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Abstract

Wake fields defining beam stability affect also the beam optics and beam proper-

ties in high current machines. In this paper we present observations and analysis of

the optical effects in the PEP-II SLAC B-factory, which has the record in achieve-

ment of high electron and positron currents. We study the synchronous phase and

the bunch length variation along the train of bunches, overall bunch lengthening

and effects of the wakes on the tune and on the Twiss parameters. This analysis

is being used in upgrades of PEP-II and may be applied to future B-factories and

damping rings for Linear Colliders.

PACS numbers: 29.27.Bd, 29-20-Dh, 41-60, 52-59-f

1 Introduction

The wake fields generated by the beam in the beam pipe are recognized as the cause
of the beam instabilities in the high current machines [1]. The wake fields are also the
cause of numerous optical effects which do not lead to bunch instability but may be
important for optimization of the beam dynamics and luminosity of a collider. Quite
often the optics of a machine is studied and optimized at low currents. However, the tune
and Twiss parameters vary with current and the optics at collision can differ from the
optimized optics at low current. Therefore optimization of optics at low currents does not
necessarily means optimization of the luminosity of a collider. For example, the optical
model developed for PEP-II is in quite good agreement with measurements at low currents
but failed to give quantitative agreement in the high current regime [2]. More than
that, in the multi-bunch machines the wakes affect different bunches differently. Some
of such effects were observed and discussed in context of the harmonic rf systems [3], [4]
but still colliders with conventional rf systems deserve more detail analysis at higher
currents. The second reason is given by the need for study of the machine impedance [5].
There are three main contributions to the impedance budget: the rf cavities, resistive
wall (RW) impedance, and the impedance generated by small vacuum components of
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the ring such as bellows, beam position monitors, tapers, masks, vacuum ports, etc.
The first two components give long-range wakes and are responsible for coupled-bunch
(CB) instabilities, longitudinal and transverse, respectively. Usually, the impedance of
these components is well known from cold measurements of rf cavities, 3D simulations
of EM fields of the cavities, and the machine geometry. It is much more difficult to
determine the impedance of vacuum components both numerically and experimentally.
Different methods were used to infer the machine impedance measuring the closed orbit
variation with current [6], betatron phase advance [7], the tune variation and the head-
tail damping [8], the synchronous phase, the bunch length, and the betatron coupling [9].
Not all methods are equally effective for large and carefully designed machines with low
impedance such as PEP-II. In our experience, analysis of the current dependence of the
tunes, measurements of the synchronous phase and the bunch length were crucial to
extract impedance parameters from the measurements.

In the paper we analyze some of the current dependent effects. Results are obtained
for PEP-II low energy ring (LER) but may be relevant for other projects such as Super-
B-factories [10] and the ILC project. In the Appendix we discuss in details the relation
between the rms of a single bunch and the bunch in a train of bunches. We summarize
our findings in the conclusion.

2 Variation of the bunch length and synchronous

phase along the train of bunches

We used beam spectra for the bunch length measurement [11]. To resolve bunch length
along the bunch train we used spectrum analyzer in gated regime. Results of measure-
ments in the LER of PEP-II depicted in Fig. (1) show variation of the bunch length along
the 24 mini trains of the LER current of 2.2 A. Total number of bunches is 1440.

This variation is caused by the gaps between mini trains and one large “ion” gap [12].
The “ion” gap in the LER matches the ion gap in the electron high-energy-ring (HER)
and is needed also for the beam abort due to the finite rise time of a kicker. In the last
runs, the machine is filled with 1722 bunches with the bunch separation 2λRF and 2%
gap. One can expect that a gap with the length sg would generate transients of the rf
voltage of the order of

1 − e
−

ωrf sg

2QLc (1)

Effect, actually, is larger. A small 2% gap gives substantial variation of the wake
affecting different bunches and, as result, of the synchronous phase along the train. The
variation of the synchronous phase contributes to variation of the slope of the rf voltage
and, therefore, causes variation of the synchronous frequency fs. An example of such
variation calculated for LER parameters at the total rf voltage Vtot = 4.5 MV is shown in
Fig. (2). The variations of the synchronous phase for the PEP-II with large beam loading
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Figure 1: Variation of the bunch length (red) and the bunch current (green) along the 24
mini trains of the LER current. Total number of bunch is 1440. Total current is 2.2 A.

is due, mostly, to the fundamental mode of the rf cavities. Other rf HOMs give smaller
contribution to this effect.

2.1 Bunch length variation

Transients variation of the rf phase and the synchrotron frequency of the bunches along
the train affect the rms length of a bunch, see discussion in the Appendix. Results of
calculations are shown in Fig. (3), where bottom plot gives variation of the bunch length
caused by the transients of the rf voltage, and the upper plot includes both the transients
and the bunch lengthening due to potential well distortion (PWD). The amplitude and
the period of the variation depend on the beam current IB increasing with IB. Both, the
amplitude and the modulation frequency, depend on the detuning of the cavity and the
effect is maximum when the detuning is equal to the revolution frequency which takes
place for PEP-II parameters at, approximately, IB = 2.5 A.

The bunch length measured without gating on individual bunches gives the average rms
over the whole train. The averaging over the train rms gives current dependence shown in
Fig. (4). Calculations are based on the estimate of the LER impedance [13] which gives
inductance of the vacuum components Lind = 80 nH. The number is, certainly, only an
estimate. The real inductance is, probably, higher partially due to vacuum components
added after the estimate was carried out. The fit gives

dσl

IB

= 0.83 mm/mA. (2)

The measurements in PEP-II give close numbers: the streak-camera measurements
give dσ/dIB = 0.8 mm/mA while the bunch length extracted from the bunch spectrum
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Figure 2: Synchronous phase (top) and synchrotron frequency (bottom) along the train
caused by the ion gap for the beam current 0.5 (red line) and 1.0 Amp (blue line).

gives somewhat higher value, dσ/dIB = 1.45 mm/mA. It is encouraging that calcula-
tions give result close to the measurements although it is not clear whether the remaining
discrepancy is due to underestimated inductance in calculations or due to errors of mea-
surements.

It is worth to make the following remarks. Generally, the bunch length for a single
bunch in the ring σ1 and the average bunch length in a train of bunches σ are different
for the same rf voltage and the bunch current. It can be shown (see Appendix) that, in
the linear over the beam current approximation, they are related:

σ2
1 = (

ω̂s

ωs,0

)2 σ2, (3)

where ωs,0 is the zero-current synchrotron frequency and ω̂s takes into account the
short- and the long-range wake fields,

ω̂2
s = ω2

s,0 + λc2 〈W ′〉. (4)

More discussion is given in the Appendix.
It is worth noting, that ωs measured by different methods can give different results.

The best method of determining ωs is by measuring the frequency of the second syn-
chrotron side-band of the rf frequency which is less affected by the feed-back system. The
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Figure 3: Calculated variation of the bunch length along the train for LER V = 4.5MV
and the beam currents (indicated in the figure) IB = 1.0, 2.0 and IB = 3.0 Amp. Bottom
plot: results of only gap transients. Upper plot: variation due to the gap transients and
the PWD. Note increase of the variation with the detuning.

actual situation is quite complicated because each bunch centroid oscillates with different
frequencies. Fortunately, the spread of CB frequencies and is not large.

As it is well known, the head-tail instability can give the shift of the synchro-betatron
sideband but should not be included in Haissinski calculations because the shift is result
of the x − z correlation in a bunch and does not change the longitudinal oscillations of
the bunch centroid. The 2ωs sideband give better measurements of ωs but, actually, there
are two 2ωs lines in the spectrum. One is due to the nonlinearity of the oscillations of
the bunch centroid, another one is the coherent quadrupole longitudinal CB oscillations
of the bunch profile. These frequencies are, generally, different.

Eqs. (3), (4) can be verified experimentally. Comparing with experiment, we have to
remember that both potential well distortion and the synchrotron frequency change with
current. The first effect can be defined keeping the synchrotron frequency fixed. Fig.
(5) show two lines: one (blue) is direct measurement of the bunch length in a train of
bunches as function of beam current. Another one (red) depicts variation of the bunch rms
length at fixed synchrotron frequency calculated using measured frequency of synchrotron
oscillations.

In Fig. (6) we show the measured synchrotron frequency ωs of a bunch centroid as
function of the beam current determined by two methods: the measurement of the first
and the second side-bands of the rf frequency. ωs measured by the second method shows
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Figure 4: Averaged over the train bunch length vs. beam current. Inductance L = 80
nH, dσ/dIB = 0.83 mm/mA. RF voltage is 4.5 MV.

linear dependence on the beam current and deviate from the measurements by the first
method due to effect of the feedback.

The few comments ought to be added. Generally, the bunch centroid motion is a
superposition of harmonics of the CB frequencies, including the second harmonics 2ωs,n.
If the bunch-to-bunch frequency variation due to long gap transients is large, we can
neglect bunch coupling caused by the longitudinal wake. In this case, all bunches have
different frequencies and are approximately equal to ωs,n. The distribution of bunches over
synchrotron frequencies calculated from the result depicted in the bottom plot of Fig. (2)
for 1 Amp is shown in Fig. (7). It is similar to the actual profile of the side-band line in
the spectrum observed in the LER. In the other extreme case, when the gap transients
are small, the bunch frequencies are the frequencies of coupled-bunch modes and the set
of these frequencies is the same for all bunches contrary to the shape of the spectrum
for different bunches which still can be different because contributions of particular CB
modes are not the same for different bunches.

For PEP-II LER, the spread of the CB modes is comparable with the variation of the
synchrotron frequency along the train.

2.2 Effect on luminosity

Variation of the synchronous phase affects luminosity of the collider in two ways. First,
through the induced variation of the bunch length σl which, in its turn, changes luminosity
L due to the hour-glass effect. Secondly, the waist of the bunch shifts longitudinally
and collision takes place at the point with larger β-function and, therefore, with larger
transverse rms. Effect is shown in Fig. (8). The upper plot shows the hour-glass effect:
variation of the luminosity LH/L0 normalized by the nominal luminosity L0 of the point-
like bunches. The bottom plot shows additional drop of the luminosity L/LH with the
shift of the synchronous phase of one of bunches from the nominal phase. The luminosity
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Figure 5: The measured bunch length in a train of bunches (blue) and the bunch length
of a bunch with the same rf voltage and bunch current calculated from the measured
synchrotron tune (red).

is normalized on LH . It is worth noting, that even if the rf phases of two beams are
matched, the variation of the synchronous phase along the train remains and reduces
the average luminosity. A special device such as dedicated harmonic cavity is needed to
eliminate this adverse effect.

It is worth noting that the synchronous phase variation can be more important at
large crossing angles suggested for Super-B-factory [14]. Synchronous phase shift along
the train can also be responsible for the variation of the tune along the train due to
parasitic crossings.

3 Effect of the RW wake on tunes

As it is well known, the RW wake gives the dominant contribution to transverse dynamics,
see Fig. (9). Calculations of the corresponding tune variation of the transverse CB modes
gives δQx = 0.46 10−2. Experiment (A. Fisher, gated tune measurements) gives variation
along the train of the same order monotonic for y-plane and oscillatory in x-plane.

This result deserves some comments. First of all, one can expect that all bunches
are involved in nB CB oscillations. Although the amplitudes of different modes for each
bunch can be different, the CB frequencies should be the same for all bunches, even if
the wake is substantially reduced across the gap. However, transients due to e-cloud,
parasitic crossings at IP combined with the variation of the synchronous phase shift along
the train, and the quadrupolar wake fields can cause the bunch-to-bunch tune variation.
Actually, if such variation is larger that coupling between bunches, the CB modes are
destroyed and bunches have different tunes. For large gaps, the tune depends not only on
the beam current but also on the number of bunches [15],
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Figure 7: The shape of the synchrotron sideband in the case where transients give domi-
nant effect, parameters for LER at 1 A current.

dQ⊥

dIB

∝ 1

nb

√

R

σB

+
Γ(1/4)√
1 − Q⊥

+ A, . (5)

Here the first term is the single bunch effect, the second is multi-bunch effect, and
the last term A is the effect of the beam pipe asymmetry. Effect of the first two terms is
shown in Fig. (10). The calculation were carried out directly solving the system of CB
equation for n-bunches coupled by the RW wake field.

The last term in Eq. (5) gives the dominant contribution for PEP-II. The very first
measurements of the tune dependence on current gave the opposite slope in x and y planes,
while for the round beam pipe they have to be both negative. Later measurements [16]
at much higher currents confirmed such dependence (Fig.(11)).

The effect has been explained [15, 17] as a result of the rectangular (more exactly,
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Figure 8: Upper plot: Hour-glass effect due to σl variation. Bottom plot: Variation of
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hexagonal) shape of the vacuum chamber in the arcs. The quadrupolar wake field in this
case depends on offsets of both the leading and trailing particles. The part of the wakes
of all nb ' 1700 bunches proportional to the offset of the trailing bunch are add up and
the amplitude of the resulting wake depends on the time of diffusion of the wake fields
through the beam pipe wall. The typical build-up time is about 200 turns. This part
does not exists for a round beam pipe. Result of calculation of the tune shift with current
is shown in Table (1), where we compare the tune variation without quadrupolar wake
(upper box) and with it (the box in the middle) with the experimental tune variation
used for the forward feedback in the control room. The calculation are based on real
dimensions of the beam pipe but use 1D estimate of the diffusion time. We also give for
comparison the single bunch tune shift [18] where the slope of dQx,y/dI has the same sign
in both planes.

3.1 Variation of the β-function and dispersion

Variation of the tune with current leads, of course, to the variation of the Twiss pa-
rameters. For illustration, effect was calculated using the code MAD for Qx = 38.518.
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Figure 9: Growth rate vs. CB mode number for vertical oscillation at LER current of
3.5A.

To simulate effect of the wake field on beam optics, we added a small (K1 ' 10−4)
quadrupole component to the main bends in the LER ring. This caused change of the
tune by δQx ' 10−3. One can expect such change of the tune with current due to wakes
at IB of couple amperes. The variation of the horizontal dispersion at IP, and the relative
variation of the maximum of the beta-function and dispersion in the ring is given below:

dD∗

x

dQx

= 4. 10−2,

1

βmax
x

dβmax
x

dQx

= 1.62,

1

Dmax
x

dDmax
x

dQx

= 0.15. (6)

4 Conclusion

The optical effects of the wake fields are needed to explain experimental observations at
low impedance machines. At higher currents but below the coherent instability threshold,
wake field can affect the beam dynamics in the non-resonant way. We show that the bunch
length and the synchronous phase of bunches can vary along the train of bunches. The
variation is mostly defined by the beam loading to the fundamental mode of the rf cavities
and depends on the detuning of the cavities. The bunch length can be different for a single
bunch and the bunch length measured in a train of bunches. The relation between them
may depend on the synchrotron tune. Details discussion on that is given in the Appendix.
The measurements of the synchrotron frequency from the first and the second sidebands
give different results and we show that the second sideband gives more reliable results.
Variation of the synchronous phase along the train affects the luminosity on top of the
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Figure 10: Growth rate and the tune shift in vertical plane as function of the number of
bunches for a fixed beam current and bunch spacing. PEP-II LER wake, nb = 1712.

well known hour-glass effect. The resistive wall wake fields can change the tune and the
effect depends on the number of the bunches in the bunch train and on the asymmetry
of the beam pipe. Variation of the tune and the Twiss parameters along the train must
be included in optimization of the machine main parameters. All these effects become
serious issues for high current colliders. In particular, the effect of the variation of the
synchronous phase along the train can be important for the design of Super-B-factory
with large crossing angle.
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6 Appendix: On the definition of the bunch length

We summarize here basic formulas used in our calculations.
We denote the distance of the center of the rf bucket occupied by the n-th bunch

from the head of the train by Sn. In the case of equidistant bunches, Sn = (n − 1)sb,
n = 1, 2, ..nb, and n = 1 is the head of the train. The i-th particle of the n-th bunch on
the k-th turn is located in the ring at the moment t at ct− Sn − ζn + zn,i − kC, where ζn

is related to the rf phase φn = ωrfζn/c of the n-th bunch, and zn,k is the shift of particles
from the bunch center. The shift is positive for offset toward the head of the train.
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The longitudinal motion is described by a Hamiltonian H =
∑

Hm(pm,i, zm,i, s), where
the canonical momentum pm,i = −αδm,i is defined in terms of the momentum compaction
α and the energy shift δ = (E − E0)/E0, and

Hn =
p2

n,i

2
+ (

ωs,0

c
)2 z2

n,i

2
+

α

E0C
[eVrf cos[φn] − Ul] zn,i + λ

∫

dz′ρn(z′, s)G[z′ − zn,i]

+λ
∑

m,k

∫

dz′ρm(z′, s)G[z′ − zn,i + Sn − Sm + kC]. (7)

Here

λ =
αNBe2

E0C
(8)

and we neglected the nonlinearities of the rf potential. Other notations are standard:
Vrf is the rf voltage per turn, ωrf = hω0, ω0 = 2πc/C, Ul is the SR energy loss per
turn per particle, C = 2πR is circumference, NB is bunch population. The dimensionless
function G(z) is given by the two-particle longitudinal wake W (z), G(z) =

∫ z
0 dz′W (z′),

and prime in W ′(z) means the derivative over the argument. Note that G(z) = 0 for
z < 0, and W (z) > 0 corresponds to the energy loss. The sum in Eq. (7) is over all
bunches in the train preceding the bunch n including previous turns. Finally, ωs0 is the
zero-current synchrotron frequency ωs0,

(
ωs,0

ω0

)2 =
αehV rf

2πE0

sin φn. (9)

For a bunch current below the threshold of the microwave instability, the density of
the n-th bunch in the phase plane can be written as Fn(z, p, s) = Fn(z − Zn(s), p) where
Zn(s) describes oscillations of the bunch center. The bunch density ρn then is

ρn(z, s) =
∫

dpFn(z, p, s) = fn(z − Z(s)),
∫

dzfn(z, s) = 1. (10)

It is convenient to use canonical variables ẑn,i, p̂n,i describing motion in the frame
oscillating with the bunch center,

zn,i = Zn(s) + ẑn,i, pn,i = Z ′

n(s) + p̂n,i. (11)

The centroid trajectory Zn(s) is defined below.
The canonical transform to new variables can be done with the generating function

Φ(p̂n, zn, s) = (zn − Zn)p̂n + Z ′

n(s)zn, where Z ′

n = dZn(s)/ds. The new Hamiltonian
Ĥ(ẑn, p̂n) = H + ∂Φ/∂s takes the form

Ĥn(ẑ, p̂) =
p̂2

2
+ (

ωs,0

c
)2 ẑ2

2
+ (

ωs,0

c
)2 ẑZn(s) +

α

E0C
[eVrf cos[φn] − Ul] ẑ
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+Z ′′

n(s)ẑ + λ
∫

dz′fn(z′)G[z′ − ẑ]

+λ
∑

m,k

∫

dz′fm(z′)G[kC + Sn − Sm + Zm(s − kC) − Zn(s) + z′ − ẑ]. (12)

Here the sum is over turns k = 0, 1, .. and over all M bunches in the ring m =
1, 2..,M for k 6= 0 and for m = 1, 2.., n − 1 for k = 0. Expanding the last term over
Zm(s − kC) − Zn(s) + z′ − ẑn,i << sb and omitting terms independent of the canonical
variables, we get

Ĥn(ẑ, p̂) =
p̂2

2
+(

ω̂s

c
)2 ẑ2

2
+λ

∫

dz′fn(z′)G[z′−ẑ]+λẑ
∫

dz′dz′′fn(z′)fn(z′′)W (z′−z′′). (13)

Here we used the definition of the bunch center
∫

dzρn(z)z = 0, notations

(
ω̂s

c
)2 = (

ωs,0

c
)2 + λ

∑

m,k

W ′[kC + Sn − Sm], (14)

equation for the rf phase

eVrf cos[φn] = Ul +NBe2
∑

k,m

W [kC +Sn −Sm]+NBe2
∫

dzdz′fn(z)fn(z′)W (z′− z), (15)

and defined Zn(s) as a solution of the coupled-bunch equations

Z ′′

n(s) + (
ω̂s

c
)2Zn(s) = λ

∑

m,k

W ′[kC + Sn − Sm]Zm(s − kC). (16)

The last terms in Eq. (13) and Eq. (15) are introduced to make location of the bunch
centroid < z >= 0.

The rf phase φn is defined in Eq. (15) by the total energy loss per turn. Note that
the average contribution of the fundamental rf mode wake should not be included in Eq.
(15) because it is already taken into account as the beam loading contribution to the rf
voltage.

For a non-uniform fill, the rf phases of different bunches are different. The transient
effect is mostly given by fundamental mode of the rf cavities. Variation of φn along the
train of bunches changes frequencies ωs0, see Eq. (9), affecting ω̂s of individual bunches
additional to the effect of the wake of the last term in Eq. (14).

Eqs. (14)-(15) define frequencies of oscillations of bunch centers.
For the uniform distribution of the bunches around the ring, solution of Eq. (16) is

given as a superposition of eigen modes with the amplitudes aµ

Zn(s) =
M
∑

µ=0

aµ Xµ
n e−i

Ωµ

c
[s+(n−1)sb], Xµ

n =
1√
M

e2πi
(n−1)µ

M . (17)
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where frequencies are given in terms of the longitudinal impedance per turn Z(ω),

Ω2
µ−ω2

s0 = iλM
ω2

0

2π

∑

p

{(pM+µ+
Ωµ

ω0

)Z[(pM+µ+
Ωµ

ω0

)ω0]−pMZ[pMω0]}e−(pM+µ+Ωµ/ω0)2(
2πσ0

C
)2 .

(18)
The Fokker-Plank equation with the Hamiltonian Eq. (13) has the steady-state

Haissinski solution

F (p̂, ẑ) =
1

|N | e−
Ĥn(ẑ,p̂)

T , (19)

where |N | is a normalization constant, and fn(ẑ) =
∫

dpF (p̂, ẑ). The normalization
constant |N | is defined by the condition

∫

dzfn(z) = 1. It is easy to check that the average
< ẑ > is zero 〈ẑ〉 =

∫

dzzfn(z) = 0.
The temperature T should be defined to give the rms energy spread δ2

0. Hence, 〈p2〉 =
T = (αδ0)

2.
For currents below threshold of the microwave instability, parameter

Λ =
λ

T
=

NBe2

E0Cαδ2
0

(20)

is small. In the linear approximation,

fn(ẑ) =
1

|N | e−( ω̂s
c

)2 ẑ2

2T {1−Λ
∫

dz′fn(z′)G[z′ − ẑ]−Λẑ
∫

dz′dz′′fn(z′)fn(z′′)W (z′ − z′′)}.
(21)

Simple calculations give the rms bunch length σ,

σ2 =
∫

dzz2fn(z),

σ2 = σ2
0(

ωs0

ω̂s

)2 {1 +
Λ

2
√

2π

∫

dxG[
ωs0

ω̂s

√
2σ0x] [1 − x2] e−

x2

2 } + o(λ2). (22)

In the linear approximation over Λ, ωs0/ω̂s in the argument of G can be replaced by
one.

The frequency Eq. (14) includes the effect of the long-range wake field. If the multi-
turn wake can be neglected, then for a single bunch ω̂s = ωs0, and the single bunch rms
σ1 is

σ2
1 = σ2

0 {1 +
Λ

2
√

2π

∫

dxG[
√

2σ0x] [1 − x2] e−
x2

2 } + o(λ2). (23)
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Eqs. (22),(23) show that in the linear approximation over the bunch current the rms
of a bunch in a train and of a single bunch are different,

σ2
1 = (

ω̂s

ωs,0

)2 σ2. (24)

The difference is due to the long-range wake.
As an example we calculated the CB frequencies for LER of PEP-II using our model

of the LER PEP-II machine impedance and Eq. (18). The frequencies of the dipole CB
modes can be written as

ΩD
µ = ω̂s +

dΩD
µ

dIB

IB,

ω̂s = ωs0 −
dΩ0

dIB

IB, (25)

where the slope for a dipole CB longitudinal mode is:

dΩD
µ

dIB

= Re{i αω2
0

4πωs0E0/e

∑

p

(pM + µ)Z[(pM + µ)ω0]},

dΩ0

dIB

= i
αω2

0

4πωs0E0/e

∑

p

pM Z[pM ]. (26)

Calculations give

〈dΩD
µ

dIB

〉 = 1410 (
Hz

A
),

dΩ0

dIB

= 1417 (
Hz

A
). (27)

Two terms in Ωµ almost cancel in agreement with Fig.6 at low currents. At high
current the slope depends on the feedback and the nonlinear terms o(I2).

For the quadrupole modes the calculated slope of different modes is small and about
constant for all modes,

ΩQ
µ = 2ω̂s +

dΩQ
µ

dIB

IB,

dΩQ
µ

dIB

' 246 (
Hz

A
). (28)

Therefore, the slope of ΩQ
µ is given with good accuracy by the first term 2ω̂s what

allows to define ω̂s from measurements of the slope of the second side-band in the beam
spectrum.
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With known dΩ0

dIB
, we can derive the rms length of a single bunch from measurements

of the average bunch length σ = σ0 + (dσ/dIB)IB in the train of bunches using Eq. (24):

σ1 = (1 − 1

ωs0

dΩ0

dIB

IB) (σ0 +
dσ

dIbunch

Ibunch) ' σ0 + Ibunch(
dσ

dIbunch

− M
dΩ0

dIB

σ0

ωs0

). (29)

Eq. (A12m) is in agreement with the Fig. (5) although the experimental slope has
some uncertainty, see points in Fig. 5 indicating several measurements with the same
current.

18


