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Abstract

A number of numerical methods, including inverse iteration, method of successive linear
problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale
nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies
and external @, values of a waveguide loaded cavity in the next-generation accelerator
design. We present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in
short and demonstrate that it is the most promising approach for a model scale cavity
design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to
Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full
scale cavity design are outlined.
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1 Introduction

We consider a nonlinear eigenvalue problem (NEP) of the form

TNz =0, (1)
where »
TO) =K - MM +iY (A —02)3 W; (2)
j=1

and K, M and W; are N x N symmetric matrices. Moreover, K is semi-positive definite and
M is positive definite. o; are given nonnegative scalars and i = v/—1. X and z are the so-called
eigenvalues and eigenvectors, respectively.

The nonlinear eigenvalue problem of the form (1) is derived from a Nedelec-type finite
element discretization of the frequency domain Maxwell’s equation with waveguide boundary
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conditions in waveguide loaded cavity design [7, 11, 14, 13]. The matrices K, M and W} are
referred to as stiffness, mass and damping, respectively, in electromagnetic simulations. o; are
cutoff wave numbers of modes in the waveguides, and are simply referred as cutoff values.

Let k£ = v/A. The resonant frequencies f and corresponding external Q, values of the cavity
are defined by

F(8) = = Relr) Q
and I Re(x)
Qe(“") = 9 ’ Irrel(Z)’ (4)

where ¢ denotes the velocity of light in vacuum. The quantity (). measures the electromagnetic
coupling between the cavity and waveguide. It characterizes the energy loss through the
waveguide. With a given resonant frequency fo > 0, the cavity designers would like to seek
physically meaningful resonant frequencies f, which are close to and larger than fy and Q¢ > 1.
Correspondingly, the desired eigenvalues A of the NEP (1) are the ones such that

k = v\ is close to the shift value og = 27” fo and

2 A 6)
/\67):{/\ | A= k", Re(k) > g9, Im(k) > 0 and Q¢(k) >Qe},

where @e > 1 is a prescribed value. The shaded domain in Figure 1 is an illustration of such
a region in term of the square root \'/2.

The NEP (1) is of great interest in the next-generation accelerator design [7, 14, 13, 10, 24].
For the waveguide loaded cavity with one cutoff value, i.e., p = 1, it can be recast as a standard
quadratic eigenvalue problem (see section 2). In this case, by exploiting established numerical
techniques for solving the quadratic eigenvalue problems, we have been successfully solved the
NEP (1) with the degrees of freedom up to 3.2 millions [14, 13]. In this paper, we consider
the case with more than one cutoff value. In this case, there is no known transformation to
convert the NEP (1) to a standard linear or polynomial eigenvalue problems. In this paper,
we study numerical methods to solve the NEP (1) directly. We consider model test problems
of two cutoff values (p = 2) with the degrees of freedom about 10,000. Finally we examine the
feasibility of numerical solvers for the NEP (1) with a large number of cutoff values, say p = 8,
and of the degrees of freedom up to millions.

Among existing nonlinear eigensolvers, the inverse iteration [19] is the simplest. It is
derived based on the Newton’s method to solve the nonlinear system of equations associate
with the NEP (1). With a proper initial approximation, the method converges asymptotically
quadratic. However, it requires to solve linear systems of equations of the same dimension
at each iteration. Therefore, it is generally too expensive to use for finding multiple number
of eigenvalues of large scale NEPs. The method of successive linear problems (MSLP) [19]
and related self consistent iteration (SCI) [12] are popular techniques to solve the NEPs. The
MSLP is derived based on the linearization of T'(A\). In the inner loop of the MSLP, it solves
linear eigenproblems of the same degree of freedom. Therefore, it is also a computational
expensive method.

The nonlinear Arnoldi algorithm [22] uses a subspace projection to reduce to a smaller NEP.
It is designed for solving large scale NEPs. It can be characterized as a generalization of the
popular Rayleigh-Ritz subspace projection technique for solving large scale linear eigenvalue
problems, such as the Arnoldi and Lanczos methods, see [1] and references therein. The



nonlinear Arnoldi algorithm has successfully solved rational Hermitian eigenvalue problems,
namely, the elements of T'()\) are rational functions of A and T'()\) is Hermitian. In this case,
the related Hermitian linear eigenvalue problem provides initial approximate eigenpairs and
subsequently, one can use the underlying min-max property of rational Hermitian eigenvalue
problems to approximate a set of desired eigenvalues in order [20, 22, 4, 8].

In this paper, we study the inverse iteration, the method of successive linear problems and
the nonlinear Arnoldi algorithm to solve the NEP (1). All three methods require initial approx-
imate eigenpairs with the proper ordering corresponding to the number of desired eigenpairs
in a prescribed domain. This is one of fundamental challenges to solve nonlinear eigenvalue
problems. The first contribution of this paper is to propose such a set of initial approximate
eigenvalues and their ordering. In addition, we propose a variant of the nonlinear Arnoldi algo-
rithm. We present a real-valued projection subspace to preserve the real symmetric property
of the original NEP. We characterize the nonlinear Arnoldi algorithm and its variant under a
general framework of nonlinear Rayleigh-Ritz technique. Numerical results demonstrate that
the nonlinear Rayleigh-Ritz technique is the most promising approach to solve the large scale
NEP (1). We outline the feature work for solving the the NEPs in a full scale realistic cavity
design.

The rest of the paper is organized as follows. In section 2 we consider the initial approximate
eigenpairs and their ordering. In section 3 we first review the inverse iteration, MSLP and SCI
for finding a single eigenpair. Then we extend these methods for finding a set of eigenvalues.
In section 4, we present a framework of nonlinear Rayleigh-Ritz projection techniques and
review the nonlinear Arnoldi algorithm under this framework. In section 5, we present an
implementation of the nonlinear Rayleigh-Ritz technique, which is an extension of the nonlinear
Arnoldi algorithm to solve the NEP (1). Numerical experiments of these study are reported
in section 6. Concluding remarks and the outline of our future work are in section 7.

2 Initial approximate eigenpairs and ordering

All iterative NEP solvers require initial approximate eigenpairs with the proper ordering. It
is a critical factor deciding whether an iterative solver converges and the rate of convergence.
By the form of the coefficient matrix 7'(A) of the NEP (1), a natural choice of the initial
approximate eigenpairs is to use a selected set of eigenpairs of the symmetric positive definite
pencil K — AM. However, note that these eigenvalues 6; are real. The external ). value does
not defined in this case. Therefore, these real initial approximate eigenpairs are generally not
efficient to approximate complex eigenpairs and do not possess physical meaning.

Alternatively, let us consider the first order truncation of the Taylor series expansion of
T(A) about A = Ag:

T(X) & T(Xo) + (A = Ao)T" (Ao) = K (Xo) — AM (Xo), (6)
where
K(Xo) =T (M) — AT'(Xo) and M) = —T"(Xo)
and
1 P 1
T' (M) = —M + 51> (- o) EW;.
j=1
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Figure 1: 10 eigenvalues of the linearized system (K (02), M(02)) (in circle) and 10 closet
eigenvalues of T'(A) (in cross) in the region of interest © (shaded area).
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It suggests that we can use selected eigenpairs (6, v¢) of the matrix pair (K (o3), M(03)) as
the initial approximate eigenpairs. In practice, we can use Krylov subspace methods, such as
the shift-and-invert Arnoldi method [21, 15], to find these desired eigenpairs (6, ve).

Assume that 9;/2 for £ =1,2,...,n are the n eigenvalues of the matrix pair (I?(ag), ]\7(0(2)))
close to the shift value o and 0;? are in the region D as described in (5). Then by the specification
of the desired eigenvalues of the NEP (1) as described in section 1, we propose to order these
initial approximate eigenvalues 6, according to the distance between 05}/ % and the shift point
o:

617 — 0l <16,/ — o0l < - <16,/ — o0, (7)
This ordering will be used in the following iterative methods to seek a set of desired eigenvalues
of the NEP (1).
For example, consider the NEP (1) with a single waveguide cutoff value o;:

(K =AM +i(A — 02)2 Wy)z = 0. (8)

Let 6; be the selected eigenvalues of the matrix pencil K (03) — AM (03), and be ordered

according to (7). The numbered circles (“0”) in Figure 1 show ten eigenvalues ; of the matrix

pencil K (03) — AM (02) close to the given shift oy for a model NEP (8) of dimension 10124.
Note that the NEP (8) can be transformed to a quadratic eigenvalue problem:

[V’M — v (iW:) + (0?M - K)] z =0, (9)

where v = (A — 0?)/2 [7, 14, 13]. We can extract few desired eigenvalues v by a second-order
Arnoldi algorithm [2]. The crosses (“x”) in Figure 1 show 10 eigenvalues A; of the model



NEP (8) computing by solving the quadratic eigenvalue problem (9). By Figure 1, we see
that the eigenvalues 6; of the matrix pencil K(02) — AM (02) are good approximations to the
eigenvalues A of the NEP (8). In section 6, we will study a model test NEP (1) with more than
one waveguide cutoff value.

We note that the initial approximate eigenvectors discussed in this section can be used to
define the initial projection subspace for a nonlinear Rayleigh-Ritz iterative projection method.
We use such initial projection subspace in our implementation of the Rayleigh-Ritz technique
discussed in section 5.

3 Classical nonlinear eigensolvers

In this section we review two classical nonlinear eigensolvers, namely the inverse iteration and
the method of successive linear problems.

3.1 Inverse iteration

It is easy to see that the NEP (1) is equivalent to the nonlinear system of equations

ESE

where v is a prescribed vector for the normalization of the eigenvector. an inverse iteration
solver stems from applying Newton’s method to solve the nonlinear system (10) [19, 23]. The
following is an outline of the inverse iteration to find a single eigenpair (A, z) of the NEP (1).

IIT: Inverse ITeration

1. Choose an initial approximate eigenpair (A(9), z(0)).

2. Determine a vector v such that v (%) = 1.

3. For £ =0,1,---, until convergence
(a) solve the linear system T(AO)u = T"(A\0)z® for wu.
(b) compute w = v7u, AT = XO — (yH () /gy,

(£+1) — u/w.

(c) set z

Note that at step 2, a common choice of the normalization vector v is z(9)/||z(®|2. The
convergence of an approximate eigenpair ()\(Z),w(@) is declared if the relative norm of the
residual vector 7 = T(A)z® is smaller than a prescribed tolerance value e, i.e., ||r||/||z|| <
€. Under certain assumptions associated with the initial approximate eigenpair, the inverse
iteration converges quadratically [19].

Note that the most expensive computational task of the inverse iteration is on solving the
linear systems at step 3a. One can use sparse linear system solvers, such as UMFPACK [5] and
SuperLU [6] for large-scale problems. Due to the cost of solving linear system of equations of
the same dimension of the original NEP (1) in the inner loop, the inverse iteration is generally
suitable for problems of moderate sizes. Variants of inverse iteration include residual inverse
iteration and QR-type iteration [18, 23].



3.2 Method of successive linear problem and self consistent iteration

The method of successive linear problems (MSLP) is based on the first order truncation of
the Taylor series expansion of the A-matrix 7'(\) as given in (6). Assume that A\(?) is an
initial approximate eigenvalue and A(9) is the /-th approximation, then the MSLP obtains the
(¢ + 1)-th approximation A*!) by solving the linear eigenproblem

I’E—(A(E)) m(f—kl) _ )\(Z—H)M\(A(@) CC(Z—H)’ (11)

where

KA =K+EX -AE'(N), MAN=M-FE(), EQ)) =i

J

P
(A —0?)7 W;.
=1
The (¢ + 1)-th approximation A¢*1) is the one closest to A\(0).
The following is an outline of the MSLP to find a single eigenpair of the NEP (1).

MSLP: Method of Successive Linear Problems

1. Choose an initial approximate eigenpair (A(®), z(0)),
2. For £ =0,1,2,---, until convergence
(a) solve the linear eigenproblem (11) for (A(+1), z(¢+1)),

At step 2a, a shift-and-invert Arnoldi algorithm [21, 15] can be applied to find the desired
eigenpair (\E+1D_ 2(E+1) of the linear eigenproblem (11) of the same dimension of the original
NEP (1). As the inverse iteration, the MSLP is generally computational expensive and is
suitable for problems of moderate sizes.

By ignoring the derivative term E'()\) in the linear eigenproblem (11), it leads to the

eigenvalue problem
(K + E(A(E))) m_(f-l—l) — A(@-l—l)Mm_(E-l-l). (12)

This is the so-called self consistent iteration (SCI) [14, 13]. One can expect the convergence
behaviors of the MSLP and of the SCI are similar if the one matrix pencil is a small perturbation
of the another one. In this paper, we will use MSLP in our numerical experiments since MSLP
and SCI have almost the same computational complexity for the NEP (1), while the MSLP
algorithm converges quadratically under certain conditions [19]. Note that SCI can be applied
to more general cases such as eigenvalue problems with nonlinearity in eigenvector, i.e., the
nonlinear eigenvalue problem of the form H(z)z = Az [12, 9].

3.3 Inverse iteration or MSLP to compute £ eigenvalues

Using the initial approximate eigenpairs and the ordering as discussed in section 2, we are
ready to use the inverse iteration or MSLP to compute a set of eigenpairs of the NEP (1). The
following is a pseudo-code to find k£ approximate eigenpairs close to the given shift oy with a
prescribed accuracy € measured by the relative residual norms.

IIT(k)/MSLP(k): Inverse iteration/MSLP to compute k eigenpairs

1. Compute n selected eigenpairs {(6;,v;)}"_; of the matrix pair (K (02), M(02))
as described in (5). Assume n > k.



2. Order {0;}? | according to (7)
3. Set £ =1 and the number of convergent eigenvalues m = 0.
4. Tterate while m < kand £ <n

(a) start with the ¢-th initial approximate pair (g, vy),
(b) compute an approximate eigenpair (A, z) of T'(A\)z = 0 by IIT/MSLP,

1) if |T(N)z|l2/]|z||2 < €, then accept (A, z) as m-th convergent eigenpair,
set m = m + 1, and goto (4c),

2) if the iteration number of IIT/MSLP exceeds the prescribed limit,
declare failure to find the eigenpair associated with the initial approx-
imate eigenpair (g, vy),

(c) set £=£+1,

Numerical results of the IIT(k) and MSLP(k) to find eigenpairs of the NEP (1) will be
reported in section 6.

4 Nonlinear Rayleigh-Ritz technique

In the inner loop of the inverse iteration and the method of successive linear problems, it re-
quires to solve linearized problems of the same dimension of the original NEP (1). It becomes
very expensive for large scale problems. It is well-known that for large scale linear eigenprob-
lems, Rayleigh-Ritz technique, which includes the well-known Arnoldi and Lanczos methods, is
an effective approach through the reduction of linear eigenproblems to much smaller dimension,
see [1] and reference therein.

Recently, the Rayleigh-Ritz technique has been generalized to solve large scale nonlinear
eigenvalue problems under the names of nonlinear Arnoldi algorithm [22], nonlinear Jacobi-
Davidson method [4], and rational Krylov method [20, 8]. All these methods can be summarized
by the following general framework.

Nonlinear Rayleigh-Ritz technique

1. Select a proper projection subspace V.

2. Compute a pair (#, z) to satisfy the Galerkin condition:

z € V such that T(0)z L V. (13)
3. Expand or restart the projection subspace V when necessary.

Note that at step 2, since z € V,z = Vg for some n-vector g, where n is the dimension of
the subspace V, and V is an orthonormal basis. Hence, step 2 is equivalent to solve a reduced
nonlinear eigenproblem of determining a pair (6, g) satisfying

TV(G)g =0, (14)

where Ty (0) = VET(0)V is an n x n matrix. The value § computed from this technique are
referred to as Ritz values and the vectors z are the associated Ritz vectors. The accuracy of a
Ritz pair (0, z) as an approximate eigenpair is assessed through the residual vector r = T'(0)z.



With a proper initial projection subspace V and their expansion, it is typical that satisfactory
approximations of few eigenpairs of the N x N matrix 7T'()\) occur for a small dimension of
projection subspace V, i.e., n < N. The reduced nonlinear eigenproblem (14) can be solved
by using the inverse iteration or MSLP as described in section 3.

In a practical implementation of the Rayleigh-Ritz technique, two critical issues are

(a) what is a proper initial projection subspace V and how to order initial approximate
eigenvalues?

(b) how to expand or restart the projection subspace V when necessary?

In the nonlinear Arnoldi algorithm [22], it is suggested to expand the subspace V by the
residual inverse iteration. Such a subspace expansion strategy can also be explained by the ra-
tional Krylov method [20, 8]. Alternatively, the nonlinear Jacobi-Davidson method expands the
projection subspace by solving the corresponding correction equations with proper precondi-
tioning [4]. The performance tests of these algorithms for solving rational eigenvalue problems
are reported in the recent survey papers [23, 17]. It concludes that the nonlinear Arnoldi
method is more efficient than nonlinear Jacobi-Davidson and rational Krylov algorithms.

5 A nonlinear iterative projection algorithm

In this section, we present an implementation of the Rayleigh-Ritz technique to solve of the
NEP (1). Our implementation starts with the nonlinear Arnoldi algorithm due to Voss [22].

As we have discussed in section 2, to find a set of desired eigenpairs of a NEP, the foremost
issue is to decide a proper initial projection subspace V and an ordering of initial approximate
eigenpairs. For the specific NEP (1), we will use the initial projection subspace V spanned by
the eigenvectors {vg} of the matrix pencil K (03) — AM (03) corresponding to the eigenvalues
{6,} as described in (5), and ordered as in (7).

Note that the eigenvectors {vg} are generally complex. Therefore, if we directly uses them
in the Rayleigh-Ritz projection, the coefficient matrices of the resulting nonlinear eigenvalue
problem will be complex. To preserve the real symmetric property of the coefficient matrices
K, M and W in the original NEP (1), we propose to use a real orthonormal basis ) defined
by

Q = orth([ Re(V) Tm(V) ]),

where orth(X) stands for an orthonormal basis for the range of X. Subsequently, we solve a
reduced nonlinear eigenvalue problem

Tu(0)y =0, (15)
where
To0) = QTT(6)Q

p
= Kq—0Mg+i) (4 —0?)iWo,
j=1

with real symmetric coefficient matrices Kg = QYKQ, Mg = QT"MQ and Wq,; = QTW]-Q.
The real symmetric property is preserved. Since the subspace spanned by the real basis vectors



@ contains the subspace spanned by the complex basis vectors V', the quality of the real reduced
NEP will be at least as good as the case using complex projection.

Starting with /-th initial approximate eigenpair (0, v¢), we use the inverse iteration to
find an approximate eigenpair (6,y) of the reduced NEP (15). Subsequently, an approximate
eigenpair, called Ritz pair, of the original NEP (1) is given by (6, z), where z = Qy.

The accuracy of the Ritz pair (6, z) is assessed through the norm of relative residual
IT(0)z||2/||z|l2- If the Ritz pair is acceptable, then the projection subspace is updated by
replacing the initial eigenvector vy with the Ritz vector z. Otherwise, The projection subspace
spanned by @ is expanded in the new direction

v =T Yo})T(H)z.

This is essentially one step of residual inverse iteration [18, 22]. To maintain the orthogonality
of ), v is orthogonalized against the previous basis vectors )

vi=0v—QQ"v.
The projection subspace spanned by @ is expanded as the following:
Q=@ Q]

where Q = orth([ Re(v) Im(v) |). Correspondingly, the coefficient matrices K¢, Mg and
Wgq,; are updated to define an updated reduced NEP T()), namely

_ | Ko QUKQ) | Mg QT(MQ)
o '_[(QTK)Q QT(KQ)]’ Mo =1 @i QT(MQ)]’

and B
. T (W
W= [ Moy @ (W;Q) ] ,

for j=1,2,...,p.

The procedure is then iterated with the initial approximate eigenpairs (6, v¢) and updated
the reduced NEP defined by Tg ().

Note that an iteration with an initial approximate eigenpair (6y,v¢) may fail to converge
to an eigenpair of the original NEP. This is detected by the number of the iterations iters
exceeding a prescribed maximal iteration number ip,,,. If it occurs, we purge all those expanded
vectors in () associated the initial approximation, and furthermore, remove the associated
starting vector vy from the starting matrix V.

To control the memory requirement requriement and computational cost, we can restart
the projection subspace when the number of basis vectors ) larger than a prescribed maximal
dimension. This is done after an eigenpair converged. The restarting projection subspace is
spanned by @ = orth([ Re(V) Im(V) ]), where V is updated with the converged Ritz vectors
z and is reduced by purging those vectors vy, which lead to the failure of the convergence.

In summary, we have the following pseudocode for a nonlinear Rayleigh-Ritz iterative
method to find eigenvalues of the NEP (1), where £ is the number of desired eigenvalues, n is
the number of eigenvectors used in initial projection subspace with n > k, |@Q| is the number
of columns of the basis vectors of the projection subspace, nmax is the maximal size of |Q]
allowed. m is the number of the converged eigenpairs, iters is the number of iterations with
respect to converge an eigenpair, and %,y 1S the maximal number of iterations allowed and €
is the prescribed accuracy for computed eigenpairs.
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NRRIT: Nonlinear Rayleigh-Ritz ITerative method

1. Compute n selected eigenpairs {(0;,v;)}}_; of the matrix pair (I?(ag), J/\/I\(U(Q)))

as described in (5).
2. Order {0;}7_; according to (7).
3. Set @ =orth([ Re(V) Im(V) |) where V.=[v1 - v, |.
4. Set £ =1, iters =1 and m = 0.
5. Iterate whilem <k and £ <n

(a) start with the £-th initial approximate eigenpair (6, vy),
(b) compute an eigenpair (6,y) of the projected NEP Tg(f)y = 0 by using
the IIT with the starting pair (6, Q7 vy),

(c) compute Ritz vector z = Qy and residual r = T'(0)z,
(d) if ||7||l2/]|z]|2 < €, then

i. accept the Ritz pair (0, z) as an approximate eigenpair,

ii. update V by setting v, = 2z,
iii. if |@| > Tmax, then restart: @ = orth([ Re(V) Im(V) ]), and up-

date Kg, Mg and Wy j,

iv. record the number of iteration iters; set iters =1,

v. set £ = £+1 and m = m+1; goto step 5 and search for next eigenpair,
) solve T'(a3)v = r for v,
) orthogonalize v against Q: v =v — QQTv,
(g) compute Q = orth([ Re(v) Im(v) ]),
(h) expand Q := [ Q @ ], and update Kq, Mg and Wg ;,
) if iters > imax, then

i. flag failure with the initial approximate eigenpair (6, v¢),

ii. purge all expanded vectors from () generated in this loop,
iii. update V' by purging v, from V,
iv. set £ =4+ 1, iters = 0 and search for next eigenpair,
(j) set iters = iters + 1,

We note that at step be, it is required to solve a linear system T'(o8)v = r of the same
dimension of the original NEP. This is computational most expansive step of the algorithm.
However, note that the coefficient matrix T'(03) of the linear system remains unchanged in the
loop. Therefore, the algorithm is generally more efficient than other nonlinear RR iterative
methods such as the one based on the Jacobi-Davidson correction equation [4], where the
correction equation is modified at every iteration in the loop.

6 Numerical experiments

In this section, we present numerical results of solving the NEP (1) with the inverse iteration
(IIT), the method of successive linear problem (MSLP) and the nonlinear Rayleigh-Ritz iter-
ative (NRRIT) method. We highlight the issues associated the initial approximate eigenpairs
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Figure 2: A simulation model of waveguide loaded cavity with two cutoff guides. The cavity
part is the cylindrical part. The two waveguides are coaxial waveguide at the top left and the
rectangular waveguide at the bottom.

and performance comparison. The main feature of the NRRIT is also highlighted. We consider
the NEP (1) with two cutoff values, i.e.,

T(\)z = [K—AM+i(A—a§)%W1 +i(,\—a§)%W2] z =0, (16)

where the coefficient matrices K, M, W1 and W5 are of order N = 9956. The cutoff values
01 = 0 and o9 = 0.043551. The computational task is to compute 10 resonant frequencies f,
which are close to and larger than the prescribed frequency fo = 2.7693MHz and Q. > 10. It
means that we need to seek k = 10 eigenvalues A of the NEP (16) in the region of interest as
described in (5), with g := 27 fy/c = 0.058 and Q. = 10. The underlying physical model is
a radio-frequency gun model as shown in Figure 2. The cavity itself is the big cylinder. The
two waveguides are the coaxial waveguide (top left) and the rectangular waveguide (bottom).

EXPERIMENT 1. In this experiment, we examine the convergence behaviors of all three
methods under the initial approximate eigenpairs obtained from the linearized matrix pencil
I?(O'g) — AM (03) and the ones from the linear component K — AM of T'()\).

Using the shift o2, we compute 10 eigenpairs (6;,v;) of the matrix pair (K, M) by the
shift-and-invert Arnoldi method [16]. It took 11.8 seconds'. These 10 computed 6; values
are listed in the first column of Table 1, and ordered according to (7). Note that all those
eigenvalues are real since (K, M) is a symmetric positive definite matrix pair.

We also use the shift-and-invert Arnoldi algorithm to find n = 10 eigenpairs (6;,v;) of the
matrix pair (I? (0d), M (02)) with the shift o2. It took 23.0 seconds. Those 10 complex initial
approximate eigenvalues are listed in the first column of Table 2, and ordered according to (7).

LAll numerical experiments reported in this paper were run in MATLAB 7.0.1 on a Pentium IV PC with
2.6GHz CPU and 1GB of core memory.
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Table 1: The approximate eigenvalues (A;) and the corresponding resonant frequencies (f;)
computed by IIT(10), MSLP(10) and NRRIT with real initials (6;).

Initial Approximation | Resonant | IIT(10) | MSLP(10) NRRIT

j 0}/2 )\}/2 fi (MHz) | iters iters iters  |Q|
1 (5.97e2,0) | (5.97e-2,8.6267) | 2.8549 2 1 3 24
2 (6.19¢-2,0) | (3.82¢-2, 5.240-2) | 1.8261 6 7 20 64
3 (8.08¢-2,0) | (6.07e-2, 6.37e-2) | 2.8986 8 6 16 96
4 (8.38¢-2,0) | (8.37e-2, 1.96e-5) | 3.9997 2 1 6 108
5 (841e2,0) | (8.41e-2, 3.39¢-6) | 4.0179 2 1 5 118
6 (8.77e-2,0) | (8.77e-2, 3.81e-5) | 4.1905 2 1 5 128
7 (8.83e-2,0) | (8.83e-2, 5.72¢-6) | 4.2185 2 1 4 136
8 (9.24e-2,0) | (9.34e-2, 3.93e-4) | 4.4607 3 2 6 148
9 (9.74e-2,0) | (1.19e-1, 1.88¢-2) | 5.7046 5 3 13 174
10 (1.04e-1,0) | (1.25e-1, 1.75e-2) | 6.0057 6 3 15 204

Total no. of iters 38 26 93

Total CPU time (s) 179.4 391.2 50.6

With those starting pairs, all three methods converge to the same set of 10 approximate
eigenpairs of the NEP (16), as shown in second columns of Tables 1 and 2. All relative residual
norms are smaller than e = 1078,

We observe that for all three methods, the method with complex initials converges much
faster than using real initials. For example, the last columns of Tables 1 and 2 list the number
of iterations for NRRIT method with real initials and with complex initials, respectively. It
took a total of 93 iterations by using the real initials. On the other hand, it only takes a total
of 57 iterations by using the complex initials.

In term of quality of converged eigenpairs, we have the following observations:

1. There are 6 eigenpairs founded by both real and complex initials. They are number 1,
and 4 to 8 in Table 1 and number 1 to 6 in Table 2.

2. The 2nd and 3rd approximated eigenpairs computed with the real initials in Table 1 are
not physically meaningful since their corresponding Q. values are less than 1.

3. The resonant frequencies fg and fi¢ corresponding to the 9th and 10th approximate
eigenvalues in Table 1 are further away from the prescribed frequency fo = 2.7693.
than the ones in Table 2. They not the desired 10 eigenvalues closest to the prescribed
frequency fy.

In summary, it clearly shows that for all _three methods, the initial approximate eigenpairs
obtained from the linearized matrix pencil K (¢3) — AM (07) as defined in (6) are better than
the ones obtained directly from the linear component K — AM of T'(A).

EXPERIMENT 2. In this experiment, we compare computational efficiency of IIT(10),
MSLP(10) and NRRIT. We focus on the performance for the methods with complex initial
approximate eigenpairs as shown in Table 2.

The most expensive computational costs of IIT(10) and MSLP(10) are solving linear sys-
tems and linear eigenvalue problems of original problem size, respectively. It is generally more
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Table 2: The approximate eigenvalues (A;) and the corresponding resonant frequencies (f;)
computed by IIT(10), MSLP(10) and NRRIT with complex initials (6;).

Initial Approximation | Resonant | IIT(10) | MSLP(10) NRRIT

J 0}/2 )\;/2 fi (MHz) | iters iters iters Q|
1 (5.97¢3,8.62¢7) | (5.07¢2, 8.62e7) | 2.8549 1 1 T 20
2 (8.37e-2,1.81e-5) | (8.37e-2,1.96e-5) | 3.9997 1 1 9 38
3 (8.41e-2, 3.40e-6) | (8.41e-2, 3.39¢-6) | 4.0179 1 1 5 48
4 (8.77e-2, 3.37e-5) | (8.77e-2, 3.81e-5) | 4.1905 2 1 5 58
5 (8.83e-2, 5.86e-6) | (8.83e-2, 5.72e-6) | 4.2185 1 1 4 66
6 (9.34e-2, 3.25e-4) | (9.34e-2, 3.93e-4) | 4.4607 2 1 4 74
7 (1.08e-1, 4.58¢-3) | (1.09¢-1, 3.60e-3) | 5.2472 3 2 11 96
8 (l.1le-1,1.15e-4) | (1.11e-1, 1.03e-4) | 5.3079 2 1 6 108
9 (1.13e-1, 2.19e-5) | (1.13e-1, 2.27e-5) | 5.4353 1 1 6 120
10 (1.15e-1, 3.31e-4) | (1.15e-1, 3.18e-4) 5.5075 2 1 6 132

Total no. of iters 16 11 57

Total CPU time (s) 95.5 99.9 46.3

expensive to an eigenvalue problem than a linear system of equations. This is seen that in
Table 2, although MSLP(10) took a total of 11 iterations and IIT(10) took 16 iterations, the
total CPU time of MSLP(10) is greater than II'T(10). This phenomenon is also observed by
Rubhe [19].

In the inner loop of NRRIT, it is required to solve a linear system of the same dimension
of the original NEP. However, note that the coefficient matrix of the linear system remains
unchanged in the loop. Therefore, we can repeatedly use the factorized form of the coefficient
matrix to solve the linear systems with different right hand sides in the loop.

In summary, NRRIT is the most CUP-efficient. It is about a factor of 2 faster than IIT(10)
and MSLP(10).

EXPERIMENT 3. In this experiment, we compare the performance of NRRIT with real
projection basis () and complex projection basis V.

The left plot of Figure 3 shows the convergence history of NRRIT with real projection @
(solid line) and with complex projection V' (dash-dot line). The horizontal axis is the number
of iteration steps. The vertical axis is the relative residual (in log of base 10) of the Ritz pair
(0, z). The relative residual norm of an initial approximate eigenpair is marked by cross (“x”)
for real projection subspace and is marked by plus (“ 4+ ”) for complex projection subspace.
Once a Ritz pair (0, z) is convergent, as measured by relative residual norm less than ¢ = 108,
it is marked by a circle (“ o ”) for the real projection subspace, and by a star (“ ) for the
complex projection subspace.

The right plot of Figure 3 shows the number of iterations to find an approximate eigenpair
of the original NEP with relative residual norm less than ¢ = 1078 by NRRIT with real
projection @ (dark bar) and with complex projection V' (gray bar), where the horizontal axis
is the index of the eigenvalue. The vertical axis is the number of iteration steps iters.

We have the following remarks:

1. The initial relative residual norms with real projection subspace () are smaller the ones
with complex projection subspace V, even though the initial approximate eigenpairs are
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Figure 3: Left: convergence history of NRRIT with real projection subspace @ (solid line) and
complex projection subspace V (dash-dot line). Right: the number of iterations required by
NRRIT with real projection subspace @ (black bar) and complex projection subspace V (gray
bar).

the same, see steps 5(a)-(c) in NRRIT algorithm.

2. NRRIT with real projection subspace @ requires fewer iterations (57 in total) than the
complex projection subspace V' (85 in total), 30% less in term of the number of iterations.

3. NRRIT with real projection ) took a total of 46.3 seconds to find 10 approximate
eigenvalues, while NRRIT with complex projection V' took a total of 60.5 seconds.

It only makes a small portion of the total CPU-time to solve a projected NEP in NRRIT,
although dimension of reduced NEP with real projection subspace () doubles than the
complex projection subspace V. The dimension of the projected NEP is |Q|, which is
much smaller than the dimension of the original NEP.

In summary, NRRIT with real projection subspace outperforms the NRRIT with complex
projection subspace. Preserving real symmetric property of the NEP (16) pays off.

7 Concluding Remarks

In this paper, we studied three numerical methods, namely IIT, MSLP and NRRIT, for com-
puting a set of eigenpairs of the large scale NEP (1) arising from finite element analysis of res-
onant frequencies and external (), values of a waveguide loaded cavity in the next-generation
accelerator design. We have shown how to determine the proper initial approximations and
how to order them properly. IIT and MSLP are two classical methods, and are suitable for
moderate size problems. NRRIT is a nonlinear Rayleigh-Ritz technique and is a generaliza-
tion of nonlinear Arnoldi of Voss. It is developed for large scale NEPs. From our numerical
experiments of model NEPs, we have seen that NRRIT outperforms ITT and MSLP.

Our current work includes incorporating an implementation of NRRIT into the simulation
package Omega3P?. We also plan to study a 8-cavity cyromdule model in the near future.

2 A package for electromagnetic modelings and simulations at Stanford Linear Accelerator Center.
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This model involves at least 3 cutoff values and with DOFs up to millions. Our ultimate goal
is to solve the NEPs arising from the International Linear Collider (ILC) superstructure, see
discussion in [14, 13, 3]. The number of the cutoff values p can be up to 12.
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