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ABSTRACT

We fit the Doppler profiles of the He-like triplet complexes of O VII and N VI

in the X-ray spectrum of the O star ζ Pup, using XMM-Newton RGS data col-

lected over ∼ 400 ks of exposure. We find that they cannot be well fit if the

resonance and intercombination lines are constrained to have the same profile

shape. However, a significantly better fit is achieved with a model incorporating

the effects of resonance scattering, which causes the resonance line to become

more symmetric than the intercombination line for a given characteristic contin-

uum optical depth τ∗. We discuss the plausibility of this hypothesis, as well as

its significance for our understanding of Doppler profiles of X-ray emission lines

in O stars.

Subject headings: stars: early type — star: winds, outflows — techniques: spec-

troscopic — stars: individual (ζ Pup)

1. Introduction

High resolution X-ray spectra obtained with diffraction grating spectrometers on the

Chandra and XMM-Newton X-ray observatories have revolutionized our understanding of

the X-ray emission of O stars in the last five years. In the canonical picture, the X-rays are

emitted in plasmas heated by shocks distributed throughout the wind (Cassinelli & Swank

1983; Corcoran et al. 1993; Hillier et al. 1993; Corcoran et al. 1994); the shocks are created
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by instabilities in the radiative driving force (e.g. Lucy & White 1980; Owocki, Castor, &

Rybicki 1988; Cooper 1994; Feldmeier, Puls, & Pauldrach 1997). Although some stars show

anomalous X-ray emission that can be explained by a hybrid mechanism involving winds

channelled by magnetic fields (e.g. τ Sco and θ1 Ori C, Donati et al. 2002; Cohen et al. 2003;

Gagné et al. 2005; Donati et al. 2006), a number of “normal” O stars have X-ray spectra

that are mostly consistent with the wind-shock paradigm (e.g. ζ Pup, ζ Ori, δ Ori). The

works describing the first few high resolution spectra of normal O stars obtained found some

inconsistencies with expectations (Waldron & Cassinelli 2001; Kahn et al. 2001; Cassinelli

et al. 2001; Miller et al. 2002; Waldron et al. 2004), but more recent quantitative work based

on the simple empirical Doppler profile model of Owocki & Cohen (2001, hereafter OC01)

has resolved many of these problems (Kramer, Cohen, & Owocki 2003; Cohen et al. 2006;

Leutenegger et al. 2006). The main outstanding problem is the relative lack of asymmetry

in emission line Doppler profiles, which, if taken at face value, would imply reductions in the

literature mass-loss rates of an order of magnitude (Kramer et al. 2003; Cohen et al. 2006;

Owocki & Cohen 2006).

Although there is mounting evidence from other lines of inquiry suggesting that the

literature mass-loss rates may be systematically too high (Massa et al. 2003; Hillier et al.

2003; Bouret, Lanz, & Hillier 2005; Fullerton, Massa, & Prinja 2006), there are also subtle

radiative transfer effects that could cause emission line profiles to be more symmetric than

one might naively expect. Two effects that have been investigated in the literature are

porosity (Feldmeier, Oskinova, & Hamann 2003; Oskinova, Feldmeier, & Hamann 2004,

2006; Owocki & Cohen 2006) and resonance scattering (Ignace & Gayley 2002, hereafter

IG02). Porosity could lower the effective opacity of the wind to X-rays, thus symmetrizing

emission lines. However, Oskinova et al. (2006) and Owocki & Cohen (2006) have found

that the characteristic separation scale of clumps must be very large to show an appreciable

effect on line profile shapes, which makes it difficult to achieve a significant porosity effect.

Resonance scattering can symmetrize Doppler profiles by favoring lateral over radial escape

of photons; it is an intriguing possibility, but to date it has not been tested experimentally.

In this paper, we present evidence for the importance of resonance scattering in some

of the X-ray emission lines in the spectrum of the O star ζ Pup. We show that the blend

of resonance and intercombination lines of two helium-like triplets in the very high signal-

to-noise XMM Reflection Grating Spectrometer (RGS) spectrum of ζ Pup cannot be well

fit assuming that both lines have the same profile, but can be much better fit assuming the

profile of the resonance line is symmetrized by resonance scattering.

This paper is organized as follows: in § 2 we discuss the reduction of over 400 ks of XMM

RGS exposure on ζ Pup; in § 3 we briefly recapitulate the results of OC01 and Leutenegger
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et al. (2006) for Doppler profile modelling (§ 3.1), and we show that the He-like OC01 profile

model does not give a good fit to the O VII and N VI triplets of ζ Pup (§ 3.2); in § 4 we

generalize the results of OC01 to include the effects of resonance scattering as derived in

IG02 (§ 4.1), and we fit this model to the data (§ 4.2); in § 5 we discuss our results; and in

§ 6 we give our conclusions.

2. Data reduction

The data were acquired in eleven separate pointings. The first two observations were

Performance Verification, while the rest were Calibration; they are all available in the public

archive. The ODFs were processed with SAS 7.0.0 using standard procedures; periods of

high background were filtered out. Only RGS (den Herder et al. 2001) data were used in

this paper, but EPIC data are available for most of the observations. Processing resulted in

a coadded total of 415 ks of exposure in RGS 1 and 412 ks in RGS 2. The observation IDs

used and net exposure times are given in Table 1.

RGS has random systematic wavelength scale errors with a 1σ value of ±7 mÅ (den

Herder et al. 2001). A 7 mÅ shift could lead to significant systematic errors in the model

parameters measured from a line profile. Because of this, we coadd all observations using the

SAS task rgscombine. Assuming the systematic shifts are randomly distributed, coadding

the data will result in a spectrum that is almost unshifted (depending on the particular

distribution of shifts of the individual observations), but that is broadened by 7 mÅ; this

effect is much easier to account for in our analysis. We have assumed that the data do not

vary intrinsically. We have not formally verified that the data show no significant intrinsic

variation, but upon visual inspection the data do not appear to vary more than expected

from statistical fluctuations combined with the aforementioned random systematic errors in

the wavelength scale.

Spectral fitting was done with XSPEC 12.2.1; the line profile models are implemented

as local models. The C statistic (Cash 1979) is used instead of χ2 because of the low number

of counts per bin in the wings of the profiles.

Because of the failed CCD on RGS2, we only have RGS1 data for O VII He α. We only

fit RGS2 data for N VI He α because the complex falls on a chip gap for RGS1.

For each complex we fit, we first measured a local continuum strength from a nearby

part of the spectrum uncontaminated by spectral features. We modeled this continuum as a

power-law with an index of two, which is flat when plotted against wavelength. When fitting

a line profile, we fit a combination of the local continuum (fixed to the measured value) plus
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the line profile model to the data.

For the N VI He α complex, we also included emission from C VI Lyman β at 28.4656

Å, since the red wing of this line overlaps the blue wing of the resonance line of N VI He α.

The model parameters for C VI Lyman β are assumed to be the same as for N VI, and it is

assumed to be optically thin to resonance scattering.

Emission lines and complexes were fit over a wavelength range of λ− < λ < λ+. Here

λ± = λ0(1 ± v∞/c) ± ∆λ, where ∆λ is the resolution of RGS at that wavelength. λ0 is the

shortest wavelength in the complex for λ− and the longest wavelength for λ+.

3. Best fit He-like profile model

3.1. The profile model

In this section we briefly recapitulate the results of OC01 for the Doppler profile of an

X-ray emission line from an O-star wind, and the extension of these results to a He-like

triplet complex by Leutenegger et al. (2006).

In the physical picture of the OC01 model, the wind is a two-component fluid; the bulk

of the wind is relatively cool material of order the photospheric temperature, while a small

fraction of the wind is at temperatures of order 1-5 MK, so that it emits X-rays. The cool

part of the wind has some continuum opacity to X-rays and can absorb them as they leave

the wind.

The OC01 formalism casts the line profile in terms of a volume integral over the emis-

sivity, attenuated by continuum absorption:

Lλ = 4π

∫

dV ηλ(µ, r)e−τ(µ,r) (1)

where ηλ(µ, r) is the emissivity at the observed wavelength λ and τ(µ, r) is the continuum

optical depth to X-rays of the wind.

The line profile can be expressed in terms of the scaled wavelength x ≡ (λ/λ0−1)c/v∞ =

−vz/v∞; this gives the shift from line center in the observer’s frame in units of the wind

terminal velocity. The sign convention is such that positive x corresponds to a redshift.

OC01 derive an expression for the line profile in terms of an integral over the inverse

radial coordinate u = R∗/r:

Lx = L0

∫ ux

0

du
fX(u)

w3(u)
e−τ(x,u). (2)
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In this equation we have used the following expressions: w(u) ≡ v(u)/v∞ = (1 − u)βv

is the scaled velocity; τ(x, u) is the (continuum) optical depth to X-rays emitted along a

ray to the observer; fX(u) ∝ uq is the filling factor of X-ray emitting plasma; and ux ≡

min(u0, 1 − |x|1/βv) is the upper limit to the integral. u0 = R∗/R0 is the inverse of the

minimum radius of X-ray emission R0, and 1−|x|1/βv is a geometrical cutoff for the minimum

radius that emits for a given value of x. We have used βv as the exponent of the velocity

law rather than the customary β to avoid confusion later in the paper. The integral for Lx

can be evaluated numerically.

The optical depth in this expression is derived in OC01. It is written as the product of

the characteristic optical depth τ∗ = κṀ/4πR∗v∞ times a dimensionless integral containing

only terms depending on the geometry. It can be evaluated analytically for integer values

of βv. For non-integer values of βv, the optical depth must be evaluated numerically, which

is computationally costly, and thus not convenient in conjunction with the radial integral of

the line profile. Because of this we assume βv = 1 throughout this paper, which is a good

approximation for ζ Pup, and also for O stars in general.

The interesting free parameters of this model are the exponent of the radial dependence

of the X-ray filling factor, q; the characteristic optical depth to X-rays of the cold plasma,

τ∗; and the minimum radius for the onset of X-ray emission R0.

Leutenegger et al. (2006) extend this analysis to a He-like triplet complex. The only

difference is that the forbidden-to-intercombination line ratio has a radial dependence due

to photoexcitation of the metastable upper level of the forbidden line:

R ≡
f

i
= R0

1

1 + φ/φc
= R0

1

1 + 2PW (r)
. (3)

Here φ is the photoexcitation rate from the upper level of the forbidden line; it depends on the

photospheric UV flux and scales with the geometrical dilution W (r); φ∗ is the photoexcitation

rate near the photosphere, so that φ = 2φ∗W (r); φc is the critical photoexcitation rate,

which is a parameter of the ion; and P = φ∗/φc is a convenient dimensionless parameter

that gives the relative strength of photoexcitation and decay to ground near the star such

that R(R∗) = R0/(1+P ). In this paper, we use values of P calculated from TLUSTY stellar

atmosphere models (Lanz & Hubeny 2003) as described in Leutenegger et al. (2006). Values

of R0 are taken from Porquet et al. (2001).

To modify the expressions for the forbidden and intercombination line profiles to account

for this effect, the emissivity is multiplied by the normalized line ratio:

ηf (r) = η(r)
R(r)

1 + R(r)
(4)
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and

ηi(r) = η(r)
1

1 + R(r)
. (5)

3.2. Best fit model

In this section we model the Doppler profiles of the O VII and N VI He-like triplets

with the He-like profile of Leutenegger et al. (2006) described in § 3.1. The forbidden line is

very weak for these two ions, and the intercombination line profile predicted by the model

is not very different from the resonance line profile. The main difference in the profile of

the resonance and intercombination lines is that the extremes of the wings are somewhat

weaker. This is because the f/i ratio reverts to the low-UV-flux limit at very large radii

(> 100R∗ for O VIII for ζ Pup), so that the intercombination line strength is reduced by a

factor of a few. However, this has only a small effect on the profile shape.

Although it is weak, the predicted strength of the forbidden line is a good check on the

consistency of the profile model. The value of the characteristic optical depth τ∗ can have

a strong effect on the observed f/i ratio by setting the value of R1, the radius of optical

depth unity. However, this effect is degenerate with the value of q, the exponent of the radial

dependence of the X-ray filling factor.

In Figures 1 and 2, we show the Doppler profiles of the O VII and N VI He-like triplets,

together with the best fit models. The best-fit parameters are given in Table 2 and 3. There

are significant residuals in both fits. The N VI triplet shows stronger residuals than O VII.

The residuals have a systematic shape: the model predicts a greater flux than the data on

the blue wing of the resonance line and the red wing of the intercombination line, while it

underpredicts the data in the center of the blend.

The systematic nature of the residuals implies that there is something different about

the shapes of the Doppler profiles of the resonance and intercombination lines. Qualitatively,

the residuals are consistent with the model resonance line being too blue and therefore too

asymmetric, and the model intercombination line being too red and therefore too symmetric.

Resonance scattering has been proposed by IG02 as an explanation for the properties

of O-star X-ray emission line Doppler profiles. If it is important, it can cause significant

symmetrization of profiles of strong resonance lines. Because this is in qualitative agreement

with our observations, we explore this idea further.
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4. Best fit model including the effects of resonance scattering

4.1. Incorporating resonance scattering into OC01

In this section we discuss the modifications to the model of OC01 needed to include the

effects of resonance scattering. The calculation of a Doppler profile including the effects of

resonance scattering was performed in IG02; however, they used two simplifying assumptions

that we relax here. The first assumption we relax is that of very optically thick resonance

lines, and the second is that of a constant expansion velocity. It is also desirable to recast

the results of IG02 in terms of the formalism of OC01 in order to facilitate comparison of

results from different model parameters.

To include the effects of resonance scattering in the OC01 formalism, we multiply the

integrand of Equation 8 of OC01 by the normalized escape probability p(µ)/β, giving

Lx =
CṀ2

2v2
∞

∫

∞

R∗

drH [w(r)− |x|]
f(r)

r2w3(r)

{

e−τc(µ,r) p(µ)

β

}

µ=−x/w(r)

. (6)

Here

p(µ) =
1 − e−τµ

τµ

(7)

is the angle-dependent Sobolev escape probability and

β =
1

2

∫ 1

−1

dµ p(µ) (8)

is the angle-averaged Sobolev escape probability. The physical motivation for this term

comes from the Sobolev theory developed in IG02; the escape probability p(µ) describes the

angular distribution of escaping photons, while the factor β gives the increased emission over

thermal resulting from the trapping of scattered photons. Another way to look at the factor

β is that it normalizes the emission to be the same as for the case of no resonance scattering,

which should be the case as long as photons are not trapped long enough to be thermalized.

In these equations,

τµ =
τ0

1 + σµ2
(9)

is the Sobolev optical depth, where

σ =
r

v

∂v

∂r
− 1 =

βvu

1 − u
− 1. (10)

Here we have used the inverse radial coordinate u ≡ R∗/r; we have also used βv to denote

the exponent of the velocity law, v(r) = v∞(1 − R∗/r)
βv , in order to avoid confusion with

the angle-averaged Sobolev escape probability.
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The factor τ0 gives the Sobolev optical depth in the lateral direction µ = 0; it is given

by

τ0 =
3

8

λ

re

c

v
fi ni σT r. (11)

Here re is the classical electron radius; σT is the Thomson cross-section; fi is the oscillator

strength of the transition; and ni is the ion density. To explicitly put in all dependence on

the radial coordinate, we use the continuity equation, Ṁ = 4πρr2v, giving

τ0 =
λrecṀ

4R∗v2
∞

(

fi
ni

ρ

)

u

w2(u)
= τ0,∗

u

w2(u)
(12)

where we have defined the parameter

τ0,∗ =
λrecṀ

4R∗v2
∞

(

fi
ni

ρ

)

(13)

as a characteristic Sobolev optical depth. The factor

ni

ρ
=

ni

ne

ne

ρ
=

Ai qi fX

µN mp
(14)

gives the ratio of the ion number density to the mass density. Here Ai is the abundance of the

element relative to hydrogen; qi is the ion fraction; fX is the filling factor of X-ray emitting

plasma; and µNmp is the mean mass per particle. We take this ratio to be a constant with

radius, although in principle the ion fraction and filling factor could vary.

In this paper, we take τ0,∗ as a free parameter. τµ then has the radial and angular

dependence given by Equations 9 and 12.

In order to evaluate β, it is necessary to perform the integral over µ. In the approxima-

tion that the Sobolev optical depth is very large, the integral is analytic, and we get

p(µ)

β
=

1 + σµ2

1 + σ/3
. (15)

If we cannot make this approximation, the integral over µ cannot be evaluated analytically.

However, there is an analytic approximation given in Castor (2004, pp. 128-129, attributed

to Rybicki) that is accurate to ∼ 1.5%. We use this approximation to calculate β for finite

values of τ0,∗ .

IG02 assume a constant wind expansion velocity (βv = 0) and that the Sobolev optical

depth is large. Under these assumptions, we recover the expression p(µ)/β = (3/2)(1− µ2),

which has the same µ dependence as the result derived in IG02.



– 9 –

The approximation of constant expansion is not unreasonable at large radii, but βv = 1

is closer to the actual velocity law of ζ Pup, and it is no more difficult to implement in our

model. However, we wish to consider the possibility that the effective βv for the purposes of

resonance scattering could be different than for the wind as a whole. For example, since the

X-ray emitting plasma is too ionized to have much effective line opacity in the UV, it should

not be driven, and thus the local velocity gradient might be better described in terms of a

βv = 0 model without radial acceleration, even while the overall mean velocity of the wind

is described well by a velocity law with βv = 1.

Let us thus define βSob to be the value of βv used in calculating σ. We consider two cases

in this work: βSob = 0 corresponds to no local velocity gradient for X-ray emitting plasma,

and βSob = 1 (= βv) means that the local X-ray and global bulk wind velocity gradients are

equal.

We have implemented this as a local model in XSPEC. The Sobolev optical depth has

angular and radial dependence as given by Equations 9 and 12. The additional parameters

added to the OC01 model are a switch to turn on or off completely optically thick scattering;

the characteristic Sobolev optical depth τ0,∗ (used when the completely optically thick switch

is off); and the value of the velocity law exponent used in calculating σ, βSob.

In Figures 3 and 4 we compare the effects of various values of τ0,∗ and βSob. The trend

is for higher values of τ0,∗ and lower values of βSob to give more symmetric profiles.

4.2. Best fit model including resonance scattering

In this section we fit He-like profile models including resonance scattering to the O VII

and N VI complexes. We fit each complex twice: once assuming βSob = 1 and once assuming

βSob = 0. The best-fit models are shown in Figures 5-8. The best fit parameters are given

in Tables 2 and 3.

The O VII profile is well fit by either value of βSob. We tested goodness of fit by

comparing the fit statistic of 1000 Monte Carlo realizations of the model to the fit statistic

of the data; both models are formally acceptable. The fit with βSob = 1 is better than that

with βSob = 0 , but only by ∆C = 3.8, which is about 2σ for one interesting parameter. The

fit with βSob = 0 has a significantly smaller value of τ0,∗ than the fit with βSob = 1, as would

be expected. The fit with βSob = 1 is statistically consistent with the approximation that

the Sobolev optical depth becomes infinite.

The N VI profile is much better fit by either model including resonance scattering than
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it is by the original model. Furthermore, the model with βSob = 0 gives a significantly better

fit than the model with βSob = 1. However, neither model is formally acceptable, and even

the βSob = 0 model shows residuals of the same qualitative form as the original model, albeit

of a much lower strength. For both models including resonance scattering, the optically thick

approximation gives a better fit than a profile with finite Sobolev optical depth.

To test the significance of profile broadening introduced by coadding data with random

systematic errors in the wavelength scale, we have also fit each best-fit model with an ad-

ditional 7 mÅ Gaussian broadening. In all cases, the best-fit parameters did not change

significantly and the fit statistics were not significantly worse. Thus we conclude that our

analysis is not strongly affected by this broadening.

5. Discussion

5.1. Comparison of results

The profile fits presented in § 3.2 clearly show that the O VII and N VI He-like triplet

complexes in ζ Pup cannot be fit by models that assume the same profile shapes for the

resonance and intercombination lines. The profile fits presented in § 4.2 show that these

complexes can be much better fit by a model including the effects of resonance scattering.

However, although the O VII complex is well fit by a model including the effects of

resonance scattering, the N VI complex shows differences in profile shape between the reso-

nance and intercombination line that are greater than our model can reproduce, even under

the most generous conditions (τ0,∗ → ∞, βSob = 0). Furthermore, one would expect the two

complexes to show relatively similar parameters; for example, since the elemental abundance

of nitrogen appears to be roughly twice that of oxygen, one would expect the parameter τ0,∗

to be about twice as large for the fit to N VI as it is for O VII. But a fit to the N VI profile

with βSob = 0 and τ0,∗ ≈ 10 (roughly twice the value measured for O VII) would give a

substantially worse fit than a model with infinite Sobolev optical depth, which itself has

significant residuals.

The fact that the apparent discrepancy between the shapes of the resonance and inter-

combination line profiles is much greater for N VI than for O VII implies that whatever the

symmetrizing mechanism for the resonance line is, it is significantly stronger for N VI. There

is no obvious explanation for this in the resonance scattering paradigm.
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5.2. Plausibility of the importance of resonance scattering

It is worth revisiting the plausibility arguments of IG02 to confirm that one would

expect resonance scattering to be important for these ions in the wind of ζ Pup. The

relevant quantities to estimate are the Sobolev optical depth and the ratio of the Sobolev

length to the cooling length.

The Sobolev length is given by

Lµ =
1 + σ

1 + σµ2

vth

dv/dr
=

vth

v/r

1

1 + σµ2
(16)

(e.g. Gayley 1995). The cooling length is given by

5

2

k∆T

neλ
v, (17)

as derived in IG02.

Taking the ratio,

Lc

Lµ
=

5

2

k∆T

neΛ

v

vth

v

r
(1 + σµ2) (18)

=
5

2

k∆T

Λ

4πµNmp

Ṁ

v∞
vth

v2
∞R∗

w3(u)fX

u
(1 + σµ2) (19)

where we have used Ṁ = 4πµNmpner
2v for a smooth wind, and added a filling factor fX

to correct for the ratio of the density of the X-ray emitting plasma to the mean density

expected for a smooth wind.

Putting in some representative numbers appropriate to ζ Pup, we have

Lc

Lµ
= 10 (1 + σµ2)

w3(u)fX

u

1

Ṁ6

(20)

where Ṁ6 is the mass-loss rate in units of 10−6 M⊙ yr−1. We have used Λ = 6×1023 erg s−1 cm3,

∆T = 2MK, µN = 0.6, vth = 50 km s−1, v∞ = 2500 km s−1, and R∗ = 1.4 × 1012 cm.

This expression is greater than unity for lateral escape except at small radii (r < 2R∗)

if the filling factor is of order unity. However, if the filling factor is significantly less than

unity, the Sobolev approximation may not be valid.

We now consider the expected values of the characteristic Sobolev optical depth,

τ0,∗ =
λ re c Ṁ

4R∗ v2
∞

(

fi
ni

ρ

)

=
λ re c Ṁ

4µN mp R∗ v2
∞

fi Ai qi fX . (21)
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Putting in appropriate values, we get

τ0,∗ = 120

(

fi
Ai

10−3

λ

20 Å

)

qi fX Ṁ6 (22)

We give calculations of τ0,∗/qifX for important lines in O star spectra in Table 4. We

have assumed solar abundances for all elements except C, N, and O (Anders & Grevesse

1989). We assumed that the sum of CNO is equal to the solar value, with carbon being

negligible and with nitrogen having twice the abundance of oxygen; this is an estimate

based on the observed X-ray emission line strengths. Note that the Sobolev optical depth

scales with the wavelength of the transition; this means that the Sobolev optical depths are

significantly smaller for an X-ray transition than they are for a comparable UV transition.

Again, if the X-ray filling factors are of order unity, the characteristic Sobolev optical

depths for the resonance lines of N VI and O VII are large, but X-ray filling factors of

order 10−3 or less are sufficient to cause the lines to become optically thin. However, the

requirement that the Sobolev length in the lateral direction be smaller than the cooling

length is about as stringent, so that if resonance scattering is important for strong lines, the

Sobolev approximation should also be valid.

The high filling factors required are at odds with the simple two-component fluid picture

of the OC01 model, since the X-ray filling factors are known to be very low. However, if we

take the wind to be resolved on scales of order the Sobolev length into the two components,

the filling factor would just be ratio of the local density to the mean density at that radius.

This filling factor would still likely be less than unity for the X-ray emitting plasma, but

not as low as the X-ray filling factor for the whole wind. This conjecture is a significantly

stronger assumption than is made in OC01.

5.3. Impact of resonance scattering on Doppler profile model parameters

If resonance scattering is important in Doppler profile formation in the X-ray spectra of

O stars, it may lead to a partial reconciliation with the literature mass-loss rates. The best fit

models for O VII have τ∗ = 4.1, and the best fit model for N VI has τ∗ = 3.0. If we speculate

that somehow the resonance line of N VI is even further symmetrized than predicted by

our model, as the residuals in our best-fit model imply, the value of τ∗ demanded by the

intercombination line profile residuals should be somewhat higher; a reasonable guess would

be τ∗ ∼ 4 − 5.

These characteristic optical depths are higher than those measured by Kramer et al.

(2003) for ζ Pup by applying the model of OC01 to Doppler profiles observed with the
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Chandra HETGS; the lines studied in that paper were mostly resonance lines as well. They

are still somewhat lower than one would expect given the literature mass-loss rates; however,

a detailed comparison with opacity calculations and mass-loss rates remains to be done. New,

sophisticated analyses of UV absorption line profiles indicate that the published mass-loss

rates of O-star winds are too high (Massa et al. 2003; Hillier et al. 2003; Bouret et al.

2005); the most recent systematic analysis of galactic O stars finds that for at least some

spectral types, the published mass-loss rates must be at least an order of magnitude too

great (Fullerton et al. 2006). This leads to the curious possibility that measurements of the

mass-loss rates of O stars using Doppler profiles of X-ray emission lines could be higher than

the most recent UV line profile measurements, which is the opposite of the problem currently

being addressed by the community.

Our measurements provide suggestive constraints on the radial dependence of the X-ray

emission. The O VII fit has q ∼ 0, and the onset radius for X-ray emission is not well

constrained apart from being significantly inside the radius of optical depth unity. Although

our model does not provide a good fit to N VI, a model that accounts for the symmetrization

of the resonance line may also show a similar radial distribution of X-ray emitting plasma.

If the characteristic optical depths to X-rays are of order a few at longer wavelengths in the

wind of ζ Pup, these constraints on the radial dependence may help to break possible profile

fitting degeneracies. A profile model with q ≡ 0 and u0 obscured by absorption would have

two fitting parameters for optically thick lines (τ∗ and τ0,∗) and one for optically thin lines

(τ∗). Thus, high signal-to-noise, optically thin Doppler profiles with significant continuum

absorption may provide robust measurements of the mass-loss rates of O stars. A good

candidate for this is the 16.78 Å line of Fe XVII, which is likely not to be optically thick,

and which is not blended with other lines.

5.4. Future work

Here we give a list of questions raised by this analysis that should be addressed in future

work.

1. The discrepancies in the fits in this paper must be resolved. The fact that we cannot

fit the N VI profile well is unsatisfactory. The difference between the appearance of the N VI

complex and the O VII complex requires explanation.

2. The effect of resonance scattering on other resonance lines in the X-ray spectrum

should be considered. Furthermore, unless we can make concrete predictions for the impor-

tance of resonance scattering for these lines, there may be significant fitting degeneracies
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between resonance scattering and low characteristic continuum optical depths.

3. The effect of multiple lines on resonance scattering should be explored. Of special

importance is the calculation of the profile of a close doublet, such as Lyman α. In that

case, the splitting between the two lines is of order the thermal velocity of the ions.

6. Conclusions

We have fit Doppler profile models based on the parametrized model of OC01 to the

He-like triplet complexes of O VII and N VI in the high signal-to-noise XMM-Newton RGS

X-ray spectrum of ζ Pup. We find that the complexes cannot be well fit by models assuming

the same shape for the resonance and intercombination lines; the predicted resonance lines

are too blue and the predicted resonance lines are too red. This effect is what is predicted

qualitatively if resonance scattering is important.

We find that models including the effects of resonance scattering give significantly better

fits. However, there is significant disagreement between the O VII and N VI profiles in the

degree of resonance line symmetrization that is difficult to understand in the framework of

the resonance scattering model. Nevertheless, the general trend of the resonance scattering

model to give more symmetrized profiles provides an interesting alternative (or supplement)

to models that assume reduced wind attenuation due to reduced mass-loss rates and/or

porosity.

We acknowledge useful conversations with David Cohen. We thank David Cohen and

Dave Spiegel for their careful reading of the manuscript. MAL acknowledges NASA grant

NNG04GL76G.
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Table 1. List of observations with net exposure times

obsid a texp,R1
b texp,R2

b

0095810301 30.6 29.8

0095810401 39.7 38.3

0157160401 41.5 40.2

0157160501 32.8 32.8

0157160901 43.4 43.4

0157161101 27.0 27.0

0159360101 59.2 59.2

0159360301 22.0 22.0

0159360501 31.5 31.5

0159360901 46.6 46.6

0159361101 41.1 41.0

aXMM Observation ID.

bNet exposure time in ks.
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Table 2. Model fit parameters for O VII

βSob q τ∗ u0 τ0,∗ G a n b C c MC d

· · · -0.21 1.6 0.62 · · · 0.91 6.91 152.2 · · ·

1 0.15+0.06
−0.07 4.1+0.3

−0.4 > 0.68 > 50 1.11+0.03
−0.04 6.88 ± 0.07 85.3 0.578

0 0.15+0.07
−0.07 4.1 ± 0.4 > 0.63 5.9+3.2

−1.8 1.02+0.04
−0.03 6.88 ± 0.07 89.1 0.730

aG = (f + i)/r is assumed not to vary with radius.

bNormalization of entire complex (r + i + f) in units of 10−4 photons cm−2 s−1.

cFor 83 bins.

dFraction of 1000 Monte Carlo realizations of model having C less than the data.

Note. — The first row gives the best fit for a model not including resonance scattering

(i.e. the model of OC01 and Leutenegger et al.). The second row gives the best fit for

a model including resonance scattering with βSob = 1, and the last row has βSob = 0.

We used a value of P = 1.67 × 104 for all O VII profile models (Leutenegger et al.

2006).
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Table 3. Model fit parameters for N VI

βSob q τ∗ u0 τ0,∗ G a n b nβ
c C d

· · · -0.34 0.5 0.58 · · · 0.87 1.562 0 510.5

1 -0.09 2.1 0.50 thick 1.10 1.559 0.87 292.2

0 0.06 3.0 0.48 thick 1.15 1.552 1.25 188.4

aG = (f + i)/r is assumed not to vary with radius.

bNormalization of entire N VI complex in units of 10−3 photons cm−2 s−1.

cNormalization of C VI Lyman β in units of 10−5 photons cm−2 s−1.

dFor 117 bins.

Note. — The first row gives the best fit for a model not including resonance

scattering (i.e. the model of OC01 and Leutenegger et al.). The second row

gives the best fit for a model including resonance scattering with βSob = 1, and

the last row has βSob = 0. The C VI Lyman β line is assumed to have the same

values of q, τ∗, and u0 as the N VI triplet, and is assumed not to be affected

by resonance scattering. We used a value of P = 1.01× 105 for all N VI profile

models (Leutenegger et al. 2006).
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Table 4. Expected characteristic Sobolev optical depth

λ a fi
b Ai

c τ0,∗/qi fX
d

N VI r 28.78 0.6599 0.9 103

β 24.90 0.1478 20

N VII Ly α 24.78 0.1387, 0.2775 e 19, 37

O VII r 21.60 0.6798 0.45 40

β 18.63 0.1461 7

O VIII Ly α 18.97 0.1387, 0.2775 e 7, 14

Fe XVII 15.01 2.517 0.047 11

15.26 0.5970 2.5

16.78 0.1064 0.5

17.05 0.1229 0.6

Ne IX r 13.45 0.7210 0.12 7.0

β 11.55 0.1490 1.2

Ne X Ly α 12.13 0.1382, 0.2761 e 1.2, 2.4

Mg XI r 9.17 0.7450 0.038 1.6

Mg XII Ly α 8.42 0.1386, 0.2776 e 0.27, 0.53

Si XIII r 6.65 0.7422 0.036 1.1

Si XIV Ly α 6.18 0.1386, 0.2776 e 0.19, 0.37

aWavelength in Å.

bOscillator strengths are from CHIANTI (Dere et al. 1997;

Landi et al. 2006).

cAssumed abundance relative to hydrogen in units of 10−3.

dThis number is calculated using Equation 22 assuming a

mass-loss rate of 10−6 M⊙ yr−1.

e Lyman α is a doublet.
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Fig. 1.— O VII triplet with best fit OC01 He-like triplet model (not including the effects of

resonance scattering). The top panel shows the data in black with error bars and the model

in red. The flat red line shows the assumed continuum strength. The bottom panel shows

the fit residuals.



– 23 –

Fig. 2.— N VI triplet with best fit OC01 He-like triplet model (not including the effects of

resonance scattering). Scheme is as in Figure 1. The C VI Lyman α line at 28.4656 Å is also

included in the fit, as well as the other fits to the N VI triplet.
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Fig. 3.— Comparison of the influence of different values of βSob on Doppler profile shape.

All models have q = 0, u0 = 2/3, and τ∗ = 5. The most asymmetric model is optically thin.

Both of the other models use the approximation that τ0,∗ is infinite; the more asymmetric of

the two has βSob = 1, while the least asymmetric has βSob = 0.
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Fig. 4.— Comparison of the influence of various values of the characteristic Sobolev optical

depth τ0,∗ on Doppler profile shape. All models have q = 0, u0 = 2/3, τ∗ = 5, and βSob = 0.

In order from most asymmetric to least the models have τ0,∗ = 0, 1, 10,∞.
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Fig. 5.— O VII triplet with best fit model assuming resonance scattering with βSob = 1.

Scheme is as in Figure 1.
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Fig. 6.— O VII triplet with best fit model assuming resonance scattering with βSob = 0.

Scheme is as in Figure 1.
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Fig. 7.— N VI triplet with best fit model assuming resonance scattering with βSob = 1.

Scheme is as in Figure 1.
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Fig. 8.— N VI triplet with best fit model assuming resonance scattering with βSob = 0.

Scheme is as in Figure 1.


