SLAC-PUB-12301
January 2007

Geometry Description Markup Language for Physics
Simulation and Analysis Applications

Radovan Chytracek, Jeremy McCormick, Witold Pokorski, and Giovanni Santin

Abstract—The Geometry Description Markup Language
(GDML) is a specialized XML-based language designed as an
application-independent persistent format for describing the
geometries of detectors associated with physics measurements.
It serves to implement ‘“geometry trees” which correspond to
the hierarchy of volumes a detector geometry can be composed
of, and to allow to identify the position of individual solids, as
well as to describe the materials they are made of. Being pure
XML, GDML can be universally used, and in particular it can
be considered as the format for interchanging geometries among
different applications. In this paper we will present the current
status of the development of GDML. After having discussed the
contents of the latest GDML schema, which is the basic definition
of the format, we will concentrate on the GDML processors. We
will present the latest implementation of the GDML ““writers” as
well as “readers” for either Geant4 [2], [3] or ROOT [4], [10].

Index Terms—Detector, GDML, Geant4, geometry,

simulation.

root,

1. INTRODUCTION

HE geometry description is the essential part of every

Monte Carlo physics simulation application. It is one
of the most “detector specific” element of the program and
usually it is the most tedious to implement. At the same time it
is often the case that the same geometry description needs to be
used in several applications, either different simulation engines
(for the purpose of physics validation and comparison) or
other applications like visualization, reconstruction, analysis,
etc. Those applications often come with their native, different
geometry description formats, which forces users to either
re-implement their geometry for each of the applications or to
come up with automatic conversion mechanisms. It is indeed
the case that users rarely implement their geometries in one of
the simulation toolkits geometry formats. They usually come
up with their own formats, which prove to be more flexible
(often are XML-based) and allow re-use of the geometry in
the different parts of the event processing chain. The potential
drawback of such a solution, however, can be the fact that
the geometry descriptions become strongly linked with the
experiments’ software frameworks and therefore cannot be
easily exported and used in stand-alone applications.

R. Chytracek and W. Pokorski are with CERN, CH-1211 Geneva 23,
Switzerland.

J. McCormick is with the Stanford Linear Accelerator Center (SLAC), Menlo
Park, CA 94025 USA.

G. Santin is with the European Space Agency (ESA), NL-2200 AG
Noordwijk, The Netherlands.

It seems justified, therefore, to propose a geometry descrip-
tion language which would allow an application-independent
way of implementing new geometries and provide and exchange
format for the already existing geometries.

The Geometry Description Markup Language (GDML) has
been developed as an application of XML. This option provides
a simple reading and writing mechanism, as well as extensi-
bility. XML is a widely used application independent format.
Moreover, as GDML is meant to describe geometry data, the
choice of a markup rather then procedural language seems to be
natural. The fact that a GDML file can be easily edited using
any text editor, is also a big advantage as it allows to easily in-
troduce any changes in the particular geometry description.

The sections of this paper are organized as follows. We start
with a very brief general introduction to the detector modeling
domain and then we move to the more GDML-specific issues.
We introduce the different components the GDML machinery
is made of. We concentrate on discussing more in detail the
structure of GDML schema as well as the GDML readers and
writers. Finally, before concluding, we demonstrate how GDML
can be used, and illustrate it with a few examples.

II. DETECTOR GEOMETRY DESCRIPTION BASICS

The detector geometry description consists of providing all
the data necessary to simulate and reconstruct the passage of
the particles through the detector. In the general words the in-
formation one has to provide is, what is the geometrical hier-
archy (the geometry tree) of the detector volumes, what are the
solids (shapes) that the volumes are made of and what are the
materials the different parts are made of.

The common way of representing the geometry tree is to use
the concepts of logical and physical volumes. The logical vol-
umes are unpositioned objects described by the solid they are
made of and the material. Moreover, the logical volumes can
have “daughter” volumes. The “daughter” volumes are physical
volumes, which means that they are concrete “placements” of
some other logical volumes within the given logical volume.
The positioning of the physical volumes is done in the local
(the one of the “mother” volume) coordinate system and in gen-
eral can consist of a translation and a rotation. This hierarchical
approach is a very efficient way of describing the detector ge-
ometry for the purpose of the simulation and it is also used in
GDML.

The basic building block for the detector geometry descrip-
tion are geometrical solids like boxes, spheres, tubes, cones, etc.
When constructing the geometry one specifies the dimension of

Submitted to IEEE Trans.Nucl.Sci.
Work supported in part by the US Department of Energy contract DE-AC02-76SF00515



user application (1)

h

GDML writer

GDML

s chema GDML file

GDML reader

¥
user application (2)

Fig. 1. GDML components.

the particular solid. More advanced solids can be made by com-
bining several basic solids using boolean operations like a union,
a subraction and an intersection.

Each physical volumes is made of a particular material. The
materials can be either composed of one chemical element (like
Aluminium for instance) or can be mixtures of several different
elements. Mixtures of several different materials are often also
convenient to use. In some particular cases, materials made of
different isotopes of the same element need to be defined.

III. GDML COMPONENTS

GDML consists of two elements. An XML definition part
containing the set of rules and the list of the legal elements to
be used in constructing any GDML document, and the GDML
generating and processing code.

The structure of the GDML document is defined through
a set of XML Schema Definition (XSD) files which we call
the GDML schema. These files are an XML-based alternative
to Document Type Definition (DTD) files specifying the legal
building blocks of an XML document. Any GDML geometry
file must be valid with respect to the GDML schema.

The GDML file itself, can be either written by hand (in case
GDML is used as the primary geometry source) or generated
automatically out of the application specific “in-memory” ge-
ometry tree using one of the GDML “writers” called by the
user application (when GDML is used as an exchange or per-
sistency format). The GDML reader is responsible for parsing
the GDML file and creating the in-memory representation of the
geometry tree specific for the user application. The overall pic-
ture of different GDML components is shown in Fig. 1.

IV. GDML SCHEMA

The GDML schema is a set of XSD files which define the
structure of the GDML document and its legal elements. The
general structure of the GDML file can be seen on Fig. 2. One
can distinguish there five parts, each holding specific type of
data.

The (define)---(/define) block contains numerical
values of different constants, positions and rotations that will
be used later on in the geometry construction.

The (materials)---(/materials) block contains defini-
tions of all the materials used in the given geometry. The sup-
ported forms are simple materials which are made from one el-
ement as well as mixtures. Mixtures can be composed on the
basis of fraction of mass or atom count.

The (solids)---(/solids) block is the collection of all
solid definitions which are used in the given geometry descrip-
tion. The presently supported solids are box, sphere, tube, cone,
polycone, parallepiped, trapezoid, torus, polyhedra, hyperbolic
tube, elliptical tube and ellipsoid. New solids are constantly
being added to that list. Composite solids made using boolean
operation (union, subtraction, intersection) are also supported.

The (structure)...(/structure) block contains the
actual implementation of the geometry tree together with the
assignment of solids and materials. The hierarchy of volumes
is defined by specifying the daughter volumes (physvol) posi-
tioned inside a volume. Constructions like assembly volumes,
reflections, replicas and divisions are possible. There is also
basic support for parameterized volumes which will be ex-
tended in the future.

Finally, the (setup) - - - (/setup) block serves to specify the
top volume of the geometry tree. It is possible to define several
“setups” within one file, allowing to test different subparts (or
different configurations included in the same file) of the geom-
etry tree without changing the GDML file.

We would like to note here that the initial implementation of
the GDML schema was strongly inspired by the Geant4 geom-
etry classes. Additional elements have been added later, some
of them not supported by Geant4 but existing in the ROOT ge-
ometry package.

V. GDML READER AND WRITER

The role of the GDML reader is to parse the GDML file, val-
idate it against the GDML schema (unless the validation is not
enabled) and create the in-memory representation of the geom-
etry specific for the given application. The design of the reader
(see Fig. 3) is such that most of the processing is done within an
application-independent XML engine based on the SAX parser
[5]. The instantiation of the actual geometry objects is done
by a light application-specific binding. The user interacts only
through a very simple interface which returns the pointer to the
top volume of the geometry tree with all the XML processing
hidden. The presently available bindings are for Geant4 [2], [3]
and ROOT [4], [10] geometry models. Due to the modularity of
the design, it would be straightforward to add any more bind-
ings if required in the future.

The GDML writer functionality is to generate GDML files
out of the “in-memory” geometry trees. The application-specific
binding (see Fig. 4) scans the user defined geometry and pre-
pares its representation in a application-independent way which
can then be exported in the form of the GDML file. As in the case
of the GDML reader, the application-specific binding is very
light and most of the code is within the application-independent
“document builder”. The user interaction with the GDML writer
is also very simple and consists of calling the DumpGeometry-
Info method, and passing the pointer to the top volume of the
geometry tree as argument. The user does not deal directly with
the actual generation of the XML file.



<?xml version="1.0" encoding="UTF-8"?>
— <gdml xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd">

- <define>
positions,

rotations

</define>
<materials>

<material formula="

materials __}
solids __pC

<fraction
<fraction
</material>
</materials>
<solids>

Zposition name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/>

<element name="Nitrogen" formula="N" 2Z="7.'">
<atom value="14.01"/> </element>

" name="Air" >

<D value="1.290" unit="mg/cm3"/>

n="0.7" ref="Nitrogen" />
n="0.3" ref="0xygen" />

<box lunit="mm" name="Tracker" x="50" y="50" z="50"/>

<materialref ref="Air" />

ref="world" />

<volumeref ref="Tracker" />
<positionref ref="TrackerinWorldpos"/>
<rotationref ref="TrackerinWorldrot"/>

</solids>
<structure>
geometry <volume name="World" >
——’
tree <solidref
<physvol>
) " </physvol>
world ' C , </volume>
— </structure>
VOIume & <setup name="Default" version="1.0" >

</setup>
</gdml>

Fig. 2. GDML file.

give pointer to
world volume

= | 7
Application binding | Application
(ROOT, G4) “| (ROOT, G4)
‘:reate material,
volume, etc...
XML Engine
A (SAX)
~
‘GDML Schema‘ GDML file

Fig. 3. GDML reader.

| User Application ‘

idump geometry

Application binding
{scanning tree)

ladd volume, etc

Document Builder

|
lwﬁte document

l GDML file |

Fig. 4. GDML writer.

Two implementation approaches are used for the GDML
readers and writers. One uses C++ code and another uses
Python together with specific Python bindings for particular
C++ classes. The advantage of Python is that dealing with
the XML parsing is more natural and easier than in C++ and
therefore less code is needed. Moreover, Python turns out to be

<world ref="World" />

a very convenient tool for interfacing different applications to-
gether. It provides a nice environment for interactive simulation
and analysis.

The C++ language have been used for the implementation
of the GDML reader and writer for Geant4. They are used for
Geant4 C++ applications, where GDML is used as geometry
source or when the user wants to export the geometry from his
native Geant4 application.

The GDML reader and writer for ROOT have been imple-
mented in Python. It uses PyROQOT [4], [10] binding for ROOT
classes. As mentioned in the previous paragraph, the choice of
Python for that implementation significantly reduced the length
of the processing code. Moreover, accessing ROOT from Python
makes the integration with other applications easier and more
interactive. The GDML reader for Geant4 has also been im-
plemented in Python. It uses the Reflex [4], [10] tool for cre-
ating dictionary for the Geant4 classes which is then loaded into
ROOT and allows interaction with those classes from the Python
prompt. Such an approach allows to run interactively Geant4
and ROOT from Python using the same GDML file as geom-
etry source.

VI. UsING G DML

In this section we will briefly describe the way to use GDML
readers and writers. We start with the GDML writer for Geant4.

The only thing needed to export the geometry in the form of
the GDML file is the pointer to the top volume of the geometry
tree which is then used as argument for calling the appropriete
method of the writer. This can be done for instance in one of
the Geant4 “user actions” once the geometry has been closed.
The user needs to instantiate the writer giving the name of the
schema file and the name of the output file as arguments. Then
the “DumpGeometryInfo” method must be called

GAGDMLWriter writer (“gdml.xsd”,
“geo.gdml”) ;

writer.DumpGeometryInfo (gdworldvolume) ;

The GDML file is then generated and saved on the disk.



To use the GDML reader for Geant4, the procedure is the
following. First, one has to instantiate, initialize and configure
SAXProcessor, where mygeometry.gdml file should corre-
spond to the GDML file to be read

SAXProcessor sXp;
sxp.Initialize();
ProcessingConfigurator config;
config.SetURI (“mygeometry.gdml”) ;

sxp.Configure (&config) ;

and then one has to run the parsing and retrieve the pointer to
the top geometry volume

sxp.Run() ;

fWorld = (G4VPhysicalVolume *)

GDMLProcessor: :GetInstance()— >

GetWorldvolume () ;

This can, for instance, take place in the Construct () method of
the UserDetectorConstruction class where the top volume
is returned.

To use Python writers and readers, the procedure is very sim-
ilar. We start here with the discussion of the GDML reader for
ROOT.

Assuming we have imported the ROOT module into Python
and loaded the geometry library, we need just to import the
generic XML parser and the GDML handler

import xml.sax

import GDMLContentHandler

having done that, we can now instantiate the GDML handler and
parse the file

gdmlhandler =
GDMLContentHandler .GDMLContentHandler ()

xml .sax.parse(‘geo.gdml’, gdmlhandler)

The top volume of the geometry tree is now available from the
handler:

topVolume = gdmlhandler.WorldVolume ()

and can be passed to the ROOT geometry manager.

The procedure for using the GDML writer for ROOT is the
following. We assume that we have imported the ROOT module
into Python and that the TGeo geometry that we want to export
has been loaded into memory. We start, therefore, with loading
the necessary additional modules

from math import *
from units import *
import writer

import ROOTwriter

retrieving the top volume of the geometry tree

topV = ROOT.gGeoManager .GetTopVolume ()

and instanciating the writer (with the argument being the name
of the output file)

gdmlwriter = writer.writer(‘geo.gdml’)
binding =

ROOTwriter.ROOTwriter (gdmlwriter)

We are now ready to export the geometry data. We start with the
materials

matlist = geomgr.GetListOfMaterials()

binding.dumpMaterials (matlist)

then the solids

shapelist = geomgr.GetListOfShapes ()

binding.dumpSolids (shapelist)

and the geometry tree

gdmlwriter.addSetup (‘default’, ‘1.0’,
topV.GetName () )

binding.examineVol (topV)

With all the data provided to the write we can now export the
geometry in the form of a GDML file

gdmlwriter.writeFile ()

which concludes the procedure.

VII. EXAMPLES

As mentioned in the introduction, GDML can play two roles.
It can be the language for the geometry implementation or it can
be the geometry interchange format. In the first case, the use of
GDML allows flexible geometry implementation which can be
modified or exchanged without the need to recompile the appli-
cation. GDML has been, for instance, the choice for the geom-
etry implementation for the Geant4 simulation application of
the International Linear Collider detectors like SiD, GLD and
LDC [6], [11]. It is also used in space research for missions like
ConeXpress, JWST as well as radiation studies like GRAS [7].



Fig. 5. CMS detector visualized using ROOT from an automatically generated
GDML file.

In the medical physics field, GDML was the geometry imple-
mentation choice for the radiation protection, radiotherapy and
dosimetry studies [8], [9].

As far as the geometry interchange aspect of GDML is con-
cerned, it proves useful for the LHC experiments, where physics
validation of simulation toolkits is performed with the help of
it. For instance, the original Atlas TileCal test-beam geometry
is exported in the form of GDML files and then loaded into
different stand-alone simulation applications allowing valida-
tion of particular aspects of the simulation toolkits. GDML is
also proving very useful in interchanging geometries between
Geant4 and ROOT. An example of that can be seen on Fig. 5
where the whole CMS detector has been visualized using the
ROOT 3D graphics. In this case the original geometry, imple-
mented using the CMS-specific detector description language,
was first loaded into the CMS Geant4 application. Once the
Geant4 geometry tree was fully instanciated in memory, the
Geant4 GDML writer was called to export it in the form of the
GDML file. That GDML file was then loaded into ROOT using
the Python converter and then visualized.

VIII. CONCLUSION

GDML is an XML-based, application-independent detector
geometry description language designed for the purpose of sim-

ulation applications as well as analysis. It can be used as the
main geometry implementation format or it can play the role
of an interchange format. The advantages of using GDML for
geometry description implementation is the fact that it avoids
hard-coding of the geometry, as well as it allows easy modifi-
cations and reconfiguration of the geometry used for the spe-
cific application. As far as geometry interchange format is con-
cerned, GDML allows to extract the geometry description from
experiment-specific frameworks and use them in generic appli-
cation for the purpose of physics validation and comparison. It
also allows to move geometries between Geant4 and ROOT for
the purpose of visualization using ROOT 3D graphics.

As far as the future developments are concerned, it is
planned to further extend support for different solids available
in Geant4, for instance the family of twisted solids recently in-
troduced there. Work is also foreseen to enable modularization
of GDML files in order to be able to load different subdetectors
independently.

REFERENCES

[1] R. Chytracek, “The geometry description markup language,” in Proc.
CHEP 2001, Beijing, China, pp. 473-476.

[2] S. Agostinelli, “Geant4: A simulation toolkit,” Nucl. Instrum. Methods
Phys. Res. A, vol. A506, p. 250, 2003.

[3] J. Allison et al., “Geant4 developments and applications,” IEEE Trans.
Nucl. Sci., vol. 53, no. 1, pt. 2, pp. 270-278, Feb. 2006.

[4] R.Brun and F. Rademakers, “ROOT—An object oriented data analysis
framework,” in Proc. AIHENP’96 Workshop, Lausanne, Switzerland,
Sep. 1996.

[5] [Online]. Available: http://www.saxproject.org/

[6] J. McCormick, “Full detector simulation using SLIC and LCDD,” in
Proc. SLAC-PUB-11418, Aug. 18, 2005, p. 5.

[7] G.Santin, V.Ivanchenko, H. Evans, P. Nieminen, and E. Daly, “GRAS:
A general-purpose 3-D modular simulation tool for space environment
effects analysis,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2294-2299,
2005.

[8] G. Guerrieri, “Development of Anthropomorphic Models for Radia-

tion Protection and Radiotherapy,” Ph.D. dissertation, Univ. Genova,

Genova, Italy, 2005.

R. Capra, S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, and B.

Mascialino, “Geant4 capabilities for microdosimetry simulation,”

presented at the Radiation Protection and Dosimetry (Proc. Suppl.),

2006, submitted for publication.

[10] R. Brun and F. Rademakers, “Root—An object oriented data anal-
ysis framework,” Nucl. Instrum. Methods Phys. Res. A, vol. A389, pp.
81-86, 1997.

[11] J. McCormick, “Full detector simulation using SLIC and LCDD,” in
Proc. Int. Linear Collider Workshop, Stanford, CA, Mar. 18-22, 2005.

[9

—



