## Measurement of $B$ Decays to $\phi K \gamma$

B. Aubert,,$^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ M. S. Gill, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ J. A. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ D. Lopes Pegna, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ P. del Amo Sanchez, ${ }^{7}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ A. T. Watson, ${ }^{7}$
T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ D. J. Asgeirsson, ${ }^{10}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ D. J. Sherwood, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ K. Yu. Todyshev, ${ }^{12}$ D. S. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern,,$^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ D. Kovalskyi, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ C. H. Cheng, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ F. Fang, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ G. Mancinelli,,$^{20}$ B. T. Meadows,,$^{20}$ K. Mishra, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. C. Bloom, ${ }^{21}$
S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ M. Nagel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ H. Jasper,,$^{23}$ J. Merkel, ${ }^{23}$ A. Petzold, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ W. F. Mader, ${ }^{24}$ R. Nogowski, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ A. Volk, ${ }^{24}$ D. Bernard, ${ }^{25}$
G. R. Bonneaud, ${ }^{25}$ E. Latour, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ M. Verderi, ${ }^{25}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim,,${ }^{26}$ S. Playfer, ${ }^{26}$ A. I. Robertson,,$^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ A. Petrella, ${ }^{27}$ L. Piemontese, ${ }^{27}$ E. Prencipe, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$
A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ S. Pacetti, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, *}$ M. Piccolo, ${ }^{28}$ M. Rama, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ C. L. Lee, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ D. J. Bard, ${ }^{32}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman,,$^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J. A. Nash,,$^{32}$ M. B. Nikolich, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ P. K. Behera, ${ }^{33}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ N. T. Meyer, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ A. V. Gritsan, ${ }^{35}$ A. G. Denig, ${ }^{36}$ M. Fritsch, ${ }^{36}$ G. Schott, ${ }^{36}$ N. Arnaud, ${ }^{37}$ M. Davier, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ A. Oyanguren, ${ }^{37}$ S. Pruvot, ${ }^{37}$ S. Rodier, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ J. Serrano, ${ }^{37}$ A. Stocchi, ${ }^{37}$ W. F. Wang, ${ }^{37}$ G. Wormser, ${ }^{37}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ C. A. Chavez, ${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ K. A. George, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne, ${ }^{39}$ K. C. Schofield, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ C. K. Clarke, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ W. Menges, ${ }^{40}$ R. Sacco, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ M. T. Naisbit, ${ }^{43}$ J. C. Williams, ${ }^{43}$ J. I. Yi, ${ }^{43}$ C. Chen, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ C. K. Lae, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ J. Tuggle, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S. S. Hertzbach, ${ }^{45}$ X. Li, ${ }^{45}$ T. B. Moore, ${ }^{45}$ S. Saremi, ${ }^{45}$ H. Staengle, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ H. Kim, ${ }^{47}$ S. E. Mclachlin, ${ }^{47}$ P. M. Patel, ${ }^{47}$
S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet,,${ }^{50}$ D. Côté, ${ }^{50}$ M. Simard, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson,,$^{51}$ N. Cavallo, ${ }^{52, ~}{ }^{\dagger}$ G. De Nardo, ${ }^{52}$ F. Fabozzi, ${ }^{52, \dagger}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci, ${ }^{52}$ D. Piccolo, ${ }^{52}$ C. Sciacca, ${ }^{52}$ M. A. Baak, ${ }^{53}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ G. Benelli,,${ }^{55}$ L. A. Corwin, ${ }^{55}$ K. K. Gan,,${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ P. D. Jackson, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ J. J. Regensburger, ${ }^{55}$ R. Ter-Antonyan, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ J. A. Kolb, ${ }^{56}$ M. Lu, ${ }^{56}$ C. T. Potter, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ A. Gaz, ${ }^{57}$ M. Margoni, ${ }^{57}$ M. Morandin, ${ }^{57}$ A. Pompili, ${ }^{57}$ M. Posocco, ${ }^{57}$ M. Rotondo, ${ }^{57}$ F. Simonetto, ${ }^{57}$ R. Stroili, ${ }^{57}$ C. Voci, ${ }^{57}$ M. Benayoun,,${ }^{58}$ H. Briand, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ Ch. de la Vaissière, ${ }^{58}$ O. Hamon, ${ }^{58}$ B. L. Hartfiel, ${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Malclès,,${ }^{58}$ J. Ocariz, ${ }^{58}$ L. Roos,,${ }^{58}$ G. Therin, ${ }^{58}$ L. Gladney, ${ }^{59}$ M. Biasini, ${ }^{60}$ R. Covarelli, ${ }^{60}$ C. Angelini, ${ }^{61}$ G. Batignani, ${ }^{61}$ S. Bettarini, ${ }^{61}$ F. Bucci, ${ }^{61}$ G. Calderini, ${ }^{61}$ M. Carpinelli, ${ }^{61}$ R. Cenci, ${ }^{61}$ F. Forti, ${ }^{61}$ M. A. Giorgi, ${ }^{61}$ A. Lusiani, ${ }^{61}$ G. Marchiori, ${ }^{61}$ M. A. Mazur, ${ }^{61}$ M. Morganti, ${ }^{61}$ N. Neri, ${ }^{61}$ E. Paoloni, ${ }^{61}$ G. Rizzo, ${ }^{61}$ J. J. Walsh, ${ }^{61}$ M. Haire, ${ }^{62}$ D. Judd, ${ }^{62}$ D. E. Wagoner, ${ }^{62}$ J. Biesiada,,${ }^{63}$ N. Danielson, ${ }^{63}$ P. Elmer, ${ }^{63}$ Y. P. Lau, ${ }^{63}$ C. Lu, ${ }^{63}$ J. Olsen, ${ }^{63}$ A. J. S. Smith, ${ }^{63}$ A. V. Telnov, ${ }^{63}$ F. Bellini, ${ }^{64}$ G. Cavoto, ${ }^{64}$ A. D'Orazio, ${ }^{64}$ D. del Re, ${ }^{64}$ E. Di Marco, ${ }^{64}$ R. Faccini, ${ }^{64}$ F. Ferrarotto, ${ }^{64}$ F. Ferroni, ${ }^{64}$ M. Gaspero, ${ }^{64}$ L. Li Gioi, ${ }^{64}$ M. A. Mazzoni, ${ }^{64}$ S. Morganti, ${ }^{64}$ G. Piredda, ${ }^{64}$ F. Polci, ${ }^{64}$ F. Safai Tehrani, ${ }^{64}$ C. Voena, ${ }^{64}$ M. Ebert,,${ }^{65}$ H. Schröder, ${ }^{65}$ R. Waldi, ${ }^{65}$ T. Adye, ${ }^{66}$ B. Franek, ${ }^{66}$ E. O. Olaiya, ${ }^{66}$ S. Ricciardi,,${ }^{66}$ F. F. Wilson,,${ }^{66}$ R. Aleksan,,${ }^{67}$ S. Emery, ${ }^{67}$ A. Gaidot, ${ }^{67}$ S. F. Ganzhur, ${ }^{67}$ G. Hamel de Monchenault, ${ }^{67}$ W. Kozanecki, ${ }^{67}$ M. Legendre, ${ }^{67}$ G. Vasseur, ${ }^{67}$ Ch. Yèche,,${ }^{67}$ M. Zito, ${ }^{67}$ X. R. Chen, ${ }^{68}$ H. Liu, ${ }^{68}$ W. Park, ${ }^{68}$ M. V. Purohit, ${ }^{68}$ J. R. Wilson, ${ }^{68}$ M. T. Allen, ${ }^{69}$ D. Aston,,${ }^{69}$ R. Bartoldus, ${ }^{69}$ P. Bechtle, ${ }^{69}$ N. Berger, ${ }^{69}$ R. Claus, ${ }^{69}$ J. P. Coleman,${ }^{69}$ M. R. Convery, ${ }^{69}$ J. C. Dingfelder, ${ }^{69}$ J. Dorfan, ${ }^{69}$ G. P. Dubois-Felsmann, ${ }^{69}$ D. Dujmic, ${ }^{69}$ W. Dunwoodie, ${ }^{69}$ R. C. Field, ${ }^{69}$ T. Glanzman, ${ }^{69}$ S. J. Gowdy, ${ }^{69}$ M. T. Graham, ${ }^{69}$ P. Grenier, ${ }^{69}$ V. Halyo, ${ }^{69}$ C. Hast, ${ }^{69}$ T. Hryn'ova, ${ }^{69}$ W. R. Innes, ${ }^{69}$ M. H. Kelsey, ${ }^{69}$ P. Kim, ${ }^{69}$ D. W. G. S. Leith, ${ }^{69}$ S. Li, ${ }^{69}$ S. Luitz, ${ }^{69}$ V. Luth, ${ }^{69}$ H. L. Lynch,,${ }^{69}$ D. B. MacFarlane, ${ }^{69}$ H. Marsiske, ${ }^{69}$ R. Messner, ${ }^{69}$ D. R. Muller, ${ }^{69}$ C. P. O'Grady, ${ }^{69}$ V. E. Ozcan, ${ }^{69}$ A. Perazzo, ${ }^{69}$ M. Perl, ${ }^{69}$ T. Pulliam, ${ }^{69}$ B. N. Ratcliff, ${ }^{69}$ A. Roodman, ${ }^{69}$ A. A. Salnikov, ${ }^{69}$ R. H. Schindler, ${ }^{69}$ J. Schwiening, ${ }^{69}$ A. Snyder, ${ }^{69}$ J. Stelzer, ${ }^{69}$ D. Su, ${ }^{69}$ M. K. Sullivan, ${ }^{69}$ K. Suzuki, ${ }^{69}$ S. K. Swain, ${ }^{69}$ J. M. Thompson, ${ }^{69}$ J. Va'vra, ${ }^{69}$ N. van Bakel, ${ }^{69}$ A. P. Wagner, ${ }^{69}$ M. Weaver, ${ }^{69}$ A. J. R. Weinstein, ${ }^{69}$ W. J. Wisniewski,,${ }^{69}$ M. Wittgen, ${ }^{69}$ D. H. Wright ${ }^{69}$ H. W. Wulsin, ${ }^{69}$ A. K. Yarritu, ${ }^{69}$ K. Yi, ${ }^{69}$ C. C. Young, ${ }^{69}$ P. R. Burchat, ${ }^{70}$ A. J. Edwards,,${ }^{70}$ S. A. Majewski, ${ }^{70}$ B. A. Petersen, ${ }^{70}$ L. Wilden, ${ }^{70}$ S. Ahmed, ${ }^{71}$ M. S. Alam, ${ }^{71}$ R. Bula, ${ }^{71}$ J. A. Ernst, ${ }^{71}$ V. Jain, ${ }^{71}$ B. Pan, ${ }^{71}$ M. A. Saeed, ${ }^{71}$ F. R. Wappler, ${ }^{71}$ S. B. Zain, ${ }^{71}$ W. Bugg, ${ }^{72}$ M. Krishnamurthy, ${ }^{72}$ S. M. Spanier, ${ }^{72}$ R. Eckmann, ${ }^{73}$ J. L. Ritchie, ${ }^{73}$ A. Satpathy, ${ }^{73}$ C. J. Schilling, ${ }^{73}$ R. F. Schwitters, ${ }^{73}$ J. M. Izen, ${ }^{74}$ X. C. Lou, ${ }^{74}$ S. Ye, ${ }^{74}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{75}$ D. Gamba, ${ }^{75}$ M. Bomben, ${ }^{76}$ L. Bosisio, ${ }^{76}$ C. Cartaro, ${ }^{76}$ F. Cossutti, ${ }^{76}$ G. Della Ricca, ${ }^{76}$ S. Dittongo, ${ }^{76}$ L. Lanceri, ${ }^{76}$ L. Vitale, ${ }^{76}$ V. Azzolini, ${ }^{77}$ N. Lopez-March, ${ }^{77}$ F. Martinez-Vidal, ${ }^{77}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan,,$^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ M. Pappagallo, ${ }^{79,}{ }^{\ddagger}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ K. T. Flood,,${ }^{80}$ J. J. Hollar, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{5}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA

${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA<br>${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA<br>${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA<br>${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA<br>${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA<br>${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA<br>${ }^{23}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany<br>${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany<br>${ }^{25}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France<br>${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom<br>${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy<br>${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy<br>${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy<br>${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA<br>${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany<br>${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom<br>${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA<br>${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA<br>${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA<br>${ }^{36}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany<br>${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France<br>${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA<br>${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom<br>${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom<br>${ }^{41}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom<br>${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA<br>${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom<br>44 University of Maryland, College Park, Maryland 20742, USA<br>${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA<br>${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA<br>${ }^{47}$ McGill University, Montréal, Québec, Canada H3A 2T8<br>${ }^{48}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy<br>${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA<br>${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7<br>${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA<br>${ }^{52}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy<br>${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands<br>${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA<br>${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA<br>${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA<br>${ }^{57}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy<br>${ }^{58}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France<br>${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA<br>${ }^{60}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy<br>${ }^{61}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy<br>${ }^{62}$ Prairie View A $\xi M$ University, Prairie View, Texas 77446, USA<br>${ }^{63}$ Princeton University, Princeton, New Jersey 08544, USA<br>${ }^{64}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy<br>${ }^{65}$ Universität Rostock, D-18051 Rostock, Germany<br>${ }^{66}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom<br>${ }^{67}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France<br>${ }^{68}$ University of South Carolina, Columbia, South Carolina 29208, USA<br>${ }^{69}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA<br>${ }^{70}$ Stanford University, Stanford, California 94305-4060, USA<br>${ }^{71}$ State University of New York, Albany, New York 12222, USA<br>${ }^{72}$ University of Tennessee, Knoxville, Tennessee 37996, USA<br>${ }^{73}$ University of Texas at Austin, Austin, Texas 78712, USA<br>${ }^{74}$ University of Texas at Dallas, Richardson, Texas 75083, USA<br>${ }^{75}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy<br>${ }^{76}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy<br>${ }^{77}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6<br>${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom<br>${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA<br>${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA

(Dated: November 24, 2006)


#### Abstract

We search for the decays $B^{-} \rightarrow \phi K^{-} \gamma$ and $\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma$ in a data sample of 228 million $B \bar{B}$ pairs collected at the $\Upsilon(4 S)$ resonance with the BABAR detector. We measure the branching fraction $\mathcal{B}\left(B^{-} \rightarrow \phi K^{-} \gamma\right)=(3.5 \pm 0.6 \pm 0.4) \times 10^{-6}$ and set an upper limit $\mathcal{B}\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma\right)<2.7 \times 10^{-6}$ at the $90 \%$ confidence level. We also measure the direct $C P$ asymmetry in $B^{-} \rightarrow \phi K^{-} \gamma, \mathcal{A}_{C P}=$ $(-26 \pm 14 \pm 5) \%$. The uncertainties are statistical and systematic, respectively.


PACS numbers: 13.25 .Hw

Measurements of the branching fractions and $C P$ asymmetries of $b \rightarrow s \gamma$ decays provide a sensitive probe of the standard model (SM), in which these decays are forbidden at tree level but allowed through electroweak penguin processes. They are sensitive to the possible effects of physics beyond the SM manifesting as new virtual particles contributing to loops. These additional contributions to the decay amplitudes could affect branching fractions and $C P$ violation [1]. The SM theoretical prediction [2] and experimental measurements [3] of the $b \rightarrow s \gamma$ inclusive branching fraction have uncertainties of about $10 \%$ and are consistent with each other. Although exclusive $b \rightarrow s \gamma$ branching fractions are experimentally easier to determine than inclusive ones, calculations for the exclusive modes are theoretically challenging due to large nonperturbative quantum chromodynamic effects. The expected direct $C P$ asymmetry between $B^{+}$and $B^{-}$ decay rates in the SM is $-(0.1-1) \%$ [4], while the timedependent $C P$ asymmetry in neutral $C P$ eigenstates such as $B^{0} \rightarrow \phi K_{S}^{0} \gamma$ should be a few percent [5]. A significantly larger $C P$ asymmetry of either type would be a sign of new physics.

There have already been results published for branching fraction and/or $C P$ asymmetry measurements in several exclusive modes: $B \rightarrow K^{*} \gamma[6], B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma[7]$, $B \rightarrow \eta\left({ }^{\prime}\right) K \gamma[8]$, and various $B \rightarrow K \pi \pi \gamma[9]$ modes. The Belle collaboration has measured $\mathcal{B}\left(B^{-} \rightarrow \phi K^{-} \gamma\right)=$ $(3.4 \pm 0.9 \pm 0.4) \times 10^{-6}$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma\right)<8.3 \times 10^{-6}$ at the $90 \%$ confidence level using 96 million $B \bar{B}$ pairs [10]. We present the first BABAR measurement of the branching fraction for the charged mode $B^{-} \rightarrow \phi K^{-} \gamma$ and a search for the neutral mode $\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma[21]$ using 228 million $B \bar{B}$ pairs. We also measure for the first time the direct $C P$ asymmetry in the charged mode $\mathcal{A}_{C P}=\left[N\left(B^{-}\right)-N\left(B^{+}\right)\right] /\left[N\left(B^{-}\right)+N\left(B^{+}\right)\right]$, where the flavor of the $B$ is determined by the charge of the kaon.

The data used in this analysis were recorded with the BABAR detector at the PEP-II asymmetric storage rings, in which 9.0 GeV electrons collide with 3.1 GeV positrons to produce $\Upsilon(4 S)$ mesons. The $B A B A R$ detector is described in detail elsewhere [11]. Most important to this analysis are the tracking system composed of the silicon vertex tracker (SVT) and drift chamber (DCH) inside a
1.5 T magnetic field, the ring-imaging detector of internally reflected Cherenkov light (DIRC), and the electromagnetic calorimeter (EMC). The tracking system can reconstruct a $B$ decay vertex with a resolution of $70 \mu \mathrm{~m}$ along the direction of the beam, and has a transverse momentum resolution of $0.52 \%$ at $500 \mathrm{MeV} / c$. The DIRC provides kaon-pion separation of at least $4 \sigma$ significance for momenta up to $3 \mathrm{GeV} / c$. The EMC detects photons over an energy range from 20 MeV to 9 GeV , with a resolution of $2.6 \%$ at 2.5 GeV . A detailed Monte Carlo (MC) simulation of signal and background processes was performed using the EVTGEN generator [12] and the GEANT4 package [13].

We search for $B \rightarrow \phi K \gamma$ candidates based on charged track combinations and the presence of a high-energy photon using a kinematic fitter [14] to reconstruct the intermediate mesons and the $B$. Each decay vertex is required to have a $\chi^{2}$ probability greater than $0.1 \%$. Candidates for $\phi \rightarrow K^{+} K^{-}$are selected from pairs of oppositely charged tracks that have been distinguished from pions based on a particle identification (PID) likelihood selection algorithm that uses $\mathrm{d} E / \mathrm{d} x$ and Cherenkov light measurements. The same PID algorithm is used for the single $K^{-}$from the $B^{-}$in the charged mode. We keep $\phi$ candidates with masses within a $\pm 10 \mathrm{MeV} / c^{2}$ window of the nominal $\phi$ mass [15]. In the neutral mode, pairs of oppositely charged tracks are accepted as $K_{S}^{0}$ candidates if they have a combined invariant mass within $\pm 10 \mathrm{MeV} / c^{2}$ of the $K_{S}^{0}$ mass and if the $K_{S}^{0}$ flight length is greater than three times its uncertainty. We require the combined $\phi K$ invariant mass to be less than $3.0 \mathrm{GeV} / c^{2}$. In the neutral mode a $D^{0}$ veto is applied by removing candidates with combined $\phi K$ invariant mass within $\pm 10 \mathrm{MeV} / c^{2}$ of the $D^{0}$ mass. Photon candidates are reconstructed from EMC clusters that are not associated with charged tracks, are isolated from other clusters, and have the expected photon lateral shower shape. We require an energy of $1.5-2.6 \mathrm{GeV}$ in the $e^{+} e^{-}$rest frame (CM frame) and we veto photon candidates that form a $\pi^{0}(\eta)$ candidate with invariant mass between $115-155 \mathrm{MeV} / c^{2}$ ( $470-620 \mathrm{MeV} / c^{2}$ ) when combined with another photon of energy greater than $50 \mathrm{MeV}(250 \mathrm{MeV})$.

We identify signal $B$ decays through the distributions
of two quantities, missing mass and reconstructed mass, that peak around the nominal $B$ mass. The missing mass is $m_{\text {miss }}=\sqrt{\left|p_{\Upsilon(4 S)}-p_{B}\right|^{2}}$, where $p_{\Upsilon(4 S)}$ is the $\Upsilon(4 S)$ four-momentum and $p_{B}$ is the four-momentum of the $B \rightarrow \phi K \gamma$ candidate after a mass constraint on the $B$ is applied. The reconstructed mass $m_{\text {rec }}$ is the $B$ candidate invariant mass calculated from the reconstructed energy and momentum. We require $5.12<m_{\text {miss }}<5.32 \mathrm{GeV} / c^{2}$ and $4.98<m_{\text {rec }}<5.48 \mathrm{GeV} / c^{2}$. To further discriminate $B$ decays from continuum $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ background we use two topological quantities: the ratio of Legendre moments $L_{2} / L_{0}$ and the cosine of the angle between the $B$ candidate and the $e^{-}$direction in the CM frame $\left|\cos \theta_{B}^{*}\right|$. We require $L_{2} / L_{0}<0.55$, where $L_{i}=\sum_{j}\left|p_{j}^{*} \| \cos \theta_{j}^{*}\right|^{i}, p_{j}^{*}$ is the CM momentum of each particle $j$ not used in the $B$ candidate, and $\theta_{j}^{*}$ is the CM angle between the particle's momentum and the thrust axis of the $B$ candidate. We also require $\left|\cos \theta_{B}^{*}\right|<0.9$.

The selection criteria described above are chosen to optimize $N_{S} / \sqrt{N_{S}+N_{B}}$ in the signal region, where $N_{S}$ and $N_{B}$ are the MC simulated signal and background yields, respectively, and the signal region is defined by $5.05<m_{\text {rec }}<5.4 \mathrm{GeV} / c^{2}, 5.27<m_{\text {miss }}<5.29 \mathrm{GeV} / c^{2}$, $\left|\cos \theta_{B}^{*}\right|<0.8$, and $L_{2} / L_{0}<0.48$. Signal MC is based on inclusive $B \rightarrow X_{s} \gamma$ events generated according to the model of Kagan and Neubert [16], using $m_{b}=4.62 \mathrm{GeV} / c^{2}$ for the effective $b$ quark mass. Only the part of the hadronic mass spectrum above the $\phi K$ threshold of $1.52 \mathrm{GeV} / c^{2}$ is used, with $X_{s}$ forced to decay to $\phi K$. This model does not take resonances into account.

After all criteria are applied, the average candidate multiplicity in events with at least one candidate are 1.01 and 1.07 in the neutral and charged modes respectively. If multiple $B$ candidates are found in an event, we select the best one based on a $\chi^{2}$ formed from the value and uncertainty of the mass of the $\phi$ candidate and, in the neutral mode, the $K_{S}^{0}$ candidate. The remaining background comes from continuum combinatorics, nonresonant $B \rightarrow K K^{+} K^{-} \gamma, B \rightarrow \phi K \pi^{0}$, and $B \rightarrow \phi K \eta$.

Signal and background yields are extracted from a fit to an unbinned extended maximum likelihood function defined by

$$
\begin{align*}
\mathcal{L}\left(N_{S}, N_{B}, \vec{\alpha}\right)= & e^{-\left(N_{S}+N_{B}\right)} \times \\
& \prod_{i}^{N}\left[N_{S} \mathcal{P}_{S}\left(\vec{x}_{i}\right)+N_{B} \mathcal{P}_{B}\left(\vec{x}_{i} ; \vec{\alpha}\right)\right] ;(1 \tag{1}
\end{align*}
$$

$N_{S}$ and $N_{B}$ are the number of signal and background events respectively, the index $i$ labels each event in the data set, and $N$ is the total number of events used in the fit. $\mathcal{P}_{S}$ and $\mathcal{P}_{B}$ are products of the one-dimensional signal and background probability density functions (PDFs) for each of the observables $\vec{x}=\left\{m_{\text {miss }}, m_{\mathrm{rec}}, L_{2} / L_{0}, \cos \theta_{B}^{*}\right\}$. The signal shape parameters are fixed in the fit while the background parameters $\vec{\alpha}$ are allowed to vary. In order to
fit the $C P$ asymmetries of signal and background in the charged mode, the number of $B^{+}$and $B^{-}$events is determined separately: $N_{j}^{ \pm}=\frac{1}{2}\left(1 \mp \mathcal{A}_{C P}^{j}\right) n_{j}$, where $j=S$ or $B, n_{j}$ and $\mathcal{A}_{C P}^{j}$ are the total yield and $C P$ asymmetry of species $j$, respectively, and the upper (lower) signs correspond to the positively (negatively) charged $B$ mesons.

The signal PDFs for $m_{\text {miss }}$ and $m_{\text {rec }}$ are parametrized by

$$
\begin{equation*}
f(x)=\exp \left[\frac{-x^{2}}{2 \sigma_{L, R}^{2}+\alpha_{L, R} x^{2}}\right] \tag{2}
\end{equation*}
$$

where the parameters $\sigma_{L, R}$ and $\alpha_{L, R}$ determine the core width and variation of the width on either side of $x=0$, $x$ being the difference from the nominal $B$ mass of $m_{\text {miss }}$ or $m_{\text {rec }}$. The $m_{\text {miss }}$ background PDF is an ARGUS function [17], with the endpoint calculated event-by-event from the beam energy. The $m_{\text {rec }}$ background PDF is modeled as a $2^{\text {nd }}$ degree polynomial. The signal and background models for $L_{2} / L_{0}$ both use a binned PDF with eight bins. The $\cos \theta_{B}^{*}$ distribution is modeled as a $2^{\text {nd }}$ degree polynomial in both signal and background; true $B$ candidates follow a $1-\cos ^{2} \theta_{B}^{*}$ distribution if the detector efficiency is flat in $\cos \theta_{B}^{*}$.

To determine the signal PDF parameters we use a highstatistics $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \gamma$ sample. Once determined, these parameters are fixed for the fit to $B \rightarrow \phi K \gamma$ data. We determine the selection efficiency by performing a fit of the yields on signal MC.

We apply several corrections to the signal yield and efficiency before determining the branching fractions. Studies of simulated events show that the main sources of signal-like (peaking) backgrounds are nonresonant $B \rightarrow$ $K K^{+} K^{-} \gamma$ events, and $B \rightarrow \phi K \pi^{0}$ or $B \rightarrow \phi K \eta$, where one of the photons from the $\pi^{0}$ or $\eta$ decay is lost and the other is picked up as the signal high-energy photon. We estimate the amount of $B \rightarrow K K^{+} K^{-} \gamma$ contamination by fitting for the yield in $\phi$ mass sideband regions defined by $989<m_{\phi}<1009 \mathrm{MeV} / c^{2}$ and $1029<m_{\phi}<1049 \mathrm{MeV} / c^{2}$. By interpolating into the signal region, we find and correct for $0.0 \pm 1.5$ and $5 \pm 4$ events for the neutral and charged modes respectively. These contributions are subtracted from the event yields determined in the fit. From the known branching fraction [18] of $B \rightarrow \phi K^{*}\left(\rightarrow K \pi^{0}\right)$ we correct for a contamination of $0.27 \pm 0.16$ neutral and $1.98 \pm 0.32$ charged events. There have been no branching fraction measurements of $B \rightarrow \phi K \pi^{0}$ or $B \rightarrow \phi K \eta$. We assume that the branching fraction of the first is no more than onethird that of $B \rightarrow \phi K^{*}$ and that of the latter is no more than $B \rightarrow \phi K^{*}$. Based on this we assign an uncertainty of 0.5 neutral and 2.9 charged events due to nonresonant $B \rightarrow \phi K\left(\pi^{0} / \eta\right)$ background. To correct for any fit bias, we generate 1000 simulated experiments using PDFs with separate components for $B \bar{B}$ and continuum, and embedding signal events from the full simulation.

The background components are generated using shape parameters determined from the full MC simulation. We correct for a bias of $+4.1 \pm 0.5$ events in the charged mode, due to correlations among the observables in signal MC events that are not accounted for in the fit. In the neutral mode we find a bias of $-0.06 \pm 0.20$, so we apply no correction but include 0.20 events in the systematic uncertainty of the yield. We correct for efficiency differences between data and MC in charged track, single photon, and $K_{S}^{0}$ reconstruction. These multiplicative efficiency corrections are 0.956 in the neutral mode and 0.975 in the charged mode. The corrected efficiencies are $(15.3 \pm 0.8) \%$ in the neutral mode and $(21.9 \pm 1.6) \%$ in the charged mode, where the uncertainties are systematic (discussed below).

The signal yields, efficiencies, branching fractions, and charged-mode $C P$ asymmetry are reported in Table I. We calculate the central value of the branching fractions by

$$
\begin{equation*}
\mathcal{B}_{i}=\frac{N_{S}^{i}}{N_{B \bar{B}} \cdot \varepsilon_{i} \cdot b_{i}} \tag{3}
\end{equation*}
$$

where $i$ labels either the neutral or charged mode, $N_{S}^{i}$ is the corrected signal yield, $N_{B \bar{B}}=(228.3 \pm 2.5) \times 10^{6}$ is the number of $B \bar{B}$ pairs recorded, $\varepsilon_{i}$ is the corrected efficiency, and $b_{i}$ is $\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)\left[\frac{1}{2} \mathcal{B}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)\right]$in the neutral mode and $\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)$in the charged mode. The world average branching fractions are taken from Ref. [15]. We measure $\mathcal{B}\left(B^{-} \rightarrow \phi K^{-} \gamma\right)=(3.5 \pm 0.6 \pm$ $0.4) \times 10^{-6}$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma\right)=(1.3 \pm 1.0 \pm 0.3) \times 10^{-6}$. In the charged mode we measure $\mathcal{A}_{C P}=(-26 \pm 14 \pm 5) \%$. In Fig. 1 we show fits to the data projected onto $m_{\text {miss }}$ and $m_{\text {rec }}$. In all cases, the displayed distribution is created with the signal region selection applied to all other fit variables. We determine the consistency of the branching fraction measurements with the assumption of isospin symmetry using 1000 simulated experiments in each mode with the number of signal events determined by the average branching fraction, $\mathcal{B}_{\mathrm{av}}=2.8 \times 10^{-6}$. From the distribution of the differences in branching fraction between the modes we find an $8.9 \%$ probability to measure a difference greater than or equal to that observed in data.

For the neutral mode we compute the $90 \%$ confidence level upper limit on the branching fraction. We use a Bayesian approach with a flat prior probability for the branching fraction in the physical region $0 \leq \mathcal{B} \leq 1$ and zero elsewhere. As the likelihood (Eq. 1) is a function of several parameters, we determine its dependence on $N_{S}$ by fixing $N_{S}$ to a series of values and recomputing the likelihood at each one, allowing $N_{B}$ and $\vec{\alpha}$ to be reoptimized to obtain the maximum likelihood at each point. We convolve this function with a Gaussian distribution of width equal to the systematic uncertainty of the yield. Similarly, for the efficiency uncertainty we also use a Gaussian distribution of width equal to the efficiency sys-


FIG. 1: Missing mass (a) and reconstructed mass (b) fits in the signal region for the charged mode and the neutral mode (c,d). The dotted curves show the background contribution while the solid curves show the sum of signal and background.
tematic uncertainty. We determine the branching fraction upper bound $\mathcal{B}_{\mathrm{UB}}$ from the following expression:

$$
\begin{equation*}
\int_{0}^{\mathcal{B}_{\mathrm{UB}}} \mathcal{L}(\mathcal{B}) d \mathcal{B} / \int_{0}^{1} \mathcal{L}(\mathcal{B}) d \mathcal{B}=90 \% \tag{4}
\end{equation*}
$$

After applying the previously discussed corrections to the yield and efficiency, and including systematic uncertainties, we obtain $\mathcal{B}\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma\right)<2.7 \times 10^{-6}$.

We assign a systematic uncertainty to the yield due to the fixed signal parameters in the fit. We vary these parameters within the ranges allowed by the $K^{*} \gamma$ sample to determine the total uncertainty of the yields. We account for other systematic uncertainties due to efficiency differences between data and MC in charged kaon tracking, kaon PID, and $K_{S}^{0}, \phi$, and photon selection. There are small uncertainties assigned to the $L_{2} / L_{0}$ selection and the $\pi^{0} / \eta$ veto, also due to data-MC efficiency differences.

Figure 2 shows the efficiency-corrected $\phi K$ invariant mass distributions, using the background subtraction technique described in Ref. [20]. In the charged mode, we find that no more than $50 \%$ of the spectrum in the $1.6-3.0 \mathrm{GeV} / c^{2}$ range can come from the $K_{2}(1770)$ resonance, and we use this information to bound the uncertainty due to the assumed MC $\phi K$ mass spectrum. We determine what the efficiency would have been if half of the mass spectrum came from resonant $K_{2}(1770) \rightarrow \phi K$ production, while the other half came from the signal MC model. We assign the relative efficiency difference between this and the nominal model as an uncertainty.

TABLE I: Summary of the branching fractions and direct $C P$ asymmetry. In $\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma$ the $90 \%$ confidence level upper limit is also given.

| Decay Mode | Yield | Efficiency (\%) | $\mathcal{B}\left(10^{-6}\right)$ | $\mathcal{A}_{C P}(\%)$ |
| :---: | :---: | :---: | :---: | :---: |
| $B^{-} \rightarrow \phi K^{-} \gamma$ | $85 \pm 15 \pm 7$ | $21.9 \pm 1.6$ (syst) | $3.5 \pm 0.6 \pm 0.4$ | $-26 \pm 14 \pm 5$ |
| $\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma$ | $8 \pm 6 \pm 2$ |  | $15.3 \pm 0.8$ (syst) | $1.3 \pm 1.0 \pm 0.3$ |
|  | $<16$ |  | $<2.7$ |  |



FIG. 2: The background-subtracted and efficiency-corrected $\phi K$ mass distributions (points with uncertainties) for the charged mode (a) and the neutral mode (b). The signal MC model for the mass spectrum, based on Ref. [16], is shown as a histogram without uncertainties and is normalized to the efficiency-corrected signal yield obtained in data.

Adding all of the previously discussed uncertainties in quadrature, we find a total multiplicative uncertainty of $5.2 \%$ in the neutral mode and $7.1 \%$ in the charged mode. The complete systematic uncertainties for each mode are summarized in Table II.

For the direct $C P$ asymmetry measurement we bound the $K^{+} / K^{-}$efficiency asymmetry of the detector by using the measured combinatoric background asymmetry, which is consistent with zero within an uncertainty of $1.8 \%$. To account for uncertainty due to various peaking background sources we assume that each source can have a $C P$ asymmetry of up to $\pm 58 \%$, which is the root mean square width of a flat distribution between -1 and 1 . We multiply this by the expected fractional contamination in

TABLE II: Summary of the systematic uncertainties. Except where noted, all uncertainties are given as percentages.

|  | Uncertainty (\%) |  |
| :---: | :---: | :---: |
| Source | $\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma$ | $B^{-} \rightarrow \phi K^{-} \gamma$ |
| $K K^{+} K^{-} \gamma$ Subtraction | 19.7 | 5.2 |
| Peaking Background | 6.4 | 3.4 |
| Fit Bias | 2.6 | 0.6 |
| Fit PDF Parameters | ${ }_{-5.9}^{+7.0}$ | ${ }_{-5.2}^{+5.9}$ |
| Yield Uncertainty | ${ }_{-1.7}^{+\mathbf{1 8}}$ events | ${ }_{-6.9}^{+7.3}$ events |
| Kaon Tracking | 2.8 | 4.2 |
| $K_{S}^{0}$ Efficiency | 1.5 | 0 |
| $\phi$ Efficiency | 1.7 | 1.7 |
| Particle ID | 2.8 | 4.2 |
| Single Photon Efficiency | 1.8 | 1.8 |
| Photon Spectrum Model | 0.4 | 2.6 |
| $L_{2} / L_{0}$ Cut | 1.2 | 1.2 |
| $\pi^{0} / \eta$ Veto | 1.0 | 1.0 |
| Efficiency Uncertainty | $\mathbf{5 . 2}$ | $\mathbf{7 . 1}$ |
| $B \bar{B}$ Counting | $\mathbf{1 . 1}$ | $\mathbf{1 . 1}$ |
| Total | ${ }_{-\mathbf{2 2}}^{+\mathbf{2 3}}$ | $\pm \mathbf{1 1}$ |

the data sample to obtain the systematic uncertainty. For $B^{-} \rightarrow \phi K^{-}\left(\pi^{0} / \eta\right)$ we assign $1.8 \%$ uncertainty, while for $B^{-} \rightarrow K^{-} K^{+} K^{-} \gamma$ we assign $3.5 \%$ uncertainty. For resonant $B \rightarrow \phi K^{*}\left(\rightarrow K \pi^{0}\right)$ events, the previous BABAR and Belle measurements [19] show that the $C P$ asymmetry is consistent with zero to within $15 \%$. We therefore consider it to be negligible. As was done with the branching fraction measurement, we vary the fixed signal parameters of the fit to obtain a $2.2 \%$ uncertainty for the signal $C P$ asymmetry. Adding the uncertainties in quadrature we find a total $\mathcal{A}_{C P}$ systematic uncertainty of $5 \%$.

In summary, we have performed the first BABAR studies of $B \rightarrow \phi K \gamma$ decay modes. We measure $\mathcal{B}\left(B^{-} \rightarrow\right.$ $\left.\phi K^{-} \gamma\right)=(3.5 \pm 0.6 \pm 0.4) \times 10^{-6}$, consistent with the result from Belle. We have set a limit $\mathcal{B}\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{0} \gamma\right)<$ $2.7 \times 10^{-6}$ at the $90 \%$ confidence level. Lastly, we have made the first measurement of the direct $C P$ asymmetry in $B^{-} \rightarrow \phi K^{-} \gamma: \mathcal{A}_{C P}=(-26 \pm 14 \pm 5) \%$.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work pos-
sible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

* Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
$\dagger$ Also with Università della Basilicata, Potenza, Italy
$\ddagger$ Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom
[1] W. S. Hou and R. S. Willey, Phys. Lett. B 202, 591 (1988); B. Grinstein and M. B. Wise, Phys. Lett. B 201, 274 (1988); J. Hewett and J. Wells, Phys. Rev. D 55, 5549 (1997); T. Hurth, Rev. Mod. Phys. 75, 1159 (2003).
[2] P. Gambino and M. Misiak, Nucl. Phys. B 611, 338 (2001).
[3] Heavy Flavor Averaging Group (HFAG), arXiv:hepex/0603003.
[4] J. Soares, Nucl. Phys. B 367575 (1991).
[5] D. Atwood, M. Gronau and A. Soni, Phys. Rev. Lett.

79, 185 (1997); D. Atwood, T. Gershon, M. Hazumi and A. Soni, Phys. Rev. D 71, 076003 (2005); B. Grinstein, Y. Grossman, Z. Ligeti, and D. Pirjol, Phys. Rev. D 71, 011504 (2005); P. Ball and R. Zwicky, Phys. Lett. B 642, 478 (2006).
[6] Belle Collaboration, M. Nakao et al, Phys. Rev. D 69, 112001 (2004); BABAR Collaboration, B. Aubert et al., Phys. Rev. D 70, 112006 (2004).
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 72, 051103(R) (2005); Belle Collaboration, Y. Ushiroda et al., Phys. Rev. Lett. 94, 231601 (2005).
[8] Belle Collaboration, S. Nishida et al., Phys. Lett. B 610, 23 (2005); BABAR Collaboration, B. Aubert et al., Phys. Rev. D 74, 031102 (2006).
[9] Belle Collaboration, S. Nishida et al., Phys. Rev. Lett. 89, 231801 (2002); BABAR Collaboration, B. Aubert et al., Phys. Rev. D 70091105 (2004); Belle Collaboration, H. Yang et al., Phys. Rev. Lett. 94, 111802 (2005).
[10] Belle Collaboration, A. Drutskoy et al., Phys. Rev. Lett. 92, 051801 (2004).
[11] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[12] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[13] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[14] W. D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).
[15] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).
[16] A. Kagan, M. Neubert, Eur. Phys. Jour. C 7, 5 (1999).
[17] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[18] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 231804 (2004).
[19] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); Belle Collaboration, K. F. Chen et al., Phys. Rev. Lett. 94, 221804 (2005).
[20] M. Pivk, F. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[21] Throughout this paper, whenever a mode is given, the charge conjugate is also implied.

