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Abstract
The large-x behavior of the transverse-momentum dependent quark distributions is analyzed in

the factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-
odd quark Sivers function which is responsible for the single transverse-spin asymmetries in various
semi-inclusive hard processes. By examining the dominant hard gluon exchange Feynman diagrams,
and using the resulting power counting rule, we find that the Sivers function has power behavior
(1 − x)4 at x → 1, which is one power of (1 − x) suppressed relative to the unpolarized quark
distribution. These power-counting results provide important guidelines for the parameterization
of quark distributions and quark-gluon correlations.
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I. INTRODUCTION

Single transverse-spin asymmetries (SSA) have a long history, starting from the observa-
tion of large SSAs in hadron production in nucleon-nucleon scattering in late 70s and 80s
[1]. Since initial or final state phases are required to produce these T − odd observables,
SSAs provide a unique window into quantum chromodynamics (QCD) at the amplitude level
as well as the role of quark orbital angular momentum in the wave functions of hadrons.
Recent experimental observations of sizeable SSAs in hard scattering reactions such as single-
inclusive deep inelastic scattering `p → `′π+X have greatly motivated new studies of the
underlying mechanisms in QCD. These experiments include semi-inclusive deep inelastic
scattering at HERMES at DESY [2], COMPASS at CERN [3], and Jlab [4], and hadron
production in nucleon-nucleon scattering at RHIC [5–7]. Large SSAs have been observed
in semi-inclusive production of hadrons in DIS for transversely polarized proton target at
HERMES [2], and single inclusive hadron production in the forward direction in polarized
proton-proton scattering at RHIC [5, 7].

On the theory side, two mechanisms have been proposed in the QCD framework to explain
these large SSAs in hard scattering processes. One is based on the QCD collinear factor-
ization where the asymmetries arise from the higher-twist quark-gluon correlation effects
(Efremov-Teryev-Qiu-Sterman mechanism) [8, 9]. Another approach explicitly takes into
account the effects coming from the intrinsic transverse momentum of partons in hadrons.
For example, the Sivers function was proposed in [10] to explain the SSA phenomena in
hadronic reactions, where intrinsic transverse momentum plays an important role.

In the last few years, there has been an intensive theoretical development of transverse
momentum dependent (TMD) parton distributions and their roles in semi-inclusive processes
such as semi-inclusive deep inelastic scattering (SIDIS) and the small transverse momentum
Drell-Yan process. The gauge-invariant properties[11–14] of the TMD parton distributions
and the relevant factorization formalism [15–18] have been studied thoroughly. For example,
the Sivers effect in SIDIS has been shown to arise from the interference of amplitudes differing
by one unit of quark orbital angular momentum and the fact that these amplitudes have
different final-state phases [11]. The phases arise from the Wilson-line associated with the
struck quark as required by gauge invariance [12]. The SSA reverses sign in Drell-Yan
reactions because the phases in the Drell-Yan reaction arises from initial-state rather than
final-state interactions [11, 12]. Remarkably, the SSA effect in these reactions is leading
twist; i.e., it survives in the Bjorken-scaling limit. Moreover, it was recently shown that the
above two mechanisms for SSAs are unified for physical processes in the kinematical region
where both apply [19].

There has also been a number of phenomenological studies of the experimental data.
Model-dependent parameterizations of the relevant non-perturbative parton distributions
(twist-3 quark-gluon correlation or the TMD quark distributions) have been adopted to fit
to the data [9, 20–23]. In these studies it has been implicitly assumed the Sivers function
is suppressed at large x relative to the unpolarized quark distributions [21, 22]. In this
paper, we will provide an argument for this suppression based on power-counting of the
leading diagrams in perturbative QCD. We will utilize the generalized power counting rule
and adopt a perturbative analysis of the structure function at large x.

The large-x behavior of both the polarized and unpolarized parton distributions have
been studied [24–28] in PQCD. A generic factorization has recently been used to justify the
power counting rule by relating parton distributions at large-x to the quark distribution
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amplitudes of hadrons [29]. So far, the power counting results have been worked out for
the unpolarized and longitudinal polarized quark distributions. In the present study, we
will extend this analysis to other leading-order TMD quark distributions, including the
naive time-reversal-odd quark Sivers function which is responsible for the SSAs in various
semi-inclusive hard processes.

It is important to note that the x → 1 regime where the struck quark has nearly all of
the light-cone momentum of its parent hadron involves dynamics far-off the mass shell: the

Feynman virtuality of the struck quark becomes highly space-like: k2
F−m2 ∼ −k2

⊥+M2

1−x
, where

k⊥ and M are the transverse momentum and invariant mass of the spectator system. Thus
we can use perturbative QCD to analyze the large-x behavior of parton distributions since
the internal propagators in the relevant Feynman diagrams scale as 1/(1−x). This behavior
leads to a power counting rule. This is because more partons in hadron’s wave function means
more propagators in the scattering amplitudes, and more suppression for the contribution to
the parton distributions. Thus the parton distributions at large-x depend on the number of
partons in the Fock state wave function of the hadron. In particular, the valence Fock state
with the minimum number of constituents will dominate the quark distribution function
at large-x. For example, the proton structure function will be dominated by its three-
quark Fock states, which can be further classified according to its quark orbital angular
momentum projection: Lz = 0, |Lz| = 1, or |Lz| = 2 [30]. Since nonzero quark orbital
angular momentum light-cone wave function normally introduces additional suppression of
(1 − x), we will consider in this paper only Lz = 0 and |Lz| = 1 Fock states contributions.
The |Lz| = 1 state is needed because some of the TMD quark distributions involve the
interference between Lz = 0 and Lz = 1 states [11, 30, 31] (see also the discussions below).

As is the case of the nucleon form factors (Dirac and Pauli form factors) [32], the trans-
verse momentum dependent quark distributions can be calculated from the overlap of the
light-cone wave functions of three-quark Fock states [11, 30, 31]. As we shall demonstrate,
the large-x power counting for the TMD parton distributions can be obtained in a similar
manner. For example, we know that the unpolarized quark distribution has power counting
of (1−x)3 at large-x [24], which comes from the quark orbital angular momentum projection
Lz = 0 Fock states contribution, whereas the contribution from the overlap of two light-cone
functions for |Lz| = 1 states is suppressed by (1− x)2[25–28]. On the other hand, since the
Sivers function depends on the interference between Lz = 0 and |Lz| = 1 states, simple
counting suggests that that the Sivers function will have the leading power of (1− x)4. The
detailed calculations in this paper support this intuitive argument.

The remainder of the paper is organized as follows. In Sec. II, we present our analysis of
the leading-order TMD quark distributions at large-x, where we discuss the power counting
results for the k⊥-even, k⊥-odd, and naive time-reversal-odd quark distributions respectively.
We will also derive the power counting results for the integrated parton distributions at
leading-twist and sub-leading-twist. We summarize our results in Sec.III.

II. TRANSVERSE-MOMENTUM DEPENDENT QUARK DISTRIBUTIONS AT
LARGE-X

The TMD quark distributions can be defined through the following matrix:

Mαβ = P+

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥
〈
PS

∣∣∣Ψβ

v (ξ)Ψα
v (0)

∣∣∣ PS
〉

, (1)
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FIG. 1: Typical Feynman diagram contributing to the large-x quark distribution in nucleon. The
blobs at the left and right sides represent the three-quark light-cone wave function distribution
amplitudes of the nucleon.

where the vector P = (P+, 0−, 0⊥) is along the momentum direction of the proton, S is the
polarization vector, and Ψv(ξ) is defined as

Ψv(ξ) ≡ Lv(∞; ξ)ψ(ξ) , (2)

with the gauge link Lv(∞; ξ) ≡ exp
(−ig

∫∞
0

dλ v · A(λv + ξ)
)
. In this paper, we will study

the TMD quark distributions for the semi-inclusive DIS processes, thus the above gauge
link goes to +∞. Our results can be simply extended to the TMD quark distributions for
the Drell-Yan process, where the naive time-reversal-odd TMDs will have an opposite sign
[11–13]. In the following analysis, no light-cone singularity will be present, thus we can
choose the vector v to be a light-cone vector n = (0+, n−, 0⊥) with n · P = 1.

The leading order expansion of the matrix M contains eight quark distributions [33].
Among the eight distributions, three are the so-called k⊥-even TMD quark distributions:
q(x, k⊥), ∆qL(x, k⊥), and δqT (x, k⊥), which correspond to the unpolarized, longitudinal po-
larized, and transversity distributions, respectively. These distributions will lead to the
three leading-twist integrated quark distributions [34] after integrating over transverse mo-
mentum. The other five distributions are k⊥-odd, and vanish when k⊥ are integrated. Two
of them, qT (x, k⊥) (Sivers) and δq(x, k⊥) (Boer-Mulders), are odd under naive time-reversal
transformation [35]. The notations for these distributions follow Ref. [30], which are different
than those in [33]. However, their definitions are identical.

In this paper we are interested in studying the large-x behavior of these TMD quark
distributions. We will disregard the k⊥ dependence, and further choose k⊥ À ΛQCD in order
to avoid the infrared divergence associated with low transverse momentum limit. A typical
Feynman diagram contributing to large-x quark distributions is shown in Fig. 1. At this
order, we can write down an inspired factorization formula for the the parton distributions
in terms of the distribution amplitudes of the nucleon [25, 26],

f(x, k⊥) =

∫
d2k1⊥d2k2⊥

4(2π)6

dz1dz2

z1z2

δ(k⊥ + k1⊥ + k2⊥)δ(z1 + z2 + x− 1)

∫
[dyi][dy′i]

Φ(yi)Φ
′(y′i)H(yi, y

′
i; ki⊥; zi) , (3)

where the outside integral represents the phase space integrals for the final state two quarks
going through the cut line, with momenta: ki = (ziP

+, k−i , ki⊥) (i = 1, 2). The inside
integral measure [dyi] is defined as [dyi] = dy1dy2dy3δ(1 − y1 − y2 − y3), and the yi are the
momentum fractions of the proton carried by the quarks in the light cone wave functions,
i.e., pi = yiP and p′i = y′iP in Fig. 1. Here f represents any of the leading order TMD quark
distributions. Φ and Φ′ represent the quark distribution amplitudes of nucleon at the left
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and right sides of the cut line, respectively. They can be the leading-twist or higher-twist
distribution amplitudes, depending on the quark orbital angular momentum projection along
z-direction. We list the distribution amplitudes we will use in this paper in the Appendix
for reference. H represents the hard part which can be calculated from the perturbative
Feynman diagram like Fig. 1.

We notice that, in the above equation the phase space integral for k1 and k2 are strongly
constrained in the limit of x → 1, because of momentum conservation, z1 + z2 = 1 − x.
We can factor out the (1− x) dependence of this phase space integral, taking the following
parameterizations: z1 = α(1− x), z2 = β(1− x),

∫
dz1dz2

z1z2

δ(z1 + z2 + x− 1) =
1

1− x

∫
dαdβ

αβ
δ(1− α− β) . (4)

This leads to an overall enhancement of 1/(1 − x). After factoring this out, the remaining
measure of the phase space integral (dαdβ) does not contain any additional factors of (1−x).

Additional (1−x) factors can come from the hard amplitude H, but these depend on the
structure of the relevant tree diagrams. Since the hard propagators each contain a (1 − x)
factor, the least number of active particles involved in the hard process lead to the least
suppression. Thus the leading contribution to the quark distributions at large-x is dominated
by the leading component in the hadron’s Fock state expansion. For the nucleon, the three-
quark Fock state components will dominate the quark distributions, while for pion it will be
the quark-antiquark pair states. In the following we will study the large-x power counting
for the above mentioned TMD quark distributions, including the three k⊥-even ones: q,
∆qL, δqT , and four k⊥-odd ones: δqL, ∆qT , qT , and δq. For δq′T , its analysis will involve
much more complicated diagrams, and we will not discussed this in the present paper.

A. k⊥-even quark distributions

The unpolarized quark distribution is defined as

q(x, k⊥) =
1

2

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 〈
P

∣∣Ψ v(ξ)γ
+Ψv(0)

∣∣ P
〉

. (5)

The large-x power counting for this distribution function has been studied in the literature
[24, 25]. In the following, we will repeat these arguments as guideline for the analysis of
other quark distributions.

We calculate the above matrix element in the proton helicity basis,

q(x, k⊥) =
1

2

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 1

2

(
〈PSz↑|Ô|PSz↑〉+ 〈PSz↓|Ô|PSz↓〉

)
, (6)

where the operator Ô is defined as Ô = Ψ v(ξ)γ
+Ψv(0). This operator is chiral-even, and

conserves the quark helicity in the partonic scattering matrix elements, and so that the
dominant contributions come from the leading Fock state wave function (Lz = 0) at both

sides of the cut in Fig. 1. The matrix element 〈PSz↑|Ô|PSz↑〉 will have the contributions
from the following quark spin configurations: ↑↓↑ and ↓↑↑, where in the first one the probing
quark has the same helicity as the proton and in the second case it is opposite. If the probing
quark’s spin is parallel to the proton spin, the two spectator quarks will form a scalar.
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FIG. 2: Leading diagrams contributing to the k⊥-even quark distributions at large-x: left half of
the relevant diagrams are shown. The contributions will the amplitudes square of these diagrams,
including the interference between them. These diagrams also contribute to the k⊥-odd and naive
time-reversal-odd TMD quark distributions.

In the following, we are only interested in obtaining the power counting for the quark
distributions, and the explicit dependence on the distribution amplitudes will not be dis-
cussed. According to the factorization formula Eq. (3) and the reduced integral Eq. (4), the
unpolarized quark distribution depends on the leading-twist distribution amplitudes of the
nucleon,

q(x, k⊥)|x→1 ∝ 1

1− x

∫
dαdβ

αβ
Φ3(yi)Φ3(y

′
i)H (yi; y

′
i; α, β, (1− x)) . (7)

The power counting of the hard factor H can be evaluated from the partonic scattering
matrix elements, which include a set of propagators and traces of the Dirac matrices. As
mentioned above, the propagators are far off-shell in the limit of x → 1, which will lead to
suppression in terms of (1 − x). For example, One of the gluon propagator in Fig. 1 goes
like,

1

(p3 − k2)2
=

1

2p3 · k2

≈ − 1

〈k2
⊥〉

1− x

y3

, (8)

at large x. In the above expression, we have omitted all higher order terms suppressed by
(1 − x). 〈k2

⊥〉 represents a typical momentum scale in order of transverse momentum k⊥.
Besides the propagators, the traces of the Dirac matrix contains (1 − x) factors as well,
which will depend on the spin structure of the quarks in the scattering matrix elements.
For example, the traces of the Dirac matrices for the scattering ↑↓↑→↑↓↑ in Fig. 1 will
contribute to the matrix element 〈PSz↑|Ô|PSz↑〉 as

1

(1− x)4
, (9)

in the leading power, where the probing quark has the same helicity as the proton. If the
probing quark has an opposite helicity as the proton, e.g., in the spin structure ↓↑↑, the
Dirac trace for the diagram of Fig. 1 vanishes. We have checked all other diagrams, and
found that the Dirac traces for those diagrams with spin-one configuration for the spectator
quarks (↑↑ or ↓↓ for the two spectator quarks) either vanish or are suppressed by at least
(1 − x)2 as compared to the scalar configuration (↑↓ or ↓↑). This property has long been
noticed in the literature [24, 25, 27]. In Fig. 2, we showed all leading diagrams for the
spin structure of ↑↓↑, where only left half sides of the relevant diagrams are shown. The
contributions will be the amplitudes square of these diagrams, including their interferences.
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In summary, the leading contribution to the matrix element in Eq. (6) comes from the
quark spin structure with probing quark’s helicity equal to the nucleon’s helicity. If they
differ, the contribution will be suppressed by (1− x)2. This is to say, the quark distribution
is dominated by the quark spin parallel to the nucleon spin, and the quark spin anti-parallel
distribution will be suppressed by (1− x)2.

The final power counting result will depend on the above factors, including the Dirac
matrix traces, the power counting of the propagators, and the phase spaces integrals. For
example, the diagram in Fig. 1 contains eight propagators, with overall power counting,

∼ (1− x)8

y3(1− y1)2y′3(1− y′1)2
. (10)

Combining the above with the contribution from the Dirac matrix traces in Eq. (9) and the
phase spaces integral factor in Eq. (4), we find that the contribution of this diagram to the
unpolarized quark distribution is

q(x, k⊥)|x→1 ∼ (1− x)3 . (11)

All other diagrams in Fig. 2 will contribute the same power to the unpolarized quark distri-
bution. For example, the amplitude square of Fig. 2(d) contribute a power of (1−x)−2 from
the Dirac matrix traces, a power of (1−x)6 from the propagators, plus a power of (1−x)−1

from the phase space integral Eq. (4), which leads to a power of (1−x)3 contribution to the
quark distribution.

The longitudinal polarized quark distribution can be analyzed accordingly, which is de-
fined through the following matrix element,

∆qL(x, k⊥) =
1

2

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 〈
PSz

∣∣Ψ v(ξ)γ
+γ5Ψv(0)

∣∣ PSz

〉
. (12)

Again, if we calculate in the proton helicity states, we will obtain

∆qL(x, k⊥) =
1

2

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 1

2

(
〈PSz↑|ÔL|PSz↑〉 − 〈PSz↓|ÔL|PSz↓〉

)
, (13)

where the operator ÔL is defined as ÔL = Ψ v(ξ)γ
+γ5Ψv(0). We can interpret longitudinal

polarized quark distribution as the quark spin parallel to the nucleon spin distribution
minus the antiparallel distribution. According to the above analysis for the unpolarized
quark distribution, we know that the quark spin parallel to the nucleon spin distribution
dominates over the antiparallel distribution, and the latter is suppressed by an extra factor
of (1 − x)2. In conclusion, we will obtain the same power behavior for the longitudinal
polarized quark distribution as the unpolarized quark distribution,

∆qL(x, k⊥)|x→1 ∼ (1− x)3 . (14)

The transversity distribution for the quarks can be analyzed in the same way. It is defined
as

δqT (x, k⊥) =
1

2

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥〈PS⊥|Ψ v(ξ)γ
+γ⊥γ5Ψv(0)|PS⊥〉 . (15)
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Here, the proton is transversely polarized. We can choose the polarization vector along
x-direction, and the polarization states can be constructed from the proton helicity states,

|PSx↑〉 =
1√
2

(|PSz↑〉+ |PSz↓〉) , |PSx↓〉 =
1√
2

(|PSz↑〉 − |PSz↓〉) . (16)

Substituting the above into the definition of the transversity distribution, we will obtain

δqT (x, k⊥) =
1

2

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 1

2

(〈
PSz↑|Ôt|PSz↓

〉
+

〈
PSz↓

∣∣∣Ôt

∣∣∣PSz↑
〉)

,

(17)

where the operator Ôt is defined as Ôt = Ψ v(ξ
−, 0,~b⊥)γ+γ⊥γ5Ψv(0). From this equation, we

see that the quark transversity distribution depends on the matrix elements with hadron
helicity flip. On the other hand, because the operator Ôt is chiral-odd, it changes the
quark helicity in the partonic scattering process as well. If we keep the leading Fock state
contribution, the matrix element in the bracket of the above equation will reduce to

1
2

〈
PSz↑|Ôt|PSz↓

〉
− 1

2
+ − 1

2

〈
PSz↓

∣∣∣Ôt

∣∣∣ PSz↑
〉

1
2

, (18)

where the subscripts ±1
2

represents the total quark helicity in the three-quark wave function
used in the calculations. From this equation, we can easily see that it will be the same set
of diagrams in Fig. 2 contributing to the transversity quark distributions. The same power
counting results will be obtained,

δqT (x, k⊥)|x→1 ∼ (1− x)3 . (19)

From the above analysis, all the three k⊥-even quark distributions have the same power
behavior at large-x, which is certainly consistent with the inequality condition for them [36].

B. k⊥-odd and naive time-reversal-even quark distributions

In this subsection, we will study two k⊥-odd but naive time-reversal-even TMD quark
distributions: ∆qT and δqT , which represent the longitudinal polarized quark distribution
in a transversely polarized proton and the transversely polarized quark distribution in a
longitudinal polarized proton, respectively. ∆qT can be calculated from the following matrix
element,

∆qT (x, k⊥) =
MP

2S⊥ · k⊥

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥
〈
PS⊥|ÔL|PS⊥

〉
, (20)

where the operator ÔL as defined above. Following the above calculation for the transversity
distribution, we choose the transverse polarization vector along the x-direction, and the
above equation can be reduced to

∆qT (x, k⊥) =
MP

2kx
⊥

∫
dξ−

(2π)3
e−ixξ−P++iξ⊥·k⊥ 1

2

(〈
PSz↑|ÔL|PSz↓

〉
+

〈
PSz↓

∣∣∣ÔL

∣∣∣ PSz↑
〉)

.

(21)

ÔL is a chiral-even operator, and it conserves the quark helicity. On the other hand, the
above matrix element has hadron helicity flip, thus the total quark helicity and the hadron
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helicity will mismatch on either side of the above matrix element. If the total quark helicity
and the proton helicity is mismatching, the wave function for the three-quark state must
have nonzero quark orbital angular momentum. It is the interference between the Lz = 0
and |Lz| = 1 states contributing to the TMD quark distribution ∆qT .

In order to proceed, we further decompose the proton spin state into the Fock states
containing Lz = 0 and |Lz| = 1. For example,

|PSz↑〉 = |PSz↑〉1/2 + |PSz↑〉−1/2 , (22)

where the subscript ±1/2 denotes the total quark helicity. The first term in the above
equation represents the Lz = 0 state, while second one for the Lz = 1 state. The wave
function parameterizations for these states have been given in Eq. (A1). Similarly, for
|PSz↓〉 we have,

|PSz↓〉 = |PSz↓〉−1/2 + |PSz↓〉1/2 , (23)

where the first one is for Lz = 0, and the second one for Lz = −1. Because the partonic
matrix element conserves the quark helicity, in the calculation of the matrix element of
Eq. (21), the quarks helicities will remain the same at the left and right sides of the cut
line in the Feynman diagram like Fig. 1. From the experience in the last subsection, we
know that the partonic processes where the two spectator quarks have opposite helicities
dominate the quark distributions at large-x. So, for the leading contributions we will have
two typical partonic processes: ↑↓↑→↑↓↑ with total quark helicity 1/2 and ↓↑↓→↓↑↓ with
total quark helicity −1/2. These two actually will contribute opposite sign to the matrix

element in Eq. (21), because of the γ5 in the operator ÔL. Taking into account this fact,
and substituting the above decomposition into Eq. (21), we find that the matrix element
becomes

1
2
〈PSz↑|ÔL|PSz↓〉 1

2
− − 1

2
〈PSz↓|ÔL|PSz↑〉− 1

2

−− 1
2
〈PSz↑|ÔL|PSz↓〉− 1

2
+ 1

2
〈PSz↓|ÔL|PSz↑〉 1

2
. (24)

It is easy to see that the above two lines are complex conjugates. In the following, we will
consider the contribution from the first line, and the other one can be obtained immediately.

For the subprocess ↑↓↑→↑↓↑, the contribution to the matrix element will be

1
2
〈PSx↑|Ô|PSx↓〉 1

2
∝

∫
ψ̃(1)(y′i)ψ̃

(3)(yi, pi⊥) (px
1 − ipy

1) TH(yi; y
′
i; pi⊥) , (25)

where ψ̃(1) is the wave function for Lz = 0 Fock state and ψ̃(3) for |Lz| = 1 (their definitions
are listed in the Appendix). Here we only show the contribution from the interference

between ψ̃(1) and ψ̃(3) wave functions, and other interference contributions (e.g., the one

with ψ̃(1) and ψ̃(4)) can be calculated similarly. Because proton is stable, the light-cone wave

functions are real, i.e., (ψ̃)∗ = ψ̃. Meanwhile, for the ↓↑↓→↓↑↓ partonic process, we will
have

− 1
2
〈PSx↓|Ô|PSx↑〉− 1

2
∝

∫
ψ̃(1)(y′i)ψ̃

(3)(yi, pi⊥) (−px
1 − ipy

1) TH(yi; y
′
i; pi⊥) . (26)

The hard partonic parts TH in the above two equations are identical to each other for the
same diagram if we change all the quarks helicities. Thus we can sum their contributions
together, and the matrix element will be

〈PSx↑|Ô|PSx↓〉 − 〈PSx↓|Ô|PSx↑〉 ∝
∫

ψ̃(1)(y′i)ψ̃
(3)(yi, pi⊥) (px

1) TH(yi; y
′
i; pi⊥) + h.c. (27)
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The linear expansion term of pi⊥ from TH will be crucial to obtain nonzero contribution
to the above matrix element when integrating over pi⊥. Otherwise, it will vanish. This
expansion will introduce an additional suppression factor in (1 − x). For example, one of
the propagators in Fig. 1 has the following expansion result,

1

(p3 − k2)2
=

1

(y3P − k2 + p3⊥)2

=
β(1− x)

y3k2
2⊥

(
1− β(1− x)

y3k2
2⊥

2p3⊥ · k2⊥

)
. (28)

Substituting the above into Eq. (27), and using the fact that p3⊥ = −p1⊥ − p2⊥, we find

that the above expansion will lead to a contribution as (1 − x)
∫

d2p1⊥px
1⊥ (p1⊥ · k⊥) ψ̃(3) ∼

(1 − x)kx
⊥Φ(3,4), where Φ(34) represents a combination of twist-four distribution amplitudes

Φ4 and Ψ4, and the kx
⊥ factor will cancel out the same kx

⊥ in the denominator in Eq. (21).
This suppression feature applies to every propagator expansion containing the linear term
of the intrinsic transverse momentum p⊥. Similarly, the Dirac wave function expansion in
terms of p⊥ will also be suppressed by (1− x).

The above analysis can be repeated for every diagrams in Fig. 2, and they contribute the
same. So, the final power counting result for the TMD quark distribution ∆qT will be,

∆qT (x, k⊥)|x→1 ∼ (1− x)4 . (29)

Similar analysis can be performed for the TMD quark distribution δqL, which is defined
through the following matrix element,

δqL(x, k⊥) =
MP

2ki
⊥

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 〈
PSz|Ψ v(ξ)γ

+γiγ5Ψv(0)|PSz

〉
. (30)

If we choose γi = γx in the above equation, the TMD δqL will become,

δqL(x, k⊥) =
MP

2kx
⊥

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥〈PSz|Ôt|PSz〉 , (31)

where the operator Ôt follows the definition in the subsection Sec.II(b). In the above defini-
tion, the proton is longitudinal polarized, and we can further write down explicitly in terms
of the proton helicity states,

δqL(x, k⊥) =
MP

2kx
⊥

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥ 1

2

(
〈PSz↑|Ôt|PSz↑〉 − 〈PSz↓|Ôt|PSz↓〉

)
. (32)

Since the operator Ôt is chiral-odd, it changes the quark helicity. However, in the above
equation, we are calculating the hadron helicity conserved matrix elements, thus the nonzero
quark orbital angular momentum projection must be taken into account in order to obtain
nonzero results, as in the case of ∆qT in the above. Following the above analysis, we find
the power counting result for the TMD quark distribution δqL,

δqL|x→1 ∼ (1− x)4 , (33)

which is one power of (1− x) suppressed relative to the unpolarized quark distribution.
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(a) (c)

(d) (f)

(g) (h) (i)

(e)

(b)

FIG. 3: Leading Feynman diagrams contributing to the naive time-reversal-odd TMD quark distri-
butions at large-x.

C. Naive time-reversal-odd quark distributions

Now, we turn to the naive time-reversal-odd quark distributions. At leading order, we
have two: the quark Sivers function and the Boer-Mulders function. The Sivers function
represents the unpolarized quark distribution in a transversely polarized target, while the
Boer-Mulders function represents the transversely polarized quark distribution in a unpolar-
ized proton target. These two distributions are naive time-reversal-odd, and their existence
require final state interactions [11]. The quark Sivers function is defined as,

qT (x, k⊥) =
M

2εijSi
⊥kj

⊥

∫
dξ−d2ξ⊥
(2π)3

e−ixξ−P++iξ⊥·k⊥〈PS|Ô|PS〉 , (34)

where the operator O follows the above definition. Because the target is transversely polar-
ized, again we will choose the x-direction for its polarization, and the Sivers function then
becomes,

qT (x, k⊥) =
M

2ky
⊥

∫
dξ−d2ξ⊥
(2π)3

e−ik·ξ 1

2

(
〈PSz↑|Ô|PSz↓〉+ 〈PSz↓|Ô|PSz↑〉

)
. (35)

The above equation shows that the Sivers function is proportional to the matrix elements
involving hadron helicity flip. Because the operator Ô is chiral-even, it conserves the quark
helicities. To obtain the hadron helicity flip, we have to take into account the nucleon’s
light-cone wave function with nonzero quark orbital angular momentum, as in the previous
two examples.

Following the calculations in the last subsection for k⊥-odd distribution ∆qT , we find
that the Sivers function will depend on the following matrix element,

1
2
〈PSz↑|Ô|PSz↓〉 1

2
+ − 1

2
〈PSz↓|Ô|PSz↑〉− 1

2

+− 1
2
〈PSz↑|Ô|PSz↓〉− 1

2
+ 1

2
〈PSz↓|Ô|PSz↑〉 1

2
. (36)
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Comparing with Eq. (24), we find that only the sign changes in the above sum. This is
because here we are probing the unpolarized quark, and we have to sum up different quark
helicity contribution, while in Eq. (24) we are probing the longitudinal polarized quark and
different quark helicity will contribute differently. From Eqs. (25,26), we find that the final
result for the above matrix element will be

〈PSx↑|Ô|PSx↓〉+ 〈PSx↓|Ô|PSx↑〉 ∝
∫

ψ̃(1)(y′i)ψ̃
(3)(yi) (−ipy

1) TH(yi; y
′
i; pi⊥) + h.c. . (37)

From this equation, we find that in order to generate a nonzero Sivers function, the hard
scattering factor TH has to have an imaginary part. In a partonic hard scattering amplitude,
the only imaginary part comes from the on-shell pole of some propagator. As we showed
in the above analysis all the propagators in Fig. 2 are far off-shell except for the eikonal
propagator from the gauge link. Thus, in order to obtain nonzero contribution to the Sivers
function, we have to have eikonal propagator in the partonic Feynman diagrams. We have
shown all leading order diagrams contribution to the Sivers function in Fig. 3, all of which
have at least one eikonal propagator. For example, the eikonal propagator in Fig. 3(a) reads,

1

n · (k − p1) + iε
= P

1

x− y1

− iπδ(x− y1) , (38)

where the first term is the principal value of the pole, and does not contribute to the Sivers
function. Only the second term contribute to an imaginary part, which contains a delta
function. This delta function will affect the power counting for the various factors in the
evaluation of the matrix element of Eq. (37). This is because the delta function can be
written as δ(x − y1) = δ (y2 + y3 − (1− x)), which means that the variables y2 and y3 are
limited to be order of (1−x), i.e., y2 ∼ y3 ∼ O(1−x). All factors which depend on y2 and y3

will have to be examined carefully to get the right power counting results. For example, in
Fig. 3(a), the propagators at the left side of the cut will be affected by the above constraints.
One of the gluon propagator reads,

1

(p3 − k2)2
≈ 1

−y3

~k2
2⊥

β(1−x)

≈ 1

〈k2
⊥〉

, (39)

because y3 ∼ O(1−x) and β is order of unit. Unlike the case studied in the above subsections,
this propagator does not lead to a suppression in (1− x) for the Sivers function. Similarly,
another gluon propagator and the quark propagator at the left side of the cut line are also
finite at x → 1. However, all the propagators at the right hand side of the cut line still scale
as (1 − x), and the total four propagators there will contribute to a suppression factor of
(1− x)4.

Another consequence of this delta function is that the intrinsic p⊥ expansion in the hard
part has no additional suppression in (1 − x), which is very different from what we have
in the last subsection for the k⊥-odd but naive time-reversal-even quark distributions. For
example, in one of the above propagators, we can keep the intrinsic transverse momentum
dependence and expand it up to the linear term,

1

(p3 − k2)2
≈ 1

−2k2 · p3

=
1

− y3

β(1−x)
k2

2⊥ − 2k2⊥ · p3⊥
≈ − 1

〈k2
⊥〉

(
1− k2⊥ · p3⊥

〈k2
⊥〉

)
. (40)
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The last equation of the above comes from the fact that y3 ∼ o(1 − x). After com-

bining this expansion with the light-cone wave function, we get
∫

py
1⊥k2⊥ · p3⊥ψ̃(3) ∝

ky
⊥y3Φ4(yi) or y2Ψ4(yi), where the ky

⊥ factor will cancel that in the denominator in Eq. (35).
The final step in this analysis will be to factor out (1−x) from the wave function integral.

Because the variables y2 and y3 are constrained to be order of (1−x) in the x → 1 limit, we
have to examine the wave function integral where the end-point behavior of the light-cone
wave function will be important. For example, one contribution in the above analysis is the
integral of y3Φ4(y1, y2, y3). We can factor out the overall dependence on (1 − x) from the
integral,

∫
dy1dy2dy3δ(1− y1 − y2 − y3)δ(y1 − x)y3Φ4(y1, y2, y3)

= (1− x)3

∫
dζdζ ′δ(1− ζ − ζ ′)ζ ′(1− x)Φ4(x, ζ(1− x), ζ ′(1− x))/(1− x)2 , (41)

where we have re-parameterized y2 = ζ(1 − x) and y3 = ζ ′(1 − x). The above integral
depends on the end-point behavior of the twist-four distribution amplitudes. As we showed
in the Appendix, the twist-four distribution amplitude behaviors as y3Φ4(y1, y2, y3) ∝ y1y2y3

at the end-point region. From this, we find that

lim
x→1

ζ ′(1− x)Φ4(x, ζ(1− x), ζ ′(1− x))

(1− x)2
= finite . (42)

Thus the wave function integral indeed contains a suppression factor (1− x)3. In addition,
the Dirac matrix traces will also result into a power dependence on (1 − x). This can
be calculated straightforwardly, and we find the Dirac traces from Fig. 3(a) contribute to
a power term as (1 − x)−2. By summarizing the power counting results from the above
analysis and also taking into account the phase spaces integral factor (1 − x)−1 in Eq. (4),
we find the Sivers function will have the following power behavior,

qT (x, k⊥)|x→1 ∝ (1− x)4 , (43)

which is (1− x) suppressed relative to the unpolarized quark distribution. Similar calcula-
tions can be performed for all other diagrams in Fig. 3, and they all contribute to a power
behavior of (1− x)4 for the quark Sivers function.

The same analysis can be performed for another naive time-reversal odd distribution, the
so-called Boer-Mulders function δq, which is defined as

δq =
MP

2εijkj
⊥

∫
dξ−

(2π)3
e−ixξ−P++iξ⊥·k⊥ 〈

P |Ψ v(ξ)γ
+γiγ5Ψv(0)|P〉

. (44)

If we choose γi = γx in the above equation, the TMD δq will become,

δq(x, k⊥) =
MP

2ky
⊥

∫
dξ−

(2π)3
e−ixξ−P++iξ⊥·k⊥〈P |Ôt|P 〉 , (45)

where the operator Ôt follows the definition in the above. Unlike the TMD quark distribution
δqL, in the above definition the proton is unpolarized. Thus the explicit expression for δq in
the proton helicity states is

δq(x, k⊥) =
MP

2kx
⊥

∫
dξ−

(2π)3
e−ixξ−P++iξ⊥·k⊥ 1

2

(
〈PSz↑|Ôt|PSz↑〉+ 〈PSz↓|Ôt|PSz↓〉

)
. (46)
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Comparing this expression to Eq. (32) in the last subsection, we find that δq depends on
the sum of the two matrix elements, whereas for δqL it is the difference. As in the analysis
for the Sivers function, we find that we need an imaginary part from the hard part, and the
same set of diagrams in Fig. 3 contribute. The final result for its power counting will be

δq|x→1 ∼ (1− x)4 , (47)

which is again one power of (1−x) suppressed relative to the unpolarized quark distribution.

D. Comparison with the Power Counting for the GPD E

Summarizing the results in the last two subsections, we find that the k⊥-odd TMD
quark distributions are suppressed by a relative factor (1 − x) to the k⊥-even ones (e.g.,
the unpolarized quark distributions). As we mentioned in the introduction, this can also be
understood by the interpretation of these TMD quark distributions in terms of the overlaps
of the light-cone wave functions of Lz = 0 and |Lz| = 1 Fock states.

As in the case of the Pauli form factor, the generalized parton distribution (GPD) E
and the Sivers function qT involve the overlap of initial- and final-state light-front-wave-
functions (LFWFS) which differ by one unit of orbital angular momentum [37]. In contrast
to the Sivers function which is suppressed by one power of (1−x) relative to the unpolarized
distribution, one finds the GPD E falls as two-powers (1−x)2 faster than the spin-conserving
GPD H at large-x [38]. The power of (1 − x)n thus differs when we compare the E GPD
arising in spin-flip deeply virtual Compton scattering (DVCS) γ∗p↓ → γp↑ and the Sivers
function qT arising in polarized electroproduction γ∗pl → πX. In the following, we will
briefly comment why this happens.

It is useful to use the symmetric light-front (LF) frame where the transverse momenta
of the initial and final state proton momentum changes from ~p initial

⊥ = (~p⊥ − 1
2
∆⊥) to

~p final = (~p⊥ + 1
2
∆⊥). The struck quark in DVCS is evaluated at ~k⊥ + 1

2
(1 − x)~∆⊥ in the

final-state LFWF and ~k⊥− 1
2
(1− x)~∆⊥ in the initial-state LFWF, as in the Drell-Yan-West

(DYW) formula for current matrix elements [39].
The E GPD requires evaluating the spin-flip deeply virtual Compton amplitude which

is linear in the transverse momentum transfer to the proton ~∆⊥. This kinematic factor
arises from the extra angular momentum of the initial- or final-state LFWF with argument
±1

2
(1−x)~∆⊥. In addition, the orbital angular momentum dynamics of the LFWF introduces

a factor of (1− x). Thus E ∼ (1− x)2H as x → 1.
In contrast, when we evaluate the Sivers SSA for SIDIS γ∗p → πp′, the dynamics of the

orbital angular momentum in the LFWF gets expressed as the transverse momentum ~pπ⊥
of the produced pion, not the change in the transverse momentum ~∆⊥ of the proton. Thus
the second factor of (1− x) does not appear in the Sivers function. We thus have the power
counting rule: E ∼ (1− x)qT ∼ (1− x)2H as x → 1.

E. Power counting for the integrated quark distributions at leading and higher-
twist

From the power counting results for the TMD quark distributions in the last subsections,
we can further derive the power counting rule for the integrated quark distributions at large-
x when integrating over the transverse momentum. For example, the integrated unpolarized
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quark distribution can be written as

q(x) =

∫
d2~k⊥q(x, k⊥) . (48)

Similar equations also hold for the longitudinal polarized quark distribution and transversity
quark distribution. From the power counting of these relevant TMD quark distributions,
we can immediately see that the integrated quark distributions have the following power
counting rule at x → 1,

q(x) ∼ (1− x)3, ∆qL(x) ∼ (1− x)3, δqT (x) ∼ (1− x)3 . (49)

To obtain the above power counting results for the integrated quark distributions, we have
assumed that the k⊥-integral decouples from the x−distributions of the partons [25, 27].
Although the upper limit of the k⊥ integral might depend on (1 − x), the bulk of this
integration comes from the lower bound, which will not affect the (1−x) power counting for
the integrated parton distributions [29]. The latest comparison of the above power counting
predictions with experiment can be found in [40].

The k⊥-moment of the k⊥-odd TMD quark distributions are related to the twist-three
parton distributions. For example, the twist-three parton distribution gT (x) is related to
the TMD quark distribution ∆gT [30],

gT (x) =
1

2xM2

∫
d2~k⊥~k2

⊥∆qT (x, k⊥) , (50)

and for hL(x),

hL(x) =
−1

xM2

∫
d2~k⊥~k2

⊥δqL(x, k⊥) . (51)

Of course, caution has to be taken when we apply the above equations [30]. From the power
counting rule for the relevant TMD quark distributions, we find the following power behavior
for these two twist-three parton distributions,

gT (x) ∼ (1− x)4, hL(x) ∼ (1− x)4 . (52)

k⊥-moment of the naive-time-reversal-odd TMD quark distributions are also related to the
twist-three parton distributions, which have been shown in literature [14], for example,

TF (x) =
1

MP

∫
d2~k⊥~k2

⊥qT (x, k⊥) , (53)

where TF is the so-called Qiu-Sterman matrix element [9], and is responsible to the SSA for
inclusive hadron production in hadronic collisions. Similarly, the k⊥-moment of δq corre-
sponds,

T
(σ)
F (x) =

1

MP

∫
d2~k⊥~k2

⊥δq(x, k⊥) , (54)

where T
(σ)
F is defined as

T
(σ)
F (x1, x2) =

∫
dζ−dη−

8π
eix1P+η−ei(x2−x1)P+ζ− 〈

P |ψ(0)σ+αgF+α(ζ−)ψ(η−)|P〉
, (55)
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(a)
(b)

(c) (d)

(x, k⊥)

FIG. 4: Feynman diagrams contribution to the transverse-momentum-dependent quark distribution
in Pion at large-x.

and T
(σ)
F (x) ≡ T

(σ)
F (x, x). From the power counting rule of the relevant naive-time-reversal-

odd TMD quark distributions, we find the power counting rule for these two twist-three
parton distributions,

TF (x) ∼ (1− x)4, T
(σ)
F (x) ∼ (1− x)4 , (56)

which are (1− x) suppressed relative to the unpolarized quark distribution.

F. TMD quark distributions in Pion

A similar analysis can be carried out for the TMD quark distributions of pion. Because
the pion is a spin-0 particle, there are only two leading-order TMD quark distributions:
the unpolarized quark distribution qπ(x, k⊥) and the Boer-Mulders function δqπ(x, k⊥). At
large-x, their dependence on x can be calculated from the diagrams shown in Fig. 4. The
unpolarized quark distribution at large-x will have contributions from all of the four dia-
grams,

uπ(x, k⊥) =
f 2

π

(k2
⊥)2

(1− x)2α2
sCF

∫
dz1

z1

dz2

z2

Φπ(z1)Φπ(z2)TH(z1, z2) , (57)

where fπ is the decay constant of pion, and Φπ(z) is the leading-twist quark distribution
amplitude. Obviously, the quark distribution has (1 − x)2 power behavior at large-x. This
is consistent with the Gribov-Liptov relation [41].

For the Boer-Mulders function, because it is naive-time-reversal-odd, we have to take into
account the interference between Lz = 0 and |Lz| = 1 Fock states of pion light-cone wave
functions, and also the gauge link is important to obtain a phase difference. Following the
same analysis in the previous subsections, we find that the Boer-Mulders function of pion
has the same power counting result as the unpolarized quark distribution,

δqπ(x, k⊥) ∼ (1− x)2 . (58)

These two distribution functions having the same power behavior at large-x, is not because
the Boer-Mulders function of pion gets enhancement, but because the unpolarized quark
distribution of pion is suppressed by one power of (1 − x) compared to the usual power
counting results for parton distributions of hadrons [24, 27].
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III. CONCLUSION

In this paper, we have performed a perturbative analysis of the transverse momentum
dependent quark distributions at large x. A generalized power counting rule has been de-
rived for the leading order TMD quark distributions, and we have found that the k⊥-even
distributions all scale as (1− x)3, whereas the k⊥-odd ones as (1− x)4, including the naive
time-reversal-even and -odd distributions. In particular, we have shown that the quark
Sivers function has power behavior of (1 − x)4, which is (1 − x) suppressed relative to the
unpolarized quark distribution. For the TMD quark distributions of pion, we find that the
Boer-Mulders function has the same power behavior as the unpolarized quark distribution,
scaling as (1− x)2 in the limit. These results provide important guidelines for the parame-
terizations of the transverse momentum dependent parton distributions and the quark-gluon
correlation functions in the phenomenological studies.

In our analysis we have not included the effects of perturbative QCD evolution. In
fact, the evolution of parton distributions at large x with photon virtuality Q2 is suppressed
compared to the usual DGLAP evolution [25] because the struck quark is a bound constituent
of the target hadron. In particular, in the limit of x → 1, the virtuality of the struck quark
becomes highly space-like, and evolution is effectively quenched. Thus the power counting
of structure functions at large x is not affected by evolution [25], allowing duality with the
power-law falloff of exclusive channels at fixed W 2. Another important point has to be kept
in mind is the large logarithms associated with the parton distributions in the x → 1 limit,
in terms of αn

s logm(1/(1 − x)) for m ≤ 2n [25, 26, 42, 43]. All these effects will of course
introduce additional theoretical uncertainties when we apply the power counting rule to the
parton distributions at large-x.
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APPENDIX A: LIGHT-CONE WAVE FUNCTIONS AND DISTRIBUTION AM-
PLITUDES OF NUCLEON

In this Appendix we list the light-cone wave functions for the three-quark Fock states of
nucleon as reference [30],

|PSz↑〉 =

∫
d[1]d[2]d[3]

{
ψ̃(1)(1, 2, 3)u†↑(1)

(
u†↓(2)d†↑(3)− d†↓(2)u†↑(3)

)
|0〉

+
(
(px

1 + ipy
1)ψ̃

(3)(1, 2, 3) + (px
2 + ipy

2)ψ̃
(4)(1, 2, 3)

)

(
u†↑(1)u†↓(2)d†↓(3)− d†↑(1)u†↓(2)u†↓(3)

)
|0〉

}
,

|PSz↓〉 =

∫
d[1]d[2]d[3]

{
−ψ̃(1)(1, 2, 3)u†↓(1)

(
u†↑(2)d†↓(3)− d†↑(2)u†↓(3)

)
|0〉

+
(
(px

1 − ipy
1)ψ̃

(3)(1, 2, 3) + (px
2 − ipy

2)ψ̃
(4)(1, 2, 3)

)

(
u†↓(1)u†↑(2)d†↑(3)− d†↓(1)u†↑(2)u†↑(3)

)
|0〉

}
, (A1)

where the argument i is the shorthand for quark momentum variables yi and pi⊥, and the
measure for the quark momentum integrations is

d[1]d[2]d[3] =
√

2
dy1dy2dy3√
2y12y22y3

d2~p1⊥d2~p2⊥d2~p3⊥
(2π)9

×2πδ(1− y1 − y2 − y3)(2π)2δ(2)(~p1⊥ + ~p2⊥ + ~p3⊥) . (A2)

ψ̃(1,3,4) are the light-cone wave function amplitudes for the three quark Fock state expansion
of nucleon. ψ̃(1) corresponds to the Lz = 0 Fock state component, and ψ̃(3,4) for |Lz| = 1 ones.
These light-cone wave functions were used in our analysis for the large-x quark distributions.

In order to get Eq. (3), the light-cone wave functions have to be converted into the quark
distribution amplitudes [25]. For example, we can integrate out the transverse momentum
in the leading Fock state light-cone wave function, and define the twist-three amplitude,

Φ3(yi) = 2
√

6

∫
d2~p1⊥d2~p2⊥d2~p3⊥

(2π)6
δ(2)(~p1⊥ + ~p2⊥ + ~p3⊥)ψ̃(1)(1, 2, 3) . (A3)

For |Lz| = 1 states, we have to keep linear term in the p⊥ expansion of the hard factor, and
combine them with the light-cone wave function, which will lead to the twist-four distribution
amplitudes of the nucleon [44, 45],

Ψ4(y1, y2, y3) =
2
√

6

y2M

∫
d2~p1⊥d2~p2⊥d2~p3⊥

(2π)6
δ(2)(~p1⊥ + ~p2⊥ + ~p3⊥)

×~p2⊥ ·
[
~p1⊥ψ̃(3)(1, 2, 3) + ~p2⊥ψ̃(4)(1, 2, 3)

]
.

Φ4(y2, y1, y3) =
2
√

6

y3M

∫
d2~p1⊥d2~p2⊥d2~p3⊥

(2π)6
δ(2)(~p1⊥ + ~p2⊥ + ~p3⊥)

×~p3⊥ ·
[
~p1⊥ψ̃(3)(1, 2, 3) + ~p2⊥ψ̃(4)(1, 2, 3)

]
. (A4)
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The explicit expressions for these distribution amplitudes are not necessary for the power-
counting analysis. However, the end-point behavior at yi → 1 is needed for the power
counting of the naive time-reversal-odd TMD quark distributions. We note that in the end-
point region, these distribution amplitudes have the following behaviors: Φ3(yi) ∝ y1y2y3,
y2Ψ4(yi) ∝ y1y2y3, and y3Φ4(yi) ∝ y1y2y3 [44]. From this, we immediately find that the
end-point behavior of the p⊥-moment of the light-cone wave functions. For example,

∫
d2~p1⊥d2~p2⊥d2~p3⊥δ(2)(~p1⊥ + ~p2⊥ + ~p3⊥)(~pi⊥ · ~pj⊥)ψ̃(3,4)(y1, y2, y3)|end point ∼ y1y2y3 , (A5)

where i, j = 1, 2, 3. These properties have been used in our analysis.
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