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1. Introduction 
In the next-generation linear colliders, the low- 

energy e+e- pairs created during the collision of 
high-energy e + - e beams would cause potential 
deleterious background problems to the detectors. 
At low collider energies, the pairs are made essen- 
tially by the incoherent process, where the pair 
is created by the interaction of beamstrahlung 
photons on the individual particles in the oncom- 
ing beam. This problem was first identified by 
Zolotarev, et al[l]. At energies where the beam- 
strahlung parameter T lies approximately in the 
range 0.6 2 T 2 100, pair creation from the 
beamstrahlung photons is dominated by a coher- 
ent process, first noted by Chen[2]. 

The seriousness of this pair creation problem 
lies in the transverse momenta that the pair parti- 
cles carry when leaving the interaction point (IP) 
with large angles. One source of transverse mo- 
mentum is from the kick by the field of the on- 
coming beam which results in an outcoming an- 
gle 0 0: l/r x, w h ere x is the fractional energy of 
the particle relative to the initial beam particle 
energy[2,3]. A s was shown in Ref. 131, there in 
fact exists an energy threshold for the coherent 
pairs, where xth ;L 1/2T. Thus within a tolerable 
exiting angle, there exists an upper limit for T 
where all coherent pairs would leave the detector 
through the exhaust port[4]. A somewhat differ- 
ent analysis has been done by Schroeder[S]. In the 
next generation of linear colliders, as it occurs, the 
coherent pairs can be exponentially suppressed[2] 
by properly choosing the ‘X?(s 0.6). When this is 
achieved, the incoherent pairs becomes dominant. 

Since the central issue is the transverse mo- 
mentum for particles with large angles, we no- 
tice that there is another source for it. Namely, 
when the pair particles are created at low energies, 
the intrinsic angles of these pairs when produced 
may already be large. This issue was first stud- 
ied in Ref. [l]. In this paper we reinvestigate the 
problem, following essentially the same equivalent 

photon approach, but with changes in specific de- 
tails including the virtual photon spectrum. In 
addition, various assumptions are made more ex- 
plicit. The formulas derived are then applied to 
the collider parameters designed by Palmer[6]. 

2. The Equivalent Photon 
Approximation 

We will be considering three different incoher- 
ent processes: 

1. Breit-Wheeler process: yy -+ e+e-; 
2. Bethe-Heitler process: ey -+ ee+e-; 
3. Landau-Lifshits process: efe- -+ e+e-e+e-. 

The basic kernel of these processes is the same. 
For the BW process both photons are real beam- 
strahlung photons; for the BH process one is real 
and one is virtual; and for the LL process both 
photons are virtual. 

When invoking the equivalent photon picture 
with both photons on-shell, the relativistic kine- 
matics relates the fractional energy x of the out- 
coming positron (or electron) to its angle e (rel- 
ative to the initial particle trajectory) and the 
fractional energies of the two photons, yl, ~2, as 

2Yl Y2 
x= 

Yl(l-Pc)+Yz(l+Pc) ’ 
(1) 

where c G cos 0 and p is the speed of the particle. 
In the following, we shall assume /? N 1, as the 
pair particles of concern are still relativistic. Since 
the transverse momentum pl = xdn, with 
any choice of pl and c, the initial photon energies 
are limited by 

y* = Q&c) z g Ifc 
2 2 $ 1FC 
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Furthermore, for any given value of yz > y-, the 
lower bound for yr is 

(3) 

From the virtual photon propagator, one can 
establish the spectrum of the equivalent photons[7]: 

‘J dy y:dy: dn, = -- 
7r Y (Y: + Y2j2 ’ 

(4) 

where yl is the normalized transverse momentum 
q of the photon: yL - q/-ym. Integrating over yt, 
we get 

n,(y) = tij, 
( 

y&z + Y2 
Ylqtin + Y2 > ’ 

(5) 

where yl,,,,, and ylm;,, are the maximum and 
minimum momentum transfer, respectively. In 
the equivalent photon approximation, it is assumed 
[7] that the transverse momentum of the virtual 
photon satisfies the condition 

(6) 

Since n, depends on ylmaz and ylmin only loga- 
rithmically, it is customary to take the bounds in 
Eq. (6) as their values. We then have 

n,(y) = 2”bn : . 
“Y 0 Y (7) 

3. The Partial Cross Sections 
The partial cross section for all positrons (or, 

equivalently, all electrons) with transverse mo- 
mentum pl 2 plo and outcoming angle -co < 
c < co is 

cab-e+ (PLO, CO) = 

9 7 dc/dyzT dYln,(Yl)nb(y2)a,,(YI,y2), 
(8) 

-co Y- Yb 

where g = l/4 for the BW process, and 1 for both 

BH and LL processes, respectively. For the BW 
process, the effective collision time for the beam- 
strahlung photons, which are emmitted during 
the collision itself, is only l/4 of that of the pri- 
mary beam particles. For the BH process, the fac- 
tor l/2 that arises from the effective collision time 
is compensated by the matching between the real 
and the virtual photons from both beams. The 
upper limits of the spectral integrals are set at in- 
finity since the contributions are essentially dom- 
inated by the lower bounds. The photon spectra 
n, and nb depend on whether the photons are real 
or virtual. For virtual photons, it is the spectrum 
derived in the previous section. For real beam- 
strahlung photons, we define an effective T for 
the entire beam as 

TX5 vi% 
6 ac~,cr,(l+ R) ’ 

where uZ, uy are the beam sizes and R = uz/uy is 
the aspect ratio. The beamstrahlung spectrum is 
then 

q,(y) = iI’(2/3) (F) (3r)2’3~-2’3 
c 

(1o) 

where I’(2/3) N 1.3541. 
In Eq. (8), ‘~-,~(yr, ~2) is the differential cross 

section for yr + e+e-: 

da,, = 8zrrz 
m2ds 

t(t - 4m2) 
1 s-m2 i ( u-m2 

-+- -4 u-m2 s - m2 ) 

( 
m2 + m2 

1 

(11) 
+-- s - m2 u - m2 

( 
m2 + m2 2 

+-- s - m2 >> u-m2 ’ 

where s,t,u are the Mandelstam variables. In 
terms of our variables, we have 

s = 4y2m2yly2 , 

t - m2 = -2y2m2ylx(l - c) , (12) 

u - m2 = -2y2m2y2(l + c) . 



With the help of Eq. (l), we find 3. Landau-Lifshitz process: 

lr 
dq,, =-- 

r-z dc 
4 T2YlY2 - 1 ii 2a2r2 Co dc 

%(Plo,eo> = e IL 
1 

-- 
“r2 1 - c2 y+y- 

--cg 
{ 

Yf(l - c)2 + y;p + c)2 

x 2(1-c2)[Yl(w+Y2(l+c)l 

+ AY1(1- c) + y2(1+ c) 
(13) 

r3 YlY2(1 - c2> 

1 [Yl(1--)+Y2(1+c)]3 -- 
s-Y4 Y1Y2[Y1Y2(1- c2>12 1 * 

The first term obviously dominates. Furthermore, 
we expect that the major contribution comes from 
c 2 CO S 1. Thus yr(l--c)+yz(l+c) x 2~2. With 
r2yr yz >> 1, we arrive at 

2 1 
4Y1, Y2) =X’I‘,- 

-I’~YIYz 1 - C2 

x 
{ 

Y31 - d2 + $(l + c)2 
[YlP - c) + y2(1 + c)12 1 

7rr2 1 XL- 
Y2YlY2 1 - c2 

(14) 
The last approximation is made due to the fact 
that the factor in the parenthesis is a slow varying 
function ranges from l/2 to 1. In so doing our 
estimates are upper bounds which is too big by 
less than a factor of 2. 

Inserting the photon spectra and Eq. (14) into 
E-q. (8), we can calculate the partial cross section 
for positrons with momentum larger than plu in 
all 47r solid angle, excluding the forward and back- 
ward cones of half-angle 00. After lengthy deriva- 
tions, the integrals over photon energies yr and y;! 
are carried out exactly: 
1. Breit-Wheeler process: 

u,,(plr,, 6’0) =$‘-‘(1,3)I’2(2,3)$A2 

@dc 1 

(J 
(15) 

x - 1 - 3 y2/3yT/3 ’ 
-CO + 

2. Bethe-Heitler process: 

%,(PMI,~o) = ;$A 7 [ 
--co 

x { -tny- - $(8/3) + +(l)}]; 

(16) 

X ihy+tny- + ih(y+y-) + g - G 
{ 11 . 

(17) 
Here I?(1/3) N 2.6789, $(8/3) N 0.7818, and 4(l) II 
0.5772. We note that in the final integrations over 
the angle, both BW and LL processes are forward- 
backward symmetric, while BH is asymmetric in 
c. This is the result of the matching between the 
two different photon spectra in the BH case. 

Since y+y- = pto/4, and is independent of 
c, the integral in the BW process is straight for- 
ward. When ignoring the logarithmic angular de- 
pendences through y+ and y-, the BH and LL 
processes can also be integrated. The results are 

%v(PlO>QO) = 5 ’ r-‘(l,3)r4(2,3)$ 

x (z)2(E)4’3tn(E); 

(18) 

u,,~P~~, eo) = ;r(2,3)$(:) (%)‘I” 

x [(e!J - (a!)1’6] 

x [ --h(y/s) -d(8/3)+11(1)]; 

(19) 

u,,ho, eo) = 

+ 3h(pl0/2) + $ - G . 
1 

The above expressions account for only one of 
the two particles (say positron) in the e+e- pairs. 
The number is twice if both low energy e+ and e- 
in a pair are to be estimated. 
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4. Numerical Examples 
We now apply the above formulas to specific 

examples from Palmer’s designs in Ref. [6]. Pre- 
viously, in considering the transverse momentum 
acquired from the deflections by the beam, the at- 
tention[2,3,5] has been on the low energy particles 
moving against the primary beam which has the 
same sign of charge. In that situation these par- 
ticles will be deflected unbound by the collective 
field of the beam, and receive the maximum trans- 
verse momentum and angle. In this paper, our 
concern is the already large inherent transverse 
momentum and angle. Further deflections on ei- 
ther species in the pair by the beam should not ef- 
fectively alter the ultimate outcoming transverse 
momenta a.nd angles. Therefcre both electrons 
and positrons, irrespect of the directions of flight, 
should be counted. So the contribution should 
be twice of what would be given from the partial 
cross sections in Eqs. (18)-(20). 

First we estimate the yields from a l/2 TeV 
Intermediate Linear Collider (ILC) (Palmer’s Ma- 
chine I), where y = 5 x 10’,~~ = O.llmm,T = 
0.17, and luminosity L = 1.95 x 103’/cm2/bunch 
train (10 bunches per train) and 130 Hz collision 
repetetion rate. We plot the partial cross sec- 
tions in Eqs. (18)-(20) and their sum as a func- 
tion of plu in Fig. 1, with the cut-off angle fixed at 
00 = 0.1. The dominant scalings of p;t’“,p;E’“, 
and pIi, for the BW, BH, and LL processes, re- 
spectively, are clearly seen. On the other hand, 
the dependence of the partial cross sections on the 
cut-off angles is much milder, as expected. Figure 
2 shows such a plot, again with the ILC parame- 
ters and PLO = lOMeV/c. 

The choice of the cut-offs depends on the prac- 
tical considerations in the design of the detector 
masking[8]. Fr om Ref. [8], it should be reasonable 
to assume 00 = 1OOmrad = 0.1 and the transverse 
momentum cut-off at lOMeV/c, or plu = 4x lo-‘. 
The total number of large inherent angle e+ and 
e- is obtained simply by doubling the partial cross 
sections in Eqs. (18)-(20) and multiplying by the 
luminosity. The corresponding events per bunch 
train are 

N BW = 2 x a,,C x 200 ; 

N BH = 2 x UBHC x 1200 ; (21) 
N,, = 2 x a,,L x 500 . 

SO the total yield per bunch train is x 1900. 

in0 I I I I I 
I” 

5 20 25 
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Fig. I. The partial cross section as a function of 
the cut-off transverse momentum, at a fixed 
cut-off angle 00 = 0.1, for the BW, BH, and 
LL processes, shown in dotted curves. The 
sum of these three processes (TOTAL = 
BW + BH + LL), is shown in solid curve. 
The parameters are based on the ILC in 
Ref. [6]. 
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ILC: Y = 0.17; PTO = 10 MeV/c 1 
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Fig. 2. The partial cross section as a function of 
the cut-off angle. The traverse momentum 
cut-off is fixed at plu = lOMeV/c. The 
same ILC parameters are assumed. 

Next we turn to a l-TeV Linear Collider (TLC) 
(Palmer’s Machine J), where y = 1 x 106,a, = 
O.l2mm,T = 0.60, and luminosity l = 8.04 x 

103’/cm2/bunch train (17 bunches per train) and 
128 Hz collision repetetion rate. With the same 
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cut-offs at 0.1 rad and lOMeV/c (plu 
we find, for every bunch train 

N BW x 900 ; 

N BH x 5300 ; 
N LL M 2400 , 

= 2 x lo-5), 

(22) 

The total yield is M 8600. Finally, the dependence 
of the total events on the transverse momentum 
cut-off for ILC and TLC is shown in Fig. 3, where 
the angular cut-off is fixed at 80 = 0.1. 

105 

l- -1 
102' I I I I I 

5 10 20 25 
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PTo ;iev/c) 

6¶3OA3 

Fig. 3. The total yield of pair particles in ILC and 
TLC per bunch train, as a function of the 
transverse momentum cut-off. 

5. Geometric Reduction 
In Chapter 2 we saw that for a given equiva- 

lent photon energy y, the dominant contribution 
to the cross section comes from the region of small 
transverse momentum transfer yl. Quantum me- 
chanically, this corresponds to the region of large 
impact parameters: p - l/q1 = l/(ymyl), up 
to a typical value of pm - l/my = X-/y, where 
X, is the Compton wavelength. If pm turns out 
to be larger than the beam transverse size, these 
equivalent photons would extend physically to the 
outside of the oncoming beam. Since equivalent 
photons with impact parameters larger than the 
beam size cannot participate in interactions, the 
effective cross sections will be smaller than those 
computed above. This geometric reduction ef- 
fect was first observed at Novosibirsk[S, lo], and 
subsequently developed theoretically by several 
authorsIll-131. 

For the next generation of linear colliders, such 
as the ILC and TLC that we discussed above, the 
e+e- colliding beams are typically very fiat, i.e., 
a, >> uY. Thus the geometric reduction is domi- 
nated by the minor dimension. The typical beam 
height is 20;, so the corresponding “cut-off)) im- 
pact parameter is pc - 2a,. Thus the region of 
transverse momentum transfer l/pc ;S ql ;5 l/pm 
is suppressed. Let us denote the effective cross 
section by 5 = u - a’; then the cut-off cross sec- 
tion u’ is associated with the equivalent photon 
spectrum in Eq. (5) where ylmaZ and ylmin are 
related to pm and pc, respectively, i.e., 

(23) 

The cut-off cross section u’ for the BH and LL 
processes can be derived by inserting n’, into Eq. 
(8). By construction, the above spectrum is ap- 
plicable for y 5 X,/2u,. Thus the upper bounds 
of y-integrations must be replaced by &/2u,,. But 
since the dominant contribution comes from the 
lower bounds, this change does not affect the lead- 
ing logarithmic behavior. One could therefore in 
principle repeat the calculations in Chapter 3 for 
the geometric reductions. However, as a rough es- 
timate, we shall simply look for the effect on the 
total cross sections (with lower bounds defined by 
the threshold condition: yry2 = l/r2). We find 
the reduced effective total cross sections to be* 

ti,, ww,2(h4 + l)fJn(2u,/A,) , 

- 
ULL -&a2r,2(ln4 + 1) (24) 

x [en 3(r2) - en 3(y2&/2u,)] . 

For ILC, the beam height is as miniscule as 
2uTy = 8 nm. The geometric reduction turns out 
to be *,,/a,, N 0.36, and gLL/uLL - 0.74. For 
TLC, 2uY = 6.2 nm. The corresponding reduc- 
tions are 0.33 and 0.70 for the BH and LL pro- 
cesses, respectively. We expect a similar amount 
of reduction for the large inherent angle events. 
The geometric reduction is therefore a welcome 
effect in the context of e+e- backgrounds. 

* Our formulas give a numerical factor tn4+ 1 for 
both processes, which is smaller than the stan- 
dard result of 28/9. But this will not affect the 
relative geometric reduction. 
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