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Abstract

As a polarized beam is accelerated through a depolarization resonance, its
polarization is reduced by a well-defined calculable reduction factor. When the
beam subsequently crosses a second resonance, the final beam polarization is
considered to be reduced by the product of the two reduction factors corre-
sponding to the two crossings, each calculated independently of the other. This
is a good approximation when the spread of spin precession frequency Δνspin

of the beam (particularly due to its energy spread) is sufficiently large that the
spin precession phases of individual particles smear out completely during the
time τ between the two crossings. This approximate picture, however, ignores
two spin dynamics effects: an interference effect and a spin echo effect. This
paper is to address these two effects.

The interference effect occurs when Δνspin is too small, or when τ is too
short, to complete the smearing process. In this case, the two resonance cross-
ings interfere with each other, and the final polarization exhibits constructive or
destructive patterns depending on the exact value of τ . Typically, the beam’s
energy spread is large and this interference effect does not occur. To study
this effect, therefore, it is necessary to reduce the beam energy spread and to
consider two resonance crossings very close to each other.

The other mechanism, also due to the interplay between two resonance cross-
ings, is spin echo. It turns out that even when the precession phases appear to
be completely smeared between the two crossings, there will still be a sudden
and short-lived echo signal of beam polarization at a time τ after the second
crossing; the magnitude of which can be as large as 57%. This echo signal exists
even when the beam has a sizable energy spread and when τ is very large, and
could be a sensitive (albeit challenging) way to experimentally test the intricate
spin dynamics in a synchrotron.

After giving an analysis of the interference and the echo effects, two possible
experiments to explore them are suggested.
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Spin Echo and Interference in Synchrotrons

Alex Chao

1 Introduction

In the study of nuclear magnetic resonance effects, spin echo is a well-known

phenomenon [1]. A related phenomenon is expected to occur in accelerators. In

a planar synchrotron, the spin of a particle precesses rapidly around the vertical

y-axis with the spin tune νspin = Gγ, where G = (g − 2)/2 with g the gyro-

magnetic ratio of the particle under consideration, and γ is the Lorentz energy

factor. As the particle is accelerated or decelerated, its γ changes and spin tune

changes accordingly. As the spin tune varies, the spin motion of a particle will

be strongly affected if the particle experiences perturbing electromagnetic fields

as it executes orbital motion in the synchrotron, and if its spin tune comes close

to, or crosses a depolarization resonance

Gγ = κ (1)

where κ specifies the resonance location (for example, κ = integer for imperfec-

tion resonances, κ = integer ± vertical betatron tune for intrinsic resonances,

etc.). In this situation, it is well-known that the perturbation on spin motion

can be characterized by a single complex quantity, the resonance strength ε,

which can be expressed as an appropriate Fourier harmonic of the perturbing

fields around the accelerator [2]-[8].

One such analysis was obtained by Froissart and Stora [8] when the spin tune



crosses the resonance linearly in time starting and ending far from the resonance.

Their result yielded the well-known Froissart-Stora formula that relates the final

polarization after crossing to the initial polarization before crossing.

A matrix formalism [9] has recently been developed that allows the calcula-

tion of polarization near a resonance when the crossing pattern of the spin tune

consists of a combination of constant in time, linear in time, and sudden discrete

jumps. The condition of being far from the resonance before and after crossing

is also removed. This matrix formalism can be used, for example, to study

multiple crossings of a resonance. Using this formalism, we are able to explore

constructive and destructive interference effects of these crossings. Condition

for destructive interference between two crossings, for example, might be useful

if one wishes to compensate a particularly strong depolarization resonance by

another artificially induced resonance.

Experimentally, these interference effects are expected to be most readily

observable when the polarized beam has a small spread Δνspin in particles’ spin

tunes. To meet this requirement, the beam must have a small energy spread.

Ways to produce a beam with small energy spread should help greatly the

exploration of the interference effects. For a polarized beam of larger energy

spreads, the multiple resonance crossings are far separated from each other and

the interference effects are not readily observable. Fortunately, it turns out in

this case that detection of interference can still be attempted using a more subtle

effect, namely the echo effect, as suggested in [9]. In this echo experiment, two

resonance crossings normally considered to be far separated can still interfere



with each other to produce a spin echo signal at an unexpected long time after

the second crossing.

The spin echo effect is not dissimilar to the orbital echo effects observed

in storage rings [10]. By examining the orbital and the spin echoes, detailed

and intricate orbital dynamics or spin dynamics can be studied. Since the spin

echoes are expected to last for very long times, they are expected to be sensitive

to weak and slow perturbations of spin diffusion, and their study can lead to

quantitative examination of these spin diffusion mechanisms.

The first part of this paper gives an analysis of the interference and the

echo effects. After this analysis, two possible experiments to study them will be

suggested. It is hoped that some variation of these suggested experiments can

be carried out in a synchrotron in a not too distant future, for example as part

of the experimental efforts in [11, 12].

2 Equation of Motion

We assume the spin dynamics is determined by one and only one depolarization

resonance of strength ε at Gγ = κ. We assume Gγ is near the resonance and

its distance to the resonance is a prescribed function of time.

In spinor notation, the spin state of a particle is described by a two-component

complex spinor ψ, and the spin dynamics is described by [2]-[8]

dψ

dθ
= − i

2

⎡
⎣ −Gγ εeiκθ

ε∗e−iκθ Gγ

⎤
⎦ψ (2)

where θ is the time variable (advancing by 2π per revolution of the particle



around the synchrotron), Gγ depends on θ as

Gγ(θ) = κ + α(θ) (3)

where α(θ) is the way the resonance is approached or crossed. This spinor equa-

tion implicitly assumes that α and ε as functions of time vary slowly compared

to spin precession around the vertical y-axis. This is a good assumption because

spin precession is fast.

We define

β(θ) =
∫ θ

θ0

dθ′α(θ′) (4)

where θ0 is the initial time, and make the transformation

ψ = e
i
2 [κθ+β(θ)]σy

⎡
⎣ f(θ)

g(θ)eiβ(θ)

⎤
⎦ (5)

with Pauli matrix σy =

⎡
⎣ 1 0

0 −1

⎤
⎦. Equation (2) then becomes

df

dθ
= − iε

2
g

dg

dθ
= −iαg − iε∗

2
f (6)

We still need to specify the initial condition of the spin at time θ = θ0. Let

us designate α0 = α(θ0) and ε0 = ε(θ0). We assume that these parameters have

been held at these values, and that the spin has been in an eigenstate, from

θ = −∞ to θ = θ0, i.e.,⎡
⎣ f

g

⎤
⎦

θ0

=

√
Ω + |α0|

2Ω

⎡
⎣ 1

− sgn(α0)
ε0

(Ω − |α0|)

⎤
⎦ (7)

where

Ω =
√

α2
0 + |ε0|2 (8)



We will primarily be interested in Py, the y-component of polarization, in

this planar accelerator,

Py(θ) = ψ†σyψ = |f(θ)|2 − |g(θ)|2 (9)

Being in an eigenstate, the initial polarization is assumed to be 100% and is

adiabatically brought to the initial position θ0. At θ0, the x- and z-components

of the spin precess rapidly, and we shall concentrate on the y-component only.

The initial y-component of polarization is given by

Py(θ0) = |f(θ0)|2 − |g(θ0)|2 =
|α0|
Ω

(10)

The rapidly precessing phase of the x- and z-components of the polarization is

contained in the phase of ε0. Our results of Py will not depend on the phase of

ε0, and will depend only on |ε0|.

3 Jump crossing a resonance

In crossing a resonance, the simplest case to treat is when the resonance is

crossed by a sudden jump in the spin tune. In the present study, for simplicity,

we shall consider jump crossings only. Slower resonance crossings with beam

energy being varied linearly in time can also be treated using the matrix for-

malism, but are not studied below. Interference and echo effects are sufficiently

illustrated by the case of sudden jump crossings. Consider first the case of

a jumping pattern in α(θ) as shown in Fig.1. A resonance of strength ε0 is

jump-crossed twice at times θ1 and θ2.



Figure 1: Two crossings of a resonance by sudden jumps of spin tune.

The initial spin state at θ = θ0 is given by (7). Applying the matrix formal-

ism [9], the spin state at time θ1 > θ > θ0, i.e. before the first jump, is given

by ⎡
⎣ f

g

⎤
⎦

θ1>θ>θ0

= Tα0,ε0(θ, θ0)

⎡
⎣ f

g

⎤
⎦

θ0

(11)

where Tα0,ε0(θ, θ0) is the transfer matrix that brings the initial spin state at

time θ0 to its final state at time θ, and is defined by

Tα0,ε0(θ, θ0) ≡ e−
i
2 α0(θ−θ0)

⎡
⎣ 1 0

α0
ε0

iΩ
ε0

⎤
⎦

⎡
⎣ cos Θ sin Θ

− sin Θ cos Θ

⎤
⎦

⎡
⎣ 1 0

iα0
Ω − iε0

Ω

⎤
⎦ (12)

Θ =
Ω
2

(θ − θ0)

Before the first resonance crossing, Eqs.(7) and (11) give⎡
⎣ f

g

⎤
⎦

θ1>θ>θ0

= e
i
2 [sgn(α0)Ω0−α0](θ−θ0)

⎡
⎣ f

g

⎤
⎦

θ0

(13)

where Ω0 =
√

α2
0 + |ε0|2. As one would expect, the spin stays in the initial

eigenstate. The polarization in this time period is preserved, and is given by



Eq.(10), i.e.

Py(θ1 > θ > θ0) =
|α0|
Ω0

(14)

After the first crossing and before the second crossing, the matrix formalism

now gives⎡
⎣ f

g

⎤
⎦

θ2>θ>θ1

= Tα1,ε0(θ, θ1)

⎡
⎣ f

g

⎤
⎦

θ1

= e
i
2 (θ1−θ0)[sgn(α0)Ω0−α0] Tα1,ε0(θ, θ1)

⎡
⎣ f

g

⎤
⎦

θ0

= e−
i
2 α1(θ−θ1)+

i
2 [sgn(α0)Ω0−α0](θ1−θ0)

√
Ω0 + |α0|

2Ω0

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
i
2 sgn(α0)Ω1(θ−θ1) + i

Ω1
[(Ω0 − Ω1)sgn(α0)

+α1 − α0] sin
Ω1(θ−θ1)

2

1
ε0Ω1

{
[α0 − Ω0sgn(α0)]Ω0 cos Ω1(θ−θ1)

2

−i[|ε0|2−α1Ω0sgn(α0)+α1α0] sin
Ω1(θ−θ1)

2

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

where Ω1 =
√

α2
1 + |ε0|2. Polarization during this time period is given by

Py(θ2 > θ > θ1) =
sgn(α0)
Ω0Ω2

1

[
α1(α0α1+|ε0|2)+(α0−α1)|ε0|2 cos Ω1(θ−θ1)

]
(16)

This polarization is sinusoidal in θ − θ1 with frequency Ω1. Its value oscillates

between |α0|
Ω0

and sgn(α0)
Ω0Ω2

1
[α0α

2
1 + |ε0|2(2α1−α0)]. The oscillation centers around

the value sgn(α0)α1
Ω0Ω2

1
(α0α1 + |ε0|2).

After the second crossing, we have⎡
⎣ f

g

⎤
⎦

θ>θ2

= Tα2,ε0(θ, θ2)

⎡
⎣ f

g

⎤
⎦

θ2

= e−
i
2{α2(θ−θ2)+α1(θ2−θ1)+(θ1−θ0)[α0−Ω0sgn(α0)]}

√
Ω0+|α0|

2Ω0



×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− i
Ω1Ω2

sin Θ2

{
Ω0 cos Θ1(α0 − Ω0sgn(α0))

−i(α0α1 + |ε0|2 − α1Ω0sgn(α0)) sin Θ1

}
+(cos Θ2 + i α2

Ω2
sin Θ2)

{
cos Θ1

+ i
Ω1

(−α0 + α1 + Ω0sgn(α0)) sin Θ1

}

ε∗0
Ω1Ω2

sin Θ2

{
− ie

i
2Ω1sgn(α0)(θ2−θ1)Ω1

+(α1 − α0 + Ω0sgn(α0) − Ω1sgn(α0)) sin Θ1

}
+ 1

ε0Ω1Ω2
(Ω2 cos Θ2 − iα2 sin Θ2){

Ω0 cos Θ1(α0 − Ω0sgn(α0))

−i(α0α1 + |ε0|2 − α1Ω0sgn(α0)) sin Θ1

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where Ω2 =
√

α2
2 + |ε0|2,Θ1 = Ω1

2 (θ2 − θ1),Θ2 = Ω2
2 (θ − θ2).

Polarization Py after the second crossing is given by Py(θ > θ2) = |f |2 −|g|2

with f and g given by Eq.(17). This final polarization oscillates in θ − θ2 with

frequency Ω2.

Note that Py oscillates with frequencies Ω1 and Ω2 after each of the two

crossings. These are much slower frequencies than the spin precession frequency

∼ κ (by a few orders of magnitude).

A special case occurs when the two jumps have magnitudes such that

α0 = −A, α1 = A, α2 = −A (18)

In this case, Eq.(17) gives a simpler expression for the polarization after the two

jumps,

Py(θ > θ2) =
|A|
Ω5

[
(A2 − |ε0|2)2 + 2|ε0|4 cos Ω(θ − θ1) − 2A2|ε0|2 cos Ω(θ + θ1 − 2θ2)



+ 2|ε0|2(A2 − |ε0|2) cos Ω(θ − θ2) + 4A2|ε0|2 cos Ω(θ2 − θ1)
]

(19)

where Ω =
√

A2 + |ε0|2.

4 Interference

From Eq.(19) for the special case, it can be observed that there is complete

destructive interference between the two resonance jumps if, in addition to con-

dition (18), we have

Θ1 = kπ, or Ω(θ2 − θ1) = 2kπ (20)

where k is an integer. When conditions (18) and (20) are satisfied, the final

polarization is equal to the initial polarization |α0|/Ω0, and the two resonance

jumps do not cause a loss of polarization. The two crossings have destructively

annihilated each other.

There is also a constructive interference that occurs when

Θ1 = kπ +
π

2
, or Ω(θ2 − θ1) = (2k + 1)π (21)

In this case, the final polarization reads

Py(θ > θ2) =
|A|
Ω5

[
(A4 − 6A2|ε0|2 + |ε0|4)

+ 4|ε0|2(|ε0|2 − A2) cos Ω(θ − θ1)
]

(22)

In this case of constructive interference, the highest (or lowest, as the case may

be) value of the oscillating Py after the second crossing is equal to the lowest

value of Py during the time between θ1 and θ2.



Figure 2: Upper figure shows the resonance crossing pattern α(θ) of a particle

as a function of θ. Lower figure shows the polarization Py(θ) as the particle

makes the resonance crossings. Parameters used are A = 2 × 10−4, |ε0| = 1.2 ×

10−4, θ0 = −2 × 105, θ1 = 0,Θ1 = 4π. The two jumps destructively interfere

as the polarization makes 4 complete oscillations during the time between the

two jumps. The three colors in the lower figure gives the polarization during

the three time periods before first crossing, between the two crossings, and after

the second crossing, respectively. The exact value of the launching time θ0 does

not matter.



Figure 3: Same as Fig.2, except that Θ1 = 9 π
2 . The two jumps constructively

interfere as the polarization makes 41
2 complete oscillations during the time

between the two jumps.

Examples of interferences are shown in Figs.2 (destructive interference) and

3 (constructive interference). The two figures differ in their values of Θ1.

It is amusing to note that when the case of constructive interference has the

additional condition that |ε0| = |A|, the polarization after the second jump will

be simply a constant, as illustrated in Fig.4.

It should be emphasized that, at least in principle, after crossing a reso-

nance, the potential of interfering strongly with a next resonance crossing lasts



Figure 4: Same as Fig.3, except that |ε0| has been changed to become equal to

A so that |ε0| = A = 2 × 10−4. The two jumps constructively interfere as the

polarization makes 41
2 complete oscillations during the time between the two

jumps. The final polarization after the second crossing is constant in time.

indefinitely in time. The memory of crossing a resonance lasts indefinitely for

each single particle of the beam. In this sense, resonance crossings should not

be generally considered to be separate events. Having crossed a resonance will

carry the memory indefinitely, and will necessarily interference with subsequent

crossings of other resonances. However, this interference effect has convention-

ally not been taken seriously. In what follows, we will explore the conditions



when ignoring the interference effects is justified.

5 Off-momentum particle

We consider a case when the on-momentum particle of the beam is made to

double jump-cross the resonances according to the prescription (18). In other

words, the on-momentum particle’s energy as a function of time θ is such that

Gγ0(θ) = κ +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−A, if θ < θ1

A, if θ1 < θ < θ2

−A, if θ2 < θ

(23)

For an off-momentum particle in the beam with energy deviation δ = Δγ/γ0,

on the other hand, its spin tune will be given by

Gγ(θ) = κ +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−A + κδ, if θ < θ1

A + κδ, if θ1 < θ < θ2

−A + κδ, if θ2 < θ

(24)

We will assume that |δ| � 1, |κδ| � 1 and |κδ| � A.

In the following, we assume that the first resonance crossing is a jump from

below. This means A > 0. For the off-momentum particle, condition (18) is

not fulfilled, we use Eqs.(14), (16) and (17) to obtain the polarization at various

stages of the resonance jump process. In expressions (14), (16) and (17), we

note that the momentum deviation makes important contributions only through

the phases in the sinusoidal terms. Therefore we obtain, for an off-momentum

particle,

Py(θ<θ1) ≈ A

Ω



Py(θ2 >θ>θ1) ≈ A

Ω3

{
A2 − |ε0|2 + 2|ε0|2 cos

[
(Ω +

Aκδ

Ω
)(θ − θ1)

]}

Py(θ>θ2) ≈ A

Ω5

{
(A2−|ε0|2)2 + 2|ε0|4 cos

[
Ω(θ−θ1) +

Aκδ

Ω
(2θ2−θ−θ1)

]

− 2A2|ε0|2 cos
[
Ω(θ+θ1−2θ2)−

Aκδ

Ω
(θ−θ1)

]

+ 2|ε0|2(A2 − |ε0|2) cos
[
(Ω − Aκδ

Ω
)(θ−θ2)

]

+ 4A2|ε0|2 cos
[
(Ω +

Aκδ

Ω
)(θ2−θ1)

]}
(25)

where Ω =
√

A2 + |ε0|2, and we have used the fact that Ω0 = Ω2 ≈ Ω − Aκ
Ω δ

and Ω1 ≈ Ω + Aκ
Ω δ.

6 A beam of particles

The above result applies to the case of a single particle. For a beam of particles

with a finite energy spread among the particles, an averaging on the result (25)

over the beam’s energy distribution will have to be performed. Assuming the

energy distribution is Gaussian with rms σδ, the result is

Py(θ<θ1) ≈ A

Ω

Py(θ2 >θ>θ1) ≈ A

Ω3

{
A2 − |ε0|2 + 2|ε0|2e−

A2κ2σ2
δ

2Ω2 (θ−θ1)
2

cos Ω(θ − θ1)
}

Py(θ>θ2) ≈ A

Ω5

{
(A2−|ε0|2)2 + 2|ε0|4e−

A2κ2σ2
δ

2Ω2 (2θ2−θ−θ1)
2

cos Ω(θ−θ1)

− 2A2|ε0|2e−
A2κ2σ2

δ
2Ω2 (θ−θ1)

2

cos Ω(θ+θ1−2θ2)

+ 2|ε0|2(A2−|ε0|2)e−
A2κ2σ2

δ
2Ω2 (θ−θ2)

2

cos Ω(θ−θ2)

+ 4A2|ε0|2e−
A2κ2σ2

δ
2Ω2 (θ2−θ1)

2

cos Ω(θ2−θ1)

}

(26)



It may be useful at this point to discuss some features of the result (26):

• In Py(θ2 > θ > θ1), there is a sinusoidal oscillating term with oscillation

frequency Ω. This term is the shock response of the beam polarization to

the first resonance jump, its phase depending on θ − θ1.

• In Py(θ > θ2), there are four oscillating terms, all with oscillation fre-

quency Ω. Each term has its own physical meaning. The third oscillating

term gives the shock response to the second resonance crossing, its phase

depending on θ − θ2. The fourth term describes an interference between

the two crossings, its phase depending on θ2 − θ1. (This fourth term is

independent of time θ, so strictly speaking, it is not an “oscillating” term.)

The remaining two terms (the first and second terms) appear more mys-

terious. We will see later that they give rise to a spin echo effect, while

the first term will dominate over the second term. These interference and

the echo effects are the emphases of the present paper.

• Each of the oscillating terms in (26) contains an exponential factor cor-

responding to the effect of phase smearing due to the finite beam energy

spread. The rate the phase information is lost is such that each of the

oscillating terms is damped in Nsmear turns, where

Nsmear ≈
√

2 Ω
2π|A|κσδ

(27)

Because of these exponential smearing factors, all the oscillating terms

will be significant only within a time span of the order of Δθ ∼ 2πNsmear



centered around specific values of time θ. The shock terms will center

around θ = θ1,2, while the echo term will center around θ = 2θ2 − θ1.

• To observe a significant interference effect, i.e., for the fourth oscillating

term in Py(θ > θ2) to be significant, it is necessary that

θ2 − θ1
<∼

√
2 Ω

|A|κσδ
(28)

The quantity on the right hand side, therefore, specifies how long the mem-

ory of crossing a resonance lasts. As discussed earlier, when σδ = 0, such

as for a single particle, the interference will be remembered indefinitely.

• Our analysis assumes the resonances are crossed by sudden jumps in the

spin tune. In practice, spin tune is varied at a finite speed. A “sud-

den” jump means the crossing is made in a time short enough that the

polarization has not made a significant change. This requires

Njump � 1
Ω

(29)

where Njump is the number of turns it takes to complete the jump.

• As mentioned earlier, the polarization oscillation frequency Ω is much

slower than the precession frequency κ. In fact, in order for the spinor

equation of motion (2) to hold, we require another condition, namely, one

needs the jump not to be too fast,

Njump � 1
κ

(30)

and in any case the jump should be made in more than several turns. This

condition, however, is easily fulfilled in practice.



• As mentioned, the interference effect is pronounced only when Eq.(28)

holds, i.e. only when the two jumps are sufficiently close in time. More

specifically, interference occurs most pronouncedly when

1
κ
� Njump �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Ω

1
2π (θ2 − θ1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�
√

2 Ω
2π|A|κσδ

(31)

• In comparison, the spin echo effect is pronounced only when Eq.(28) does

not hold. In that case, the two shock responses and the echo signal are all

clearly separated in time. To examine the echo effect, we are interested

mainly in the parameters regime

1
κ
� Njump �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Ω

√
2 Ω

2π|A|κσδ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

� 1
2π

(θ2 − θ1) (32)

In this regime, the interference term does not contribute, and can be

dropped.

• In addition to (31) and (32), we should keep in mind that our analytic

approximation (25) requires

κσδ � |A| (33)

although the absolute validity of this condition may not be too critical.

• In the above analysis, we have assumed that the spin tune spread comes

from an energy spread of the beam particles. If there are other sources of

spin tune spread, the same analysis applies as long as the spin tunes stay



fixed throughout the crossing process and their changes come only from

the acceleration [13]. In particular, if energy change has a contribution

from synchrotron motion of the particles as in the case of a bunched-beam

operation, the analysis will require modifications [14].

• The analysis assumes the same resonance strength ε0 for all particles. This

means it applies only to the cases of imperfection resonances or resonances

driven by radio-frequency dipoles. Imperfection resonance, for example,

will require more involved analysis [15].

7 Spin echo

We are now ready to calculate the echo effect for a beam with energy spread.

One example is shown in Fig.5. Figure 5 (upper) reproduces the case of Fig.3

when σδ = 0, as it should. Figures 5 (middle) and 5 (lower) are cases in the

regime (32), and with increasing σδ. Each of these two figures contains three

separated, peaked responses, centered around θ = θ1 (shock response to first

crossing), θ = θ1 + τ (shock response to second crossing), and θ = θ1 +2τ (echo

response), where τ = θ2 − θ1 is the time separation between the two jumps.

There is one and only one echo signal, i.e. there are no secondary echoes even

if one waits for a longer time beyond the first echo.

In Eq.(32), the term 1
Ω in the curly bracket represents the oscillatory motion

of the polarization, while the term
√

2 Ω
2π|A|κσδ

corresponds to the smear-caused

damped behavior of the polarization. Depending on the relative values of 1
Ω and



Figure 5: Conditions are the same as in Fig.3, except that this is for a beam with

finite energy spread; σδ = 0 (upper), σδ = 10−5 (middle), σδ = 10−4 (lower). As

σδ increases, the interference effect is suppressed while an echo signal becomes

more apparent. We have taken κ = 4.4.



√
2 Ω

2π|A|κσδ
, the separated responses will appear damped-oscillatory or critically-

damped. Figure 5 (middle) appears damped-oscillatory, while Fig.5 (lower)

appears critically damped. When σδ is increased further from Fig.5 (lower),

the polarization will look basically the same as Fig.5 (lower) except that the

responses become increasingly sharply centered around θ1, θ1 + τ, and θ1 + 2τ .

After the oscillating terms are damped out, and ignoring the echo term, the

level of polarization is given by

Py =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A
Ω if θ < θ1

A
Ω

(
A2−|ε0|2

Ω2

)
if θ2 > θ > θ1

A
Ω

(
A2−|ε0|2

Ω2

)2

if θ > θ2

(34)

It is clear that the first jump gives a loss of polarization by a factor
(

A2−|ε0|2
Ω2

)
,

while the second jump gives rise to the same loss factor. When condition (32)

holds, i.e. when the beam has a sufficiently large energy spread and the two

resonance crossings are sufficiently separated in time, therefore, it does seem

justified to consider the two jumps as two separate independent events, and

ignore any interference effects.

However, this is true only if one ignores the echo. Even when condition (32)

is satisfied, one must remember that there is in addition an echo signal located

at a distant time of τ beyond the second jump. The magnitude of the echo

signal, relative to its background value, is

Py,echo =
2A|ε0|4

Ω5
(35)

It follows that this echo signal is maximum when

|A|max. echo =
1
2
|ε0| (36)



When condition (36) is fulfilled, the echo signal is (4/5)5/2 = 57%, a perhaps

surprisingly large value. However, it should be pointed out also that condition

(36) means the resonance jump is done in such a way that both the launching

and the final spin tunes are within the width of the resonance.

Th echo effect demonstrated above applies when the one and only resonance

is crossed twice. Whether and under what conditions two separate resonances

crossed by an accelerated beam will produce an echo is yet to be studied.

The echo signal comes about because the shock response in the spin spinor

produced by the first crossing contains a precessing term. When the second

crossing at a time τ later produces a shock response that contains another

precessing term of equal speed but opposite direction, the two terms cancel each

other at a time τ after the second crossing. Although particles with different

energy errors precess with different speeds, the time when cancellation occurs

is exactly the same for all particles independent of their energy errors. An echo

is then produced as a result.

8 Two experiments

We propose two possible experiments, one for detecting echo and the other

for detecting interference, possibly using a 2.1 GeV/c proton beam of COSY

[12]. The parameters chosen should be further optimized according to the ex-

perimental conditions, but the following proposals are meant to illustrate the

possibilities.



In the experiments proposed below, resonances are introduced using a radio-

frequency dipole [11, 12]. The strength of the resonance is controlled by the

dipole strength. The resonance tune is determined by its radio frequency. The

speed of resonance crossing is determined by the speed at which its radio fre-

quency is varied.

We will suggest to cross the resonances rapidly to assimilate sudden jumps.

If the speed turns out to be slower, analysis employing slower crossings will have

to be carried out, which has not been done in the present paper. To complete

the jump in Njump turns, the resonance crossing speed needs to be such that

1
f2

c

df

dt
=

2A

Njump
(37)

where df
dt is the rate at which dipole radio frequency is swept in time, and fc

is the revolution frequency of the beam in the synchrotron. For the COSY

synchrotron, fc = 1.5 MHz.

The beam energy spread is a key parameter for these experiments. In the

proposed experiments below, a smallest experimentally achievable value of beam

energy spread is assumed. This smallest value will require electron cooling to

the polarized beam.

The beam is assumed to be 100% polarized initially away from the resonance.

With the resonance strength turned on to the value ε0, the beam is adiabatically

brought to a launching position by bringing the spin tune of the beam’s on-

momentum particle to a distance −A from the resonance Gγ = κ. Starting

from this launching position, a resonance jump is made (in Njump turns). The

on-momentum spin tune is made to be equal to +A after the jump.



The beam is then parked there for a period of time τ (or τ/2π turns), while

the resonance strength is kept at ε0. At time τ after the first jump, a second

resonance jump is performed, bringing the on-momentum spin tune from +A

back to −A.

The beam is then parked at this new position, while resonance strength is

still kept at ε0. Beam polarization Py is then measured using a polarimeter.

The measurement is gated at a short time window approximately only 0.5 ms

wide. The timing of the gate is varied so that a range of polarization is mapped

out as a function of time after the second jump. To take each data point, 120

spin-up and 120 spin-down cycles are accumulated to give sufficient statistics.

A good statistics is expected to be a challenge in these experiments.

8.1 Echo experiment

For the echo experiment, we propose the following parameters, [16]

κ = 4.4

σδ = 10−4

|ε0| = 10−3

A = 0.5 × 10−3

Njump < 100 turns (38)

These parameters give Ω =
√

A2 + |ε0|2 = 1.12 × 10−3, and they satisfy the

conditions (32), (33), and (36). To make sure that resonance jumps are made

in less than 100 turns, the resonance crossing speed needs to be 1
f2

c

df
dt > 10−5.



The time separation τ between the two resonance jumps should be very

flexible and can be chosen by convenience. Having chosen τ , the echo signal

is expected to occur at the time τ after the second resonance jump. Since the

echo will last only for a time duration ±Nsmear = ±
√

2 Ω
2π|A|κσδ

= ±1150 turns

(±0.8 ms), and will oscillate with period 1
Ω = 900 turns (0.6 ms), the detector

time must be gated rather narrowly and rather accurately. Figure 6 shows the

expected polarization behavior of this experiment when τ = θ2−θ1 = 2π×8000,

or 8000 turns. To dramatize the echo effect, one may increase τ by a large factor,

e.g. a factor of 1000.

0 25000 50000 75000 100000 125000
Θ
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-0.5

0

0.5

1

Py�Θ�

Figure 6: Expected polarization in an echo experiment.

Detecting the echo is further complicated by the counting rate statistics. In a

COSY experiment, if we assume the polarization measurement accuracy of ±1%

when gated at a 200 ms time window (assuming 30 spin-up and 30 spin-down

cycles), the expected accuracy of 0.5 ms window would be ±10% assuming 120

spin-up and 120 spin-down cycles [16]. This ±10% statistics is to be compared
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Figure 7: Expected polarization in an interference experiment. The upper figure

is when the two resonance crossings interfere destructively. The lower figure is

when they interfere constructively.

with the expected echo polarization signal of 57%.

Note that, as seen in Fig.6, the polarization at echo in this example is larger

than the launching polarization. This is allowed because the beam is assumed to

be initially 100% polarized and brought to its launching position adiabatically.

If the beam turns out to be less than 100% to start with, the polarization level

will need to be reduced throughout by the initial polarization.
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Figure 8: Expected polarization when the two resonance jumps constructively

interfere, while ε0| = |A|.

8.2 Interference experiment

For an interference experiment, we assume the following parameters, [16]

κ = 4.4

σδ = 10−4

|ε0| = 3 × 10−4

A = 6 × 10−4

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2π
Ω = 9.4 × 103 = 1500 turns

for destructive interference

π
Ω = 4.7 × 103 = 750 turns

for constructive interference
Njump < 100 turns (39)

These parameters give Ω =
√

A2 + |ε0|2 = 6.7 × 10−4, and they satisfy the

conditions (31) and (33).



Figure 7 shows the result expected in this experiment. The polarization after

the second jump includes some contribution from the echo, but the interference

effect is reflected by the fact that the final polarization long after the second

jump depends sensitively on the choice of the time separation τ between the

two jumps.

Figure 8 shows a special case of constructive interference when |ε0| = |A|.

When the beam has no energy spread, we have shown the result in Fig.4. Here,

we show the case when the parameters are the same as those of (39) except that

|ε0| has been changed to 6 × 10−4. The shock response to the second jump has

disappeared, while a small echo signal remains.
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