
Work supported in part by the US Department of Energy contract DE-AC02-76SF00515

UCLA/06/TEP/30 SLAC-PUB-12187

Is N = 8 Supergravity Ultraviolet Finite?

Z. Berna, L. J. Dixonb, R. Roibanc

aDepartment of Physics and Astronomy,

UCLA, Los Angeles, CA 90095-1547, USA
bStanford Linear Accelerator Center,

Stanford University, Stanford, CA 94309, USA
eDepartment of Physics, Pennsylvania State University,

University Park, PA 16802, USA

Conventional wisdom holds that no four-dimensional gravity field theory can be ultraviolet finite.
This understanding is based mainly on power counting. Recent studies confirm that one-loop N = 8
supergravity amplitudes satisfy the so-called “no-triangle hypothesis”, which states that triangle
and bubble integrals cancel from these amplitudes. A consequence of this hypothesis is that for any
number of external legs, at one loop N = 8 supergravity and N = 4 super-Yang-Mills have identical
superficial degrees of ultraviolet behavior in D dimensions. We describe how the unitarity method
allows us to promote these one-loop cancellations to higher loops, suggesting that previous power
counts were too conservative. We discuss higher-loop evidence suggesting that N = 8 supergravity
has the same degree of divergence as N = 4 super-Yang-Mills theory and is ultraviolet finite in four
dimensions. We comment on calculations needed to reinforce this proposal, which are feasible using
the unitarity method.

INTRODUCTION

Conventional wisdom holds that it is impossible to con-
struct a finite field theory of quantum gravity. Indeed,
all widely accepted studies to date have concluded that
all known gravity field theories are ultraviolet divergent
and non-renormalizable [1–4]. If one were able to find
a finite four-dimensional quantum field theory of grav-
ity, it would have profound implications. In particular,
finiteness would seem to imply that there should be an
additional symmetry hidden in the theory.

Although power counting arguments indicate that
all known gravity field theories are non-renormalizable,
there are very few explicit calculations establishing their
divergence properties. For pure gravity, a field redef-
inition removes the potential on-shell one-loop diver-
gence [1, 2], but the calculation of Goroff and Sagnotti [5],
confirmed by van de Ven [6], explicitly shows that pure
Einstein gravity has an ultraviolet divergence at two
loops. If generic matter fields are added [1, 2] a diver-
gence appears already at one loop. If the matter is added
so as to make the theory supersymmetric, the divergences
are in general delayed until at least three loops (see e.g.
refs. [3, 4]). However, no complete calculations have been
performed to confirm that the coefficients of the poten-
tial divergences in supersymmetric theories are actually
non-vanishing.

One approach to dealing with the calculational difficul-
ties [7–11] makes use of the unitarity method [12–16], as
well as the Kawai, Lewellen and Tye (KLT) relations be-
tween open- and closed-string tree-level amplitudes [17].
In the low-energy limit the KLT relations express grav-

ity tree amplitudes in terms of gauge theory tree am-
plitudes [18]. Combining the KLT representation with
the unitarity method, which builds loop amplitudes from
tree amplitudes, massless gravity scattering amplitudes
– including their ultraviolet divergences – are fully deter-
mined to any loop order starting from gauge theory tree
amplitudes. In particular, for the case of N = 8 super-
gravity, the entire perturbative expansion can be built
from N = 4 super-Yang-Mills tree amplitudes [7]. It is
rather striking that one can obtain all the amplitudes
of N = 8 supergravity from the tree amplitudes of an
ultraviolet-finite conformal field theory.

The KLT relations between gauge and gravity ampli-
tudes are especially useful for addressing the question of
the ultraviolet divergences of gravity theories because,
from a technical viewpoint, perturbative computations
in gauge theories are much simpler than in gravity theo-
ries. With the unitarity method, these relations are pro-
moted to relations on the unitarity cuts. This strategy
has already been used [7] to argue that the first poten-
tial divergence in N = 8 supergravity would occur at five
loops, instead of the three loops previously predicted us-
ing superspace power counting arguments [4]. Using har-
monic superspace, Howe and Stelle have confirmed this
result [19]. Very interestingly, they also speculate that
the potential divergences may be delayed an additional
loop order.

In this note we reexamine the power counting of ref. [7]
for N = 8 supergravity. We demonstrate that there are
additional unexpected cancellations beyond those iden-
tified in that paper. Our analysis of the amplitudes is
based on unitarity cuts which slice through three or more
lines representing particles, instead of the iterated two-
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particle cuts focused on in ref. [7]. It suggests that N = 8
supergravity may have the same ultraviolet behavior as
N = 4 super-Yang-Mills theory, i.e. that it is finite in
four dimensions. We will also outline calculations, feasi-
ble using the unitarity method, that should be done to
shed further light on this issue.

Our motivation for carrying out this reexamination
stems from the recent realization that in the N = 8 the-
ory unexpected one-loop cancellations first observed for
the special class of maximally helicity violating (MHV)
amplitudes [8], in fact hold more generally [10, 11, 20].
The potential consequences of these cancellations for the
ultraviolet divergences at higher loops were noted in the
latter references. See also ref. [21].

It has been known for a while that the one-loop MHV
amplitudes with four, five and six external gravitons are
composed entirely of scalar box integrals [8, 22], lacking
all triangle and bubble integrals. Although there are no
complete calculations for more than six external legs, fac-
torization arguments make a strong case that the same
property holds for MHV amplitudes with an arbitrary
number of external legs. Factorization puts rather strong
constraints on amplitudes and has even been used to de-
termine their explicit form in some cases (see, for exam-
ple, refs. [8, 23]). Because the scalar box integral func-
tions are the same ones that appear in the corresponding
N = 4 super-Yang-Mills amplitudes, the D-dimensional
ultraviolet behavior is identical: The amplitudes all be-
gin to diverge at D = 8.

As the number of external legs increases, one might
have expected the ultraviolet properties of supergravity
to become relatively worse compared to super-Yang-Mills
theory, as a consequence of the two-derivative couplings
of gravity. From recent explicit calculations of six and
seven graviton amplitudes [10, 11, 20], it is now clear
that the cancellations which prevent triangle or bubble
integrals from appearing extend beyond the MHV case.
This property has been referred to as the “no-triangle
hypothesis”. This hypothesis puts an upper bound on
the number of loop momenta that can appear in the nu-
merator of any one-loop integral. Under integral reduc-
tions [24] any power of loop momentum l appearing in
the numerator can be used to reduce an m-gon integral
to an (m− 1)-gon integral. The (m− 1)-gon integral has
one less power of l in its numerator. Inverse propagators
(such as l2) present in the numerator are special: they
can also be used to reduce m-gon integrals to (m−1)-gon
integrals with two less powers of l.

For example, consider a pentagon integral with a factor
of 2 l · k1 in the numerator, denoted by I5[2 l · k1]. If
l2 and (l − k1)

2 are two propagators in the pentagon
integral and k1 is the momentum of an external line, we
can rewrite the numerator factor as a difference of two
inverse propagators,

2 l · k1 = l2 − (l − k1)
2 . (1)

This equation immediately reduces the linear pentagon
integral to a difference of two scalar box integrals,

I5[2 l · k1] = I
(1)
4 − I

(2)
4 , (2)

where I
(1)
4 and I

(2)
4 are the box integrals obtained from

the pentagon by removing the l2 and (l − k1)
2 propa-

gators, respectively. More generally, integral reductions
bound the maximum power of loop momenta in the nu-
merator, in order that triangle integrals not appear in
the final result. For a pentagon integral the maximum
is one inverse propagator, or one generic power of l; for
a hexagon it is two inverse propagators, or two generic
powers of l; and so forth.

For six-graviton non-MHV amplitudes, the computa-
tions of ref. [11] constitute a proof of the no-triangle hy-
pothesis. For seven gravitons they demonstrate that the
box integrals correctly account for infrared divergences,
making it unlikely for infrared-divergent triangle inte-
grals to appear. For larger numbers of external gravitons,
the same factorization arguments used for MHV ampli-
tudes [8, 10] make a strong case that the required cancel-
lations continue to hold for all graviton helicity config-
urations. Supersymmetry relations suggest that the no-
triangle hypothesis should be extendable from graviton
amplitudes to amplitudes for all possible external states,
because all N = 8 supergravity states belong to the same
supermultiplet. The additional cancellations implied by
the no-triangle hypothesis are rather non-trivial. For ex-
ample, one-loop integrands constructed using the KLT
representation of tree amplitudes naively violate the no-
triangle bound [8, 10]. In the rest of this letter we will
assume that the no-triangle hypothesis holds for all one-
loop N = 8 amplitudes and examine the consequences
for higher loops.

Will these unexpected one-loop cancellations continue
to higher orders? Using conventional Feynman diagram
techniques, it is not at all clear how to extract from these
one-loop on-shell cancellations useful higher-loop state-
ments, given that the formalism is inherently off shell.
The unitarity method [12–16], however, provides a means
for doing so. Because of the direct way that lower-loop
on-shell amplitudes are used to construct the higher-loop
ones, it is clear that the one-loop cancellations will con-
tinue to be found in higher-loop amplitudes. The main
question then is whether the cancellations are sufficient
to imply finiteness of the theory to all loop orders.

Besides the implications of the no-triangle hypothesis
for higher loops via unitarity, there are a number of other
clues pointing to a better than expected ultraviolet be-
havior. One interesting clue comes from the fact that
the only complete N = 8 calculation at two loops – the
four-graviton amplitude – has exactly the same power
counting as the corresponding N = 4 super-Yang-Mills
amplitude [7]. This example clearly shows that a com-
mon degree of finiteness between the two theories in D
dimensions is not limited to one loop.
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An indirect hint of additional cancellations at higher
loops comes from M theory dualities. In refs. [25], by
using duality (defined in an appropriate way in the low-
energy limit using eleven-dimensional supergravity with
counterterms and a particular string-inspired regulator),
it was argued that in type II string theory the ∂4R4

term in the effective action does not suffer from renor-
malization beyond two loops. Because D = 4, N = 8
supergravity may be obtained from type II supergravity
through compactification of six of the dimensions, it hints
that the former theory may also have additional cancel-
lations. A very recent paper from Green, Russo and Van-
hove uses restrictions from M and string theory dualities
to argue that N = 8 supergravity is no worse than log-
arithmically divergent in the ultraviolet [26]. (A related
analysis of the four-graviton ten-, twelve- and fourteen-
derivative terms has also just appeared [27].) Statements
linking string dualities to improved ultraviolet behavior,
and perhaps ultraviolet finiteness, in N = 8 supergravity
may also be found in an earlier paper by Chalmers [28].

An important new clue for the existence of improved
ultraviolet behavior in N = 8 supergravity comes from
the recent work of Berkovits on the multi-loop effective
action of type II string theories [29]. By analyzing string
theory amplitudes, Berkovits found that ∂nR4 terms in
the effective action do not receive perturbative contribu-
tions from above n/2 loops for 0 < n < 12, because more
than n + 8 powers of external momenta come out of the
string integrand. Here R4 denotes an N = 8 supersym-
metric contraction of Riemann tensors [3], and ∂ denotes
a generic spacetime derivative. Assuming that there are
no cancellations between the massless and higher-mass
states of the string in the loops for small external mo-
menta, the string amplitude properties can be applied to
supergravity amplitudes, providing an indication of ad-
ditional cancellations in ten-dimensional type II super-
gravity. If true, then the fact that type II supergravity
corresponds to N = 8 supergravity oxidized to ten di-
mensions would indicate the existence of additional can-
cellations in four dimensions, beyond those of refs. [7, 19],
supporting the speculation of Howe and Stelle.

Finally, the new twistor structure uncovered for grav-
ity theories [10, 30] implies a rich set of constraints on
the form of gravity amplitudes. If N = 8 supergrav-
ity loop amplitudes could be obtained from a topological
string theory, it might lead to a natural explanation for
ultraviolet finiteness. Recent developments in construct-
ing a topological twistor string for gravity theories may
be found in ref. [31].

All these indirect results point to the need to reinves-
tigate the ultraviolet properties of the N = 8 theory di-
rectly. A first complete test would be to compute the full
three-loop four-graviton amplitude, in order to confirm
that 14 powers of external momentum do in fact come
out of the N = 8 loop momentum integrals. Here we
shall perform a preliminary examination, studying types

of cancellations occurring in three- and higher-loop am-
plitudes.

UNITARITY CUTS

The unitarity method offers a powerful way to de-
termine ultraviolet properties of gravity theories. The
higher-loop study in ref. [7] relied on using two-particle
cuts. Because of a remarkable recycling property, it is
possible to iterate the two-particle cuts to all loop orders.
Although two-particle iteration provides a wealth of in-
formation on the structure of the amplitudes, it is only for
a limited set of contributions. Based on the contributions
to the iterated two-particle cuts, as well as an observed
“squaring” structure compared to the super-Yang-Mills
case, the conclusion of ref. [7] is that the N = 8 super-
gravity amplitudes should be ultraviolet finite for

D <
10

L
+ 2 (L > 1) , (3)

where D is the dimension and L the loop order. (The
case of one-loop, L = 1, is special and the amplitudes are
ultraviolet finite for D < 8, not D < 12.) This formula
implies that in D = 4 the first potential divergence is at
five loops. This result was confirmed by studying all cuts,
but restricted to MHV helicity configurations crossing
the cuts. It is also in agreement with the more recent
harmonic superspace analysis of Howe and Stelle [19]. In
contrast, the finiteness condition for N = 4 super-Yang-
Mills theory, found in refs. [7, 19], is

D <
6

L
+ 4 (L > 1) . (4)

(For L = 1, again the amplitudes are finite for D < 8.)
The bound in eq. (4) differs somewhat from the earlier
superspace power counting bound [32], though all bounds
confirm that N = 4 super-Yang-Mills theory is ultravio-
let finite in D = 4. In the planar limit the complete ex-
pressions for the N = 4 super-Yang-Mills amplitudes are
known through four loops [7, 33, 34]. We have evaluated
all logarithmic singularities of the planar contributions
in the critical dimensions Dc = 7, 6, 11/2 corresponding
to two, three and four loops, directly confirming eq. (4),
at least in the limit of a large number of colors. For the
N = 8 supergravity case there are no complete calcula-
tions beyond two loops, so the finiteness condition (3) is
much less certain.

A key assumption behind the finiteness condition (3)
is that there are no cancellations with terms not present
in iterated two-particle cuts. As discussed above, there
are good reasons to reexamine this assumption.

To do so, consider an N = 8 supergravity contribu-
tion from the iterated two-particle cuts used in the power
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FIG. 1: Diagram (a) corresponds to a contribution appearing
in the iterated two-particle cut of fig. 2(a). In N = 4 super-
Yang-Mills the iterated two-particle cuts give a numerator
factor of (l1 + k4)

2. In N = 8 supergravity it is [(l1 + k4)
2]2.

Diagram (b) contains a non-planar contribution which is not
detectable in the iterated two-particle cut of fig. 2(a), but is
detectable in the cut of fig. 2(b).
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FIG. 2: An iterated two-particle cut (a) and a three-particle
cut (b).

count of ref. [7]. From this reference, the planar contri-
bution, displayed in fig. 1(a), is

[s2tAtree
4 ]j

∫
dDl1
(2π)D

dDq1

(2π)D

dDq2

(2π)D

[(l1 + k4)
2]j

l21l
2
2l

2
3l

2
4l

2
5q

2
1q2

2q2
3q2

4q2
5

,

(5)
up to overall normalization factors not depending on mo-
menta. Here Atree

4 ≡ Atree
4 (1, 2, 3, 4) is a color-ordered

four-point super-Yang-Mills tree amplitude, j = 1 for
N = 4 super-Yang-Mills and j = 2 for N = 8 super-
gravity. The ki are external momenta, labeled by i in
fig. 1(a). The Mandelstam invariants are s = (k1 + k2)

2

and t = (k2 + k3)
2 and the lm are the momenta of the

left pentagon subintegral in fig. 1(a), while the qm are
the momenta appearing in the other loops. The other
contributions to the iterated two-particle cuts are simi-
lar. For the N = 4 case, an examination of the three-
particle cuts confirms [7, 33] that the correct numera-
tor factor is (l1 + k4)

2, instead of, for example 2 l1 · k4

which is equivalent using the on-shell conditions of the
iterated two-particle cut in fig. 2(a). No analogous check
has been performed on the N = 8 amplitudes. For the
supergravity case, we can rewrite the prefactor in front
of the integral directly in terms of the supergravity tree
amplitude, using the KLT-like relation

i[stAtree
4 (1, 2, 3, 4)]2 = st(s + t)M tree

4 (1, 2, 3, 4) , (6)

where M tree
4 is the N = 8 four-point tree amplitude.

The scaling of the integral in eq. (5) is that it is finite
for

3D < 20 − 2j , (7)

so that it corresponds to eq. (3) and eq. (4) with L = 3,
for j = 2 and j = 1 respectively.

Is this power counting consistent with the three-
particle cut in fig. 2(b)? On the left-hand side of the
cut we have a one-loop pentagon integral contribution
proportional to

∫
dDl1
(2π)D

[(l1 + k4)
2]j

l21l
2
2l

2
3l

2
4l

2
5

. (8)

If we perform an integral reduction [24], in the Yang-Mills
case, j = 1, eq. (8) reduces to a sum over box integrals.
For the N = 8 supergravity case, j = 2, a similar reduc-
tion leads also to triangle integrals because of the higher
power of loop momentum in the numerator. It is impor-
tant to note that replacing [(l1 + k4)

2]2 with (2 l1 · k4)
2

also leads, under integral reduction, to a violation of the
no-triangle hypothesis, although it has a better ultravio-
let behavior.

We may compare this power counting to the results
from an evaluation of the three-particle cuts. On the
left-hand side of the cut in fig. 2(b), the one-loop five-
point supergravity amplitude is given by [8]

M1-loop
5 (1, 2, q1, q2, q3) (9)

= −
1

2

∑
perms

sq2q1
s2
12s

2
2q3

Atree
5 (1, 2, q3, q2, q1)

× Atree
5 (1, 2, q3, q1, q2)

∫
dDl1
(2π)D

1

l21l
2
2l

2
3l

2
4

+ O(ε) ,

where Atree
5 are color-ordered five-point super-Yang-Mills

tree amplitudes and s2q3
= (k2 + q3)

2, etc. In eq. (9) we
have dropped the contributions that vanish away from
four-dimensions, since they are suppressed by a power
of ε = (4 − D)/2 and should be irrelevant as far as the
leading ultraviolet behavior near D = 4 is concerned. At
five points all amplitudes are MHV, and there are simple
supersymmetric Ward identities [35] relating the various
five-point amplitudes involving the superpartners; these
are described in appendix E of ref. [7]. The appearance
of exactly four propagators in each term in eq. (9) implies
that pentagon integrals have canceled down to boxes, but
with no triangle integrals present. Alternatively, instead
of carrying out the integration one can use the merg-
ing procedure on the cut integrands discussed in ref. [15]
to algebraically arrive at the same conclusion. The co-
efficients of these box integrals may also be readily ob-
tained using an observation due to Britto, Cachazo and
Feng that the quadruple cuts freeze box integral loop
momenta, allowing for their simple algebraic determina-
tion [16]. The lack of triangle integrals involves a rather
non-trivial set of cancellations: The permutation sum is
over 30 contributions corresponding to the distinct scalar
box integrals with one external massive leg.

Comparing eq. (9) to eq. (8) we see that the one-loop
amplitude entering the cut is much better behaved in
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FIG. 3: From the “no-triangle hypothesis” all one-loop sub-
amplitudes appearing in unitarity cuts in N = 8 supergravity
have the same degree of divergence as in N = 4 super-Yang-
Mills theory. The cut (a) is an L-particle cut of an L-loop
amplitude. Cut (b) makes use of generalized unitarity; if a
leg is external to the entire amplitude, it should not be cut.

the ultraviolet than is implied by the result (5). Be-
cause eq. (8) violates the no-triangle hypothesis, which
we know is correct at five points [8], some of the powers
of loop momenta must cancel. However, this cancella-
tion is not visible in the contribution (5). A crucial dif-
ference between the iterated two-particle cut depicted in
fig. 2(a) and the three-particle cut depicted in fig. 2(b) is
that the latter includes also a variety of other diagram-
matic topologies. For example, the non-planar diagram
(b) of fig. 1 is not detected in the iterated two-particle
cut of fig. 2(a), but it is included in the three-particle
cut of fig. 2(b). These cancellations might involve inte-
grals that are detectable in other iterated two-particle
cuts, or integrals that are visible only in higher-particle
cuts. In N = 4 super-Yang-Mills theory, cancellations
between planar and non-planar topologies cannot hap-
pen, because planar and non-planar contributions carry
different color factors and can therefore be treated inde-
pendently.

Cancellations at higher loops are also dictated by the
no-triangle hypothesis. Consider the L-particle cut of the
L-loop amplitudes shown in fig. 3(a). The iterated two-
particle cut analysis and squaring assumption of ref. [7]
give the numerator factor appearing in the diagrammatic
contribution shown in fig. 4 as [(l + k1)

2]2(L−2) for the
N = 8 case. This factor is the square of the N = 4
super-Yang-Mills factor [(l + k1)

2](L−2). This proposed
N = 8 numerator factor is at the origin of the power
count (3). However, this factor leads to a violation of
the no-triangle hypothesis for the (L + 2)-leg amplitude
on the left-hand side of the L-particle cut in fig. 3(a).
That is, we find that the cancellations which reduce the
one-loop amplitude to a sum over box integrals have not
been taken into account. Since there is strong evidence
in favor of the one-loop no-triangle hypothesis [11], we
conclude that the finiteness condition (3) is probably too
conservative.

One can also extend this analysis using generalized uni-
tarity, which provides a powerful way to construct ampli-
tudes [14–16]. For all possible one-loop sub-amplitudes
isolated by cutting internal lines in a higher-loop ampli-

l

2

4

3

1

FIG. 4: An L-loop contribution as proposed in ref. [7]. In
N = 4 super-Yang-Mills theory the numerator factor is
[(l + k4)

2](L−2), while in N = 8 supergravity the factor is

[(l + k4)
2]2(L−2).

2

41

3

l

FIG. 5: An example of a potential N = 8 supergravity con-
tribution where the no-triangle hypothesis does not provide
sufficient information to rule out a violation of the bound (4).
The numerator factor proposed in ref. [7] is [(l + k4)

2]2, al-
though when evaluated on the iterated two-particle cuts used
in its construction, it is indistinguishable from (2 l·k4)

2, which
is consistent with the no-triangle bound.

tude, as depicted in fig. 3(b), the no-triangle hypothesis
implies that they have the same degree of divergence as
the N = 4 super-Yang-Mills theory. Because this re-
sult holds for all possible generalized cuts which isolate
a one-loop amplitude, we obtain a rather non-trivial set
of consistency conditions limiting the ultraviolet behav-
ior of the higher-loop amplitudes. If a specific set of cuts
points to bad ultraviolet behavior in a given loop momen-
tum, we can isolate that loop via generalized unitarity.
Every such one-loop subamplitude has a power count no
worse than that of N = 4 super-Yang-Mills theory (as-
suming the no-triangle hypothesis), suggesting that the
entire amplitude may have this property.

In order to construct a proof that the overall degree of
divergence matches that of N = 4 super-Yang-Mills, it is
crucial to track the critical dimension where logarithmic
divergences first arise. In such a proof one would need to
rule out contributions where the no-triangle hypothesis
is not violated, yet the overall finiteness bound (4) is
violated. An example of such a potential contribution is
given in fig. 5. The numerator factor proposed in ref. [7],
[(l + k4)

2]2, would not violate the no-triangle hypothesis
for the one-loop hexagon subdiagram, yet would violate
the overall bound. On the other hand, the iterated two-
particle cut analysis used in its construction [7] does not
distinguish [(l+k4)

2]2 from (2 l ·k4)
2 — the latter form is

consistent with the overall bound (4) — nor does it take
into account any cancellations of the type found for the
planar contribution in fig. 1. A complete construction of
the three-loop amplitude would, of course, resolve this
situation.
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By power counting Feynman diagrams, one can see
that if the finiteness condition of N = 8 supergravity is
identical to that of N = 4 super-Yang-Mills theory, then
the L-loop contribution to the one-particle irreducible
effective action would start with the form ∂2LR4/∂6, with
an ultraviolet-finite (though infrared-singular) coefficient
in D = 4. The nonlocal factor of 1/∂6 arises from the
loop integrals, by dimensional analysis. A discussion of
power counting in effective actions, and implications for
the degree of divergence of the theory in D = 4 may
be found in ref. [26]. The precise derivative factors that
actually appear would need to be calculated. At two
loops, the explicit integrand for the amplitude [7], as well
as the values of the dimensionally regularized infrared
singular integrals in D = 4 [36], are known.

DISCUSSION

In this note we discussed evidence that four-
dimensional N = 8 supergravity may be ultraviolet finite.
Given the additional cancellations we observe at higher
loops, as well as the other clues described in the introduc-
tion [10, 11, 19, 20, 25, 26, 28, 29], there is good reason
to believe that the finiteness bound of refs. [7, 19] is too
conservative. Clearly a closer direct reexamination of the
ultraviolet properties of N = 8 supergravity is needed. A
number of calculations should be carried out to this end.
The most important task is to construct complete ampli-
tudes beyond two loops. One could then check directly
whether they satisfy the same D-dimensional finiteness
condition (4) obeyed by N = 4 super-Yang-Mills ampli-
tudes.

Using the unitarity method it is feasible to construct
complete four-point integrands at three and perhaps
higher loops. As explained in ref. [7], higher-loop cal-
culations of the N = 8 supergravity unitarity cuts are
essentially double copies of N = 4 super-Yang-Mills cuts,
due to the KLT relations. In the super-Yang-Mills case,
the complete planar four-point three- and four-loop in-
tegrands are known [33, 34]. For supergravity, one also
needs non-planar contributions, which are more compli-
cated than planar ones.

In order to confirm that the cancellations are not lim-
ited to divergences of the form ∂nR4, but extend to oper-
ators with more powers of R, it is important to construct
integrands for higher-point amplitudes. Given that the
five-point two-loop planar N = 4 super-Yang-Mills inte-
grand has already been determined [37], it should also be
feasible to obtain the five-point two-loop N = 8 super-
gravity amplitude.

It should also be possible to carry out all-order stud-
ies using the unitarity method, given the recursive na-
ture of the formalism. Tracking potential logarithmic
divergences that arise in the critical dimension Dc is cru-
cial. Such divergences are unambiguous, whereas power

divergences can depend on details of the regularization
scheme.

Although there is already rather strong evidence that
in D dimensions one-loop N = 8 supergravity amplitudes
have the same degree of divergence as their N = 4 super-
Yang-Mills counterparts [8, 10, 11, 20], it is important to
construct a complete proof, because the result is a key
ingredient for using the unitarity method in higher-loop
analyses.

At the multi-loop level, besides carrying out explicit
constructions of complete amplitudes, it would also be
important to identify an underlying dynamical principle
or symmetry explaining the additional cancellations ob-
served.
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