=30 to 3000 GeV2. The 

“break” in the elastic differential cross section at small It I is related to 

the increase with energy of the inelastic cross section. Predictions, 

based on the factorizability of the Pomeron, are given for the inclusive 

spectra, inelastic and elastic cross sections, at Serpukhov and NAL 

energies, for K+p and other reactions. It is shown that a Pomeron with 

intercept slightly below unity can actually give rise to increasing cross 

section and also that a perturbative approach of the Pomeron-coupling 

with only the first few terms may be sufficient at and even far beyond 

ISR energies while the %rue71 asymptotic behavior appears only much 

later. 
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I. INTRODUCTION 

Recent experiments at CERN ISR reveal that (1) there exists a sharp dif- 

fraction peak in inelastic proton inclusive cross sections, 1,2 which approxi- 

mately scales; 2 (2) both the proton-proton (p-p) total and elastic cross sections 

have increased from accelerator energies; 3 and (3) certain inclusive cross 

sections have a nonscaling behavior. 4 These facts can be intimately related to 

one another and also to the sensitive subject of the triple-Pomeron coupling. 

These relationships are based on some model independent sum rules, a 

phenomenological analysis of the inclusive data, which allows us to determine 

the triple Pomeron coupling, and a two-component model. 6 The peak in the 

inclusive cross section near x=1 is shown to produce an increase in the inelastic 

cross section, which is, in this way, related to the energy dependence of the 

diffractive component. , By the optical theorem the increase in the inelastic 

cross section produces an increase in the optical point which may change the 

decreasing behavior of the elastic cross section,observed at low energies, into 

a flattening out and even a subsequent increase. Furthermore, the presence 

of a contribution to the optical point that increases with the energy may produce 

a “break” in the elastic differential cross section. This approach also provides 

a simple interpretation of the experimentally unclear situation concerning the 

shrinkage of the elastic peak. 

Since all these considerations are based on the triple Pomeron-coupling, 

they give unambiguous prediction for other reactions, especially for K+p, which 

can be tested at Serpukhov and NAL. 

It is known that the triple-Pomeron coupling can not be self-consistent 

unless the intercept, %(O), is below unity or the triple Pomeroncoupling 

vanishes in the forward direction. However, we are going to show that the 
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behavior of the cross sections at ISR and even higher energies may be insensitive 

to this self-consistency question. In particular, even if (~~(0) < 1, the cross 

sections can increase at those energies. 

In Section lI, we illustrate the relationships among the observed phenomena 

enumerated above in terms of some model independent sum rules. In Section III, 

we discuss the effects of the diffraction peak on the inelastic cross section in 

terms of single diffractive excitation and the triple-Pomeron coupling. These 

results are used in Section IV to compute the inelastic pp cross section in a two- 

component model, which includes nondiffractive, single-diffractive, and double- 

diffractive excitation processes, and compare with the data. In Section V, we 

discuss the justification of the two-component model and its generalization, 

namely, a perturbative approach of the Pomeron coupling, and its self-consistency. 

Tests of these ideas in K+p and other reactions ye discussed in Section VI, In 

SectionVII, we study the shape of the elastic cross section near the forward 

direction. Finally, we summarize the main results of this work in Section VIII. 
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II. MODEL INDEPENDENT RELATIONS 

We shall proceed in an increasing order of model dependence. To begin 

with, let us recall some simple sum rules, which have to be trivially satisfied 

by a complete set of data but can provide useful constraints for models and for 

unknown pieces of physical information. First we have the relationship among 

the average proton multiplicity, Gp, the total cross section, gT, and the proton 

inclusive cross section 

Jl- 

d2cr 

n~(TT = -dx dpf , 
h d2pL 

(1) 

where x = Zp,, /& is the Feynman scaling variable. p,, and pI are respectively 

the longitudinal and transverse momenta of the observed proton in the center- 

of-mass frame, &, is the total invariant energy, and the invariant inclusive 

cross section for a particle c will be denoted by 

f&PI , s) d20 2 = 

dp,, dp* 

Since Ep (which is an independently measurable quantity) is observed to be 

constant or slightly decreasing over a wide energy range and approximately 

equal to 1.5 in pp reactions, 7 an increase of the right-hand side of Eq. (1) 

directly implies an increase of gT and vise versa. 

If fp is independent of s , i. e. , scales, near the kinematical limits x=&l, 

we can easily see that the integral in Eq. (1) is energy dependent. Indeed, the 

kinematical limits of the integration are restricted by 

p2+m2 
x2+4+&1 , (3) 
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which is s-dependent. If $ is sharply peaked near x= =tl, such a small in- 

crease of the region of integration can give rise to a substantial increase of 

the integral and therefore gT. 

The second simple relation is about the average inelasticity, ii 
P’ 

1 
XpOT = 5 ff fp’“,pL ,s) CIX dpf , (4) 

where xp can also be measured independently. The integral in Eq. (4) is 

weighted more in the regionx=*l than the one in Eq. (1) and therefore is more 

sensitive to the peak. As indicated by the cosmic ray and low energy data, 

gp is almost constant and equal to 0.5. If such a behavior can be verified at 

ISR, Eq. (4) would give an even stronger link between the peak and the rise in 

oT’ Furthermore, Eq. (4) together with the energy conservation sum rule 

(5) 

where the summation is over all the secondary particles, would imply that the 

integrals over f, for at least some particle c# p must also increase with s. 

Since fc for particles other than the “leading1 proton are not peaked near x=&l, 

such an increase must in turn imply some nonscaling behavior for fc. Conversely, 

if fc were to scale and uT increases, Xp must increase with s. 

One more relationship is the optical theorem, by which an increasing cT 

implies an increasing elastic differential cross section, dgel/dt, in the forward 

direction if the amplitude is predominantly imaginary. 8 As we shall see later, 

an increasing optical point together with the observed increase of the total 

elastic cross section, 3 V el, has implications on the shape of dgel/dt and can 

provide an explanation for the “break” observed’ in pp reaction near the forward 

direction. 

-5- 



III. SINGLE DIFFRACTION AND THE TRIPLE POMERON COUPLING 

From the previous arguments, it seems natural to consider a process 

which gives a sharp scaling peak for fp and contributes to an increasing gT. 

A plausible candidate is the single diffractive excitation process (S. D. E. ) with 

a triple-Pomeron coupling (see Fig. 1). A phenomenological analysis by one 

of USlO has shown that the observed proton inelastic inclusive cross section 

at ISR energies can indeed be described by a triple-Pomeron form 

withll 

Gp(t) N 2e4* 65 t 

(6) 

(7) 

and up(t) N 1 for small values of both t and M2/s, where t is the momentum 

transfer and M is the missing mass. These two variables are related to x and 

pI by M2/s N l-x and t= m:(2-x-x-l) - x-‘pE ; the peaks near x= *l correspond 

to the diffraction peak for small t and M2/s, and the energy dependent kine- 

matical limits are specified by t&-m: 
[ 
(M2-mi)/s 1 2. 

Since the peaks at x= &l are dominated by the S. D. E . shown in Fig. 1, 

obviously the integral over the inclusive cross section under these two peaks 

gives the cross section which is an aggregate of all the S. D. E. 

events. We thus have 12,13 

dcr do 
“S.D.E. = s forward dx dp2 

dx dp; + ----yh dp; 9 (8) 
dx dp t 

Peak I peak I 

which is different from Eq. (1). l4 For p-p reactions, the right-hand side of 

Eq. (8) is just twice the integral over the forward peak. Since the data 
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throughout the entire kinematical region of the peak, as required by Eq. (8), 

are not yet available, we take Eq. (6) as a representation of the data. lo Then 

from Eqs. (6) and (8)) we find that the peaks in fp contribute to an increase 

of 2.3 mb in oT from s = 200 GeV2 to s = 3000 GeV2. 

Subtracting Eq. (8) from Eq. (1)) we find that 

which correlates fp outside the peak and n . 
P 

If np is a constant, the right-hand 

side of Eq. (9) increases with energy and so must the left-hand side. Since in 

the left-hand side the contribution from peak has been removed, such an in- 

crease must come from a nonscaling behavior outside the peaks. Conversely, 

if fp scales or decreases with energy, the balance of Eq. (9) can only be 

accomplished by a decreasing ii . 
P 

The latter possibility is in rather good 

agreement with data. 

It has been shown that if the Pomeron is a factorizable simple pole, then 

the triple-Pomeron form given by Eq. (6) can not be self-consistent unless 

o+ (0) < 1 or Gp(0) = Ot5 We shall take the point of view that - 

ap(t) = 1- E + o!b(o)t , (10) 

With the phenomenological value of Gp(t), Eq. (7), and the self-consistency 

condition of Ref. 15, one finds that lo E can be as small as 0.001 for o+(O) ~0.5. 

This value can vary somewhat due to the uncertainties in c+(O). The diffraction 

peak then only has the approximate scaling property 

da 
=S -’ Gp(t) (11) 
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However, the break of scaling due to s-e is extremely small for small values 

of E. It is true that the integral of Eq. (11) vanishes asymptotically and there- 

fore the increasing cross section for S. D. E. can not persist. However, the 

s-dependence of the integral at finite energies can be obtained straightforwardly 

from an analytical estimation and/or numerically. For E 5 0.01, it canbe 

shown that there is always a range of x and a,(O) in which the result is well 

approximated by the logarithmic behavior in Ref. 15 (see footnote 16). For 

E = 0.01, we find that the effect of the factor s-e is only 2% from s = 200 to 

3000 GeV’. Therefore, this asymptotically vanishing cross section actually 

increases with s in the above energy range. Such a behavior persists even if 

Gp(0) = 0 but,if this is the case, the rate of increase would depend on how Gp(t) 

approaches zero with t. At the present stage, our discussion is not very 

sensitive to the properties of the Pomeronchuk trajectory, namely, factorability, 

value of E, etc. In a later section, we shall discuss the effects of these properties 

on the asymptotic behavior. 
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IV. A TWO COMPONENT MODEL OF INELASTIC CROSS SECTION 

To complete the picture for the total inelastic cross section, we shall 

adopt a two component model, in which categories of events are characterized 

in terms of fireballs. 17 These categories are assumed to have aggregated 

energy dependence that corresponds to different powers of Pomeron coupling 

as shown in Fig. 1. This can be regarded as a perturbative approach of the 

Pomeron coupling, where the Pomerons being exchanged are the “bare’* ones. 

Events with more than two fireballs are neglected at ISR energies in view of the 

smallness of the triple Pomeron-coupling. 

In this model, the total inelastic cross section, cinel,is dominated by the 

nondiffractive (single fireball), S. D. E. , and double diffractive excitation 

(D. D. E.) processes. The nondiffractive contribution is given by 

ON.D. =’ , (12) 

where PpppW is the proton-Pomeron residue at t=O, which we shall estimate 

later. 

The S. D. E. processes have been already discussed in the previous section. 

In all the calculations in this paper, the value of us D E is obtained by com- . . . 

puting numerically the integral in Eq. (8) with the integrand given by Eq. (11). 

Since this integrand is strongly peaked near x=&l, we integrate it over the 

whole physical region - excluding the region near x=0 where the integrand is 

kinematically enhanced. In this way, one avoids the ambiguity in the definition 

of the “peaks” in Eq. (8). This integral can also be analytically evaluated 

provided that some simplifying assumptions are made. For E in the range 

between 0 and 0.001, one obtains in this way the approfimate form 16 

%. D. E. N (0.4 mb) h (s/m:) (84 
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In computing the energy dependence of as D E (which is related to the develop- . . . 
ment of the peaks in fp near x= *l), from accelerator to ISR energies, there is 

an ambiguity due to the fact that at accelerator energies the peak (if present at 

all) is “covered*’ by resonances. The prescription used here to compute the 

increase with energy (by integrating the PPP contribution at two different 

energies and subtracting them) amounts to computing the surface under the peaks 

at ISR energies and subtracting the sum of the resonance cross sections at 

accelerator energies. 10 

The double diffractive excitation cross section, aD D E , is much more . . . 

difficult to analyze phenomenologically, since it is small and one also has to 

measure all the final states in order to select out all the two fireball events. 

Only within the model, it can be obtained in terms of P,pp(0) and the triple- 

Pomeron coupling, g,(t), from the assumption of factorization. We haveI 

FD. D. E. = -?- (Qn s/rn$‘l’ Ipppp(0)12 g;(t) dt 
321~ , 

--co 

where g,(t) is related to Gp (t) in Eq. (7) by 

g,(t) = 167~ IPpppO l-2 p,,p@)-1 GpW > 

and one can estimate pPpp (t) from the elastic differential cross section 

IP,,,(t) I2 = (161r)1/2 (s2t d%!li”” e- ob(O)t Q@s’m$ 

(13) 

(14) 

(15) 

Rigorously speaking, doel/dt in this model must also have contributions from 

terms other than the single-Pomeron exchange and therefore ,B ppP 04 can not 

be unambiguously determined, but these ambiguities in pppp(t) , which are 

characteristic of a perturbative approach, have little effects in our discussion. 

Using Eqs. (7) and (13) - (15)) one gets for E in the range 0 - 0.00 1 and 

- 10 - 



% = 0.33 GeV-2 (see Ref. 9 and footnote 19) the approximate form 

aD.D.E. = (0.022 mb) (Qn s/mi)2 

The total inelastic cross section in the ISR energy range is then 

u inel = “N. D. + (?S.D.E. + (TD.D.E. ’ 

PW 

(16) 

where the right-hand side of Eq. (16) is given by Eqs. (9) and (11) - (13). 

At this point, it is important to make a few comments regarding the justi- 

fication of the perturbative approach, Eq. (16). (1) One notices that the integral 

in Eq. (13) has the slope of g,(t) as the only cutoff in t, whereas the integral for 

OS. D. E. contains the factor lp PPP(t) 12* Thus the ratio of the double to 

single diffractive excitation is very sensitive to the slope of g,(t). The 

phenomenological analysis in Ref. 10 shows that this slope is very small. This 

makes the evaluation of c D D E rather sensitive to uncertainties in the data . . . 
and the value of of,(O). (2) Obviously, Eq. (16) breaks down at energies much 

higher than the ISR when events with more than two fireballs may become 

important and also at low energies when non-Pomeron contributions are impor- 

tant. (3) There are corrections from the secondary Regge trajectories to the 

Pomeron contributions shown in Fig. 1. The corrections to the single-Pomeron 

exchange (N.D.) process are presumably small in exotic processes but rather 

important in non-exotic ones especially at low energies. The ones to S. D. E. 

and D. D. E. processes may be important even at high energies, since each in- 

ternal Pomeron in the latter processes corresponds to a subenergy which is 

much smaller than s. In particular, there is a 20% decrease of fp at x M 0.93 

from s=50 to 500 GeV2 (Ref. 20) and fp only scales at ISR energies. Such a 

decrease can be attributed to the PPR, PRR, and RRR terms 21 which are not 

included in our approximation. 
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With the above comments in mind, we proceed to the phenomenological 

analysis in this model and shall defer some formal discussions to the next 

section. First of all, in order to determine our remaining unknown param- 

eter, p ppP(O) 7 we should choose a value of s in Eq. (12) such that the uncer- 

tainties in the determination of P,,,(O) are minimized. We thus use Eq. (16) 

and the experimental value of (T inel at s = 100 GeV2 (Ref. 22) to obtain the 

value of I p ,,,(O) I2 = 27.4 mb, where s is sufficiently large to justify Eq. (16) 

while (T D D E is still small enough so that the uncertainties in this component . . . 
do not affect the value of p ,,(O) . With this value, we plot the s-dependence 

of U inel for l =O and orb(O) = 0 in Fig. 2 and compare with the data. As dis- 

cussed before, the behavior of c inel is insensitive to the precise value of E 

and c+(O) in the range ~~0.001 and o$(O) 5 0.5 GeVm2. (See footnote 16.) 

As seen from Fig. 2, from s =550 to 2800 GeV’ we obtain an increase of 

2 mb for mine1 for s =500 to 2800 GeV2 , as compared with the observed value 

of 3.3 f 0.9 mb. These results indicate that the diffractive excitation mechanism 

can be largely responsible for the observed increase in (3 inel. For s between 

30 and 100 GeV2 the curve in Fig. 2 seems to increase too fast and slightly 

underestimate (7 inel. This could be due to nonscaling contributions as dis- 

cussed before. However, these contributions seem to have a rather small 

effect on (T inel. On the other hand, at ISR and higher energies, there can be 

other contributions to the increasing cinel. For example, various electro- 

magnetic processes always lead to a logarithmically increasing cross section 23 

and such an increase may become observable at-high energies. 

To summarize, the sum of oS D E and al, D E in Fig. 2 . . . . . . 

represents the approximate amount of diffractive excitation expected from the 

model and its increase with energy. As discussed in Ref. 10, the diffractive 
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components obtained in this way includes the diffractive production of small 

mass fireballs but the elastic process is not included. 

The total single diffraction cross section, crS D , is then the sum of . 0 

g’s D E and the elastic cross section. The magnitudes of u . . . N.D.’ %.D.’ 

and crD D E obtained from Fig. 2 are in agreement with their generally . . . 

accepted values. 
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V. ASYMPTOTIC BEHAVIOR AND THE POMERONCHUK SINGULARITY 

From Eq. (ll), we can see that the triple-Pomeron term is relevant only 

when both s/M2and M2 are large. A qualitative estimation immediately shows 

that if the single-Pomeron term becomes important only for s larger than a 

certain value N, then the triple-Pomeron terms start to be important for 

s > N2 and so on. An alternative way of expressing this is simply that each 

internal Reggeon in Fig. lb corresponds to a subenergy much less than s. The 

precise value of the threshold for s/M2then essentially sets a new energy scale 

for the various diffractive processes to become important. 

Phenomenologically, the diffraction peak appears for x > 0.95, corre- 

sponding to s/M2> 20. The limit onM2 is at least the highest resonance mass, 

which is above 5 GeV2 in pp reactions. Thus we obtain an energy scale of 

about 100 GeV’, which however may vary from one reaction to another. For 

example, in K+p reaction, the kaon dissociation may start at a lower energy, 

since the highest resonant state for K+ is only around 1 GeV. 

The importance of this new energy scale is at least twofold. (1) It explains 

when new phenomena occur and (2) partially justifies the expansion in Eq. (16). 

At ISR energies, since the internal Pomerons correspond to an energy much 

less than s and below this energy scale of 100 GeV2, we do not need to further 

iterate these internal Pomerons. Only at energies much higher than those of 

ISR, such iterations will become important. Together with the smallness of 

the triple-Pomeron coupling, this shows that it is reasonable to treat the 

triple-Pomeron in a perturbative approach as described in the previous section 

and to deal with only a few terms at finite energies, while the question of how 

to consistently include all the iterations is only relevant for the discussion of 

the asymptotic behavior as s - 03. 
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For E > 0, each term vanishes asymptotically in this perturbation series 

to any finite order. However, different terms start to become important at 

different energies, in analogy with the perturbation expansion in quantum elec- 

trodynamics, where higher order terms are suppressed by factors of o but 

accompanied by factors of 1n s. 24 Each energy where a higher order term 

becomes important, effectively represents a new threshold. From this point 

of view, what we see at ISR or even higher energies in the foreseeable future 

may very well be the effect of the onset of these thresholds instead of the “true” 

asymptotic behavior. 

From a more quantitative point of view, we have already seen that, at 

low energies, the cross section is dominated by simple Pomeron exchange and 

is almost constant in s. At higher energies, the S. D. E. and then the D. D. E. 

processes start to become important. From the knowledge of these processes, 

it is possible to estimate the relevant high energy behavior. In Fig. 3, we 

Plot ~inel’ aN D ) =S D E ) and ED D E of Eq. (16) from NAL toenergies 
. . . . . . . . 

beyond laboratory experiments in the foreseeable future. For e=O, the 

increase of (3 inel is practically linear in b s. For e=O. 001, we obtain almost 

the same rate of increase even at s = lo8 GeV2. For e=O. 01, the increase of 

8 2 US D E is compensated by the decrease in aN D at s N- 10 GeV . However, . . . . . 
(7 inel is still increasing at this value of s, due to the increasing vD D E and . . . 

also to the possible onset of multiple diffraction process which are not 

included in Eq. (16). From the fact that the diffractive cross sections remain 

smaller than (T N.D.’ such a perturbation expansion is still justified at such 

high energies. Therefore, we see that it is possible to start with a Pomeron 

with a,(O) = 1-e and consistently iterate it to the same singularity, i.e. , to the 

asymptotic behavior @. -E 
inel CC s , and still have a cross section increasing 

- 15 - 



with s at finite but high energies. Even at the highest energies in Fig. 3, the 

relevant quantities are only the first few terms in the perturbation expansion. 

Thus the questions of whether there is an asymptotic behavior and/or whether 

~~(0) is exactly unity seem to be academic ones unless future experimental 

data on fp at ISR for very small t reveal a sufficiently strong turnover of 

gp(t) such that our estimation of aS D E and gD D E should be significantly . . . . . . 
reduced. In this case, flinel might exhibit an “early” asymptotic behavior at 

ISABELLE or even at lower energies. 

We further discuss the factorizability of the Pomeron. In this approach, 

the input Pomeron is a factorizable simple pole. At low energies where the 

single-Pomeron exchange is dominant, oinel = oN D , the cross sections . . 

are approximately factorizable 25 apart from corrections due to secondary 

trajectories. At higher energies where crs D E and cD D E becomes . . . . . . 

significant, the cross section is not single-Pomeron dominated and obviously 

no longer factorizable. Furthermore, since we can not reach asymptotic 

behavior at any reasonable energies, the questionof whether one can iteratively 

obtain an output Pomeron as a factorizable simple pole may also be academic. 
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VI. TEST OF THE MODEL IN K+p SCATTERING AT NAL ENERGIES, 

AND PREDICTIONS FOR OTHER REACTIONS 

In the previous sections the existence of the peak near x=1 in fp has been 

correlated to an increase ino PP inel. This increase, due to an increase in the 

diffractive components, can not be compensated by a decrease in the non- 

diffractive one in an exotic process, since the latter has presumably very 

little energy dependence due to the exchange degeneracy of secondary trajectories. 

The same arguments should apply to K+p scattering where exchange degeneracy 

is expected to be at least as good as in pp scattering. In the model we are 

discussing, the magnitude and shape of the peaks in K+p inclusive reactions 

K+P near x=+1, and therefore the associated increase in cinel, can be predicted 

using the triple-I)omeron coupling g,(t) and factorization of the Pomeron. For 

K+p - p+X we get 

dmK+p 

’ 
(17) 

where the pp inclusive cross section is given by Eq. (11). Similarly, for 

P+K+ - K++X, we have 

d@K+p 1 /+Q& 1 2 d$P doK+p dt I dopp % 
= dc$dt dt d 

(18) 

Ip ppptW2 

The single diffractive excitation cross section, K+P os D E , can be obtained . . * 

simply by integrating Eqs. (17) and (18) and adding these two contributions 

together ., With the approximations Gp(t) cc eat, 6-e Eq. CW, 

@PPP 
(t) I 2 = ebpt I pppp(0) I 2, I /3=,(t) I 2 = ebK+t I pKKp (0) I 2, and the same 

simplifying assumption in obtaining Eq. @a), K+P us D E can be approximated . . . 
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K+P 
,K+P 

inel 
%.D.E.= w 

inel 

where spD E is given in Fig. 2 and has the approximate expression (8a). . . . 
For the D.D. E. we have 

K+P kKP(0) $3p 
,K+P 

oD.D.E. = p 
2?ELqD E 

ppptO) D.D.E. opp . . . ’ 
inel 

(20) 

where sp D E is given by Eq. (13a). . . . 
Equations (1’7) - (20) are only approximate in the sense that ginel should 

actually be oN D and also dc el /dt should be actually its single-Pomeron . . 
contribution (see next section for the discussion of dgel/dt). Thus we should 

take cinel at a fixed energy where the total effects due to the secondary tra- 

jectory and the diffractive components can be minimized. Furthermore, as 

discussed in pp scattering, these equations are expected to be more accurate 

at the highest NAL energies, due to the possible existence of nonscaling con- 

tribution in K+p inclusive spectra at lower energies. 

KfP With oN D practically constant (see Eq. (12)), we can compute mine1 . . 
from Eqs. (16), (19), (20) at high energies. For a=4.65 GeV -2 and b p-bK+=3, 

we obtain the result shown by the dashed curve in Fig. 2. This curve has been 

normalized at the highest value of s (= 27.5 GeV2) available 26 by evaluating 

,K+P 
+ 

N D and the ratio <~el/o~ne~ = 30.4 mb/ 13.88 mb at this energy. As seen . . 
from Fig. 2, the difference between this ratio and c$): D /c:+: is very small. . . . . 

K+P However, as discussed in Section IV, the normalization, and therefore oN D 
. . 

as well as the ratio, should be better determined at sk 100 GeV2. A larger 
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uncertainty can arise from that in bp-be, which in turn is due to the uncer- 

tainties in the data and also to the effect of the real part of the elastic 

amplitudes at low energies. We estimate that there may be as much as 20% 

uncertainty in the increase of o K+P inel shown in Fig. 2, but this figure still gives an 

important estimation of the prediction of the model. 

Similarly, the diffraction peaks in K-p, drip and pp, as well as the dif- 

fractive components and their increase with the energy can be obtained in our 

model by simply replacing the K+p cross sections in Eqs. (17) - (20) by the 

relevant cross sections. These predictions are, of course, subject to the 

same uncertainties mentioned above. Furthermore, since these processes 

are nonexotic, one expects that the increase in the diffractive components will 

be accompanied by a decrease in the nondiffractive component due to secondary 

Regge contributions. Only at high enough energies, where these contributions 

become sufficiently small, will the increase in the diffractive components 

result in a net increase in o inel. Below those energies the increase of the 

diffractive components should be compared to that in the difference between 

cr inel and its decreasing part (determined from a fit of the data). For instance 

in r-p scattering cinel = 21.04 mb at plab = 40 GeV/c (see Ref. 27). From 

40 to 205 GeV/c the increase in the diffractive component is about 0.9 mb. 

-l/2 On the other hand from a fit of the data of the form a+b plab for plab < 65 GeV/c 

one gets a decreasing part of about 1.1 mb in the same range of plab between 

40 - 205 GeV/c. Thus the value of uinel at 205 GeV/c should be approximately 

the same as at 40 GeV/c in agreement with preliminary results at N.A. L. 28 

From 200 to 400 GeV/c the decrease is 0.2 - 0.3 mb while the increase in the 

diffractive components is 0.4 mb and therefore no substantial increase of ginel 

is expected even at the highest N. A. L. energies. (However, the increase in 
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or::. is estimated by Eqs. (19) and (20) with IpTTp(t) I 2 - IfinTp(0) 12x 

l@PPP tt) 12/IPppp(o) 12. The uncertainties in this residue may again make some 

difference. For instance, if its t-dependence is much smaller than this, it 

T-P may result in a larger increase in 0. me1 .) 

To conclude, we should make a few remarks concerning the hierarchy of 

these tests of our model. The most important of all is observing whether 

,K*P 
inel indeed increases and, if so, directly comparing with the inclusive cross 

sections for K+p -pX and K+i-p --L pX near the kinematical limits to test our 

basic idea that an increasing cinel and the peaks in the inclusive cross sections 

are due to the same mechanism. The next one is to test Eq. (17), which is 

based on the factorizability of the Pomeron at t=O. The predictions of Eqs. (18) 

and (19) are based on the more subtle question of the factorizability for t#O. 

Furthermore, these involve the difficult task of extracting out P(t) from the 

elastic cross section. For the above reasons, those predictions are subjected 

to uncertainties. However, a direct comparison of ainel with Eqs. (16)) (19), 

(20) and Fig. 2 gives a simple and very important test of our model. 
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VII. ELASTIC SCATTERING 

Since the pp total cross section increases at ISR energies and the elastic 

amplitude at t=O is largely imaginary at lower energies, doel/dt at 

t=O must increase by the optical theorem. 

A large percentage of this increase, i.e., the part corresponding to the 

contribution of CT inel to the optical point, can be obtained from our model. At 

low energies, where the increasing contribution is small, gel is expected to 

exhibit a decrease due to the shrinking of the elastic peak and/or the contribu- 

tion of secondary trajectories. At higher energies when the processes involving 

the triple-Pomeron coupling become important, this decreasing behavior may 

be overtaken by the increasing contribution of those processes, and in this 

case o el will be flat for a while and then increase with the energy. However, 

whether or not this change of behavior occurs and at what value of s, depends 

crucially on the slope parameters of the increasing components. In any case, 

it is very reasonable to conclude that the possible onset of flat and subsequent 

increasing crel must not occur earlier than that of uinel, in agreement with the 

pp data. The apparent constancy of gT for s = 100 GeV2 is possibly a result of 

the compensation between an increasing cinel and a decreasing component 

(mainly ~~1). On the other hand, an early increasing of uT, as observed in K+p 

reaction2’ must imply an increasing Oinel. Since the increase in this quantity 

predicted by the model in the Serpukhov energy range (see Fig. 2) is comparable 

to the observed increase in gT, one expects ael to be constant or slightly in- 

K+P creasing. Therefore a measurement of 0~1 at Serpukhov and also a measure- 

ment of c$+~ and u$’ at NAL are very important to test our ideas. 

The existence of two types of contributions to the optical point, one almost 

independent of the energy and the other increasing with s, can produce a “break” 

- 21 - 



in bel/dt. 30 The position of this “break” depends on s and on the slope 

parameters of the two (types of) contributions. We are going to see that in 

pp scattering, by supplementing our model with the experimental information 

on the integrated elastic cross section, one can obtain the shape of dgel/dt in 

reasonably good agreement with experiment. 

The contribution to ael/dt at t=O from the diagrams of the first line of 

Fig. Id is 

1 2 
16n +“S.D.E. +%.D.E. (21) 

This is the contribution of ainel to the optical pqint and represents approxi- 

mately 80% of the total contribution. The missing part is given by the diagrams 

of the last line of Fig. Id. Notice that the diagrams in the first line of Fig. Id 

which contain the triple Pomeron coupling g,(t,, t2, t3) can not be computed 

at t#O since this coupling is only known for tI= t2 and t3 =O; therefore the 

iterated diagram in the second line of Fig. Id can not be computed either - 

not even at t=O. However, from the experimental data we know that the ratio 

ael’cinel is roughly constant in the ISR range s = 500 - 2800 (GeV)2. This 

means that,in this energy range,the contribution of cT to the optical point is 

simply the contribution of cinel, given by Eq. (21)) multiplied by the constant 

factor aT/ainel. 

Let us now turn to the t-dependence. The main contribution to the energy 

independent part at t=O is of course c N. D. ’ Let us call b(s) the slope 

parameter of this component and assume that this quantity represents an effec- 

tive slope parameter for the entire energy independent part of the elastic 

amplitude. Similarly the main contribution to the energy dependent part of the 

amplitude is c S.D.E.’ Let us denote by b’(s) the slope parameter of this 
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component,which again is assumed to represent 

of this energy dependent part of the amplitude. 

following parameterization 31 

the effective slope parameter 

One is lead in this way to the 

el 1 oT 
dt =%i sl 

,btsW + 
S.D.E. +oD. D. E. 

It is clear that if b(s) #b’(s) a “break” will appear in dcel/dt. 

The experimental situation concerning the s-dependence of the elastic 

peak and thus the slope of the Pomeron is rather unclear. ’ In our model the 

two following situations seem to be possible a priori: (i) bf (s) > b(s). In this 

case the increasing component will be important mainly at very small It I and 

thus the slope of the Pomeron has to be linked to the small shrinkage observed 

at large It I, the large shrinkage observed at small It I being produced by the 

increase of the optical point. (ii) b’(s) < b(s). Here the effect of the increasing 

contribution is more important at large It I and thus the slope of the Pomeron 

has to be linked to the shrinkage observed at small It I. 

In fact only the second possibility is truly consistent with our model. In- 

deed at conventional accelerator energies the increasing component is very 

small and therefore the slope of the Pomeron has to be linked to the shrinkage 

at these energies. This shrinkage is consistent with the one observed at the 

I. S. R. at small values of It I as shown by the fit of the data on the slope param- 

eter at It I < 0.12 GeV2 given in Ref. 9: 

b(s) = 9.3 + 2cr;(O) h s/(10 GeV2) 
[ 1 , (22) 

with ok (0) = 0.33 GeVW2 (see footnote 32). That possibility (i) is indeed 

favored by our model can be shown in the following way: using the values of 

b(s) from Eq. (22) in Eq. (23) one can compute b’(s) by demanding that the 

- 23 - 



integrated elastic cross section obtained from Eq. (23) agrees with the exper- 

imental ISR values. In this way one obtains b1 - 8 GeV -2 at s = 2800 GeV2. 

Furthermore with this value of b’ one gets an increase of (rel in the ISR energy 

range in reasonably good agreement with experiment. This does not prove 

that b’(s) is s-independent but shows that the model is consistent with a small 

s-dependence of this quantity, as expected from the “cut” nature of the corre- 

sponding diagrams in Fig. Id and in agreement with the rather small shrinkage 

observed of the ISR at large It I. As discussed before, we can not compute the 

value of b’(s) unless some assumption is made on the triple-Pomeron coupling 

gp(ty t2’ t3). For instance, if this quantity is symmetric in its three variables, 

we can take it to be a constant as a first approximation, since 

g,(t) = gp(tl=t, t2=t, t3=0) depends very little on t. Then the second and third 

diagrams in Fig. Id have a slope b’(s) N $ b(s). 

Using the value b’ = 8 GeVe2 one can compute the shape of dael/dt . The 

result for s = 2800 GeV2 is shown in Fig. 4 and compared with the data. As 

expected one observes a “break” or rather a smooth change from an exponential 

ebt at small It I to another exponential with small slope at larger values of It I. 

It is clear that in our model this “break*’ disappears at low energies since the 

increasing components become negligible. However, a detailed description of 

its energy dependence is beyond the scope of the rather crude analysis presented 

here. 
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VIII. STJMMARY AND DISCUSSIONS 

We summarize our main results as follows: 

(1) The scaling peak in fp near the kinematical limits implies that there 

is a mechanism responsible for this peak whose contribution to aT increases 

with s at least over a finite energy range. 

(2) Both the peak in fp and the increase in cinel at ISR energies can be 

explained in terms of diffractive excitation into high mass states in the frame- 

work of a triple-Pomeron model. Therefore diffractive excitation provides for 

the mechanism alluded to in (1). 

(3) The relationship between increasing ainel and diffractive processes 

can be tested in the K+p reaction at Serpukhov and NAL and, very likely, also 

in other reactions. 

(4) Gel can also increase but this increase can not start earlier than the 

increase of g T’ 

(5) The shape of duel/dt and, in particular, the “break” at small It I is con- 

nected, via the optical theorem, to the existence of two types of components in 

gT, one of which is almost energy independent and essentially nondiffractive 

and the other which increases with s and is essentially diffractive. 

(6) From energy conservation, an increasing cT implies that at least 

some of the inclusive cross sections, f c, and/or the leading particle average 

inelasticity have to be s-dependent. In particular, fc may increase with s. 

(7) If the peak in fp is dominated by single diffraction and scales, then 

fp in some other region can not scale and/or Gp must decrease. 

(8) In the two component model, each diffractive excitation process be- 

comes important at certain energies and therefore effectively creates a new 

threshold for cT. 
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(9) Below all these thresholds, we have oinel = aN D and thus approxi- . . 
mate factorization for the cross section, but this factorization property does 

not persist at high energies. 

(10) The energy dependence of the cross sections at and even beyond ISR 

energies is most likely insensitive to the question of whether o!,(O) is exactly 

equal to unity or not. 

To conclude, we have presented a model that correlates in a natural way 

such seamingly independent phenomena as inclusive peaks and rising cross 

sections, and describes them in terms of the simple physical concept of dif- 

fractive excitation. Furthermore, since diffractive excitation processes are 

dominated by Pomeron exchange, the model relates in an unambiguous way the 

results in different reactions via factorization. Although the comparison with 

pp data is very encouraging, it is clear that the version of the model we have 

presented is oversimplified and corrections to it have to be expected. It is 

therefore important to obtain more detailed data in pp scattering and also data 

on the inclusive peaks and total and elastic cross sections in other processes, 

especially K+p at Serpukhov and NAL energies in order to test the model and 

determine the importance of possible corrections to it. According to the 

model, experiments in the near future, although very important for a better 

understanding of the dynamics of strong interactions, may not provide us with 

the “truel* asymptotic behavior. 
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FIGURE CAPTIONS 

1. (a) Graphical illustration of the dominant contribution to the inclusive 

cross section from single diffractive excitation processes. The straight 

lines represent particles and the wavy lines represent the Pomeron. 

(b) Decomposition of the inelastic cross section according to the number 

of fireballs with Pomerons exchanged between each adjacent pair of 

fireballs with large rapidity gap in the rapidity space. Each diagram in 

the second line gives the aggregated Regge behavior for the processes 

shown by the corresponding diagram in the first line. 

(c) The total cross section as the sum of inelastic and elastic cross 

sections, where the total elastic cross section is graphically illustrated 

as absorptive part of Regge cuts. 

(d) Graphical illustration of the elastic differential cross section which 

satisfies perturbative unitarity. 

2. The total inelastic, single diffractive excitation, and double diffractive 

excitation cross sections. The solid and dashed lines respectively repre- 

sent these cross sections in pp and K+p 

model and the data points represent the 

Ref. 3 and the K+p total inelastic cross 

reactions calculated from the 

pp total inelastic cross section of 

section of Refs. 26 and 29. The 

scales on the left- and right-hand axes are for the pp and K+p reactions 

respectively. 

3. Two- component model predictions of uinel, oN p , . . fls D E , and ‘TV D E . . . . . . 
in pp reaction. The solid and dashed curves respectively represent the 

predictions with E=O and e=O.Ol. 

4. Comparison between the data of Ref. 9 on the pp elastic cross section at 

s=2800 GeV2 and the model. The circles are the data points, the crosses 
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are the results calculated from the model, and both the solid and dashed 

lines are simple exponentials given by Ref. 9 to illustrate the t-dependence 

of the cross section for two different regions of t. Although difficult to 

see from the figure, the model gives a smoother transition of the cross 

section between these two lines than the data. 
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