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GRAVITATIONAL LENS TIME DELAYS: A STATISTICAL ASSESSMENT OF LENS MODEL DEPENDENCES
AND IMPLICATIONS FOR THE GLOBAL HUBBLE CONSTANT

Masamune Oguri
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025.

ABSTRACT

Time delays between lensed multiple images have been known to provide an interesting probe of
the Hubble constant, but such application is often limited by degeneracies with the shape of lens
potentials. We propose a new statistical approach to examine the dependence of time delays on the
complexity of lens potentials, such as higher-order perturbations, non-isothermality, and substruc-
tures. Specifically, we introduce a reduced time delay of the dimensionless form, and explore its
behavior analytically and numerically as a function of the image configuration that is characterized
by the asymmetry and opening angle of the image pair. In particular we derive a realistic conditional
probability distribution for a given image configuration from Monte-Carlo simulations. We find that
the probability distribution is sensitive to the image configuration such that more symmetric and/or
smaller opening angle image pairs are more easily affected by perturbations on the primary lens po-
tential. On average time delays of double lenses are less scattered than those of quadruple lenses.
Furthermore, the realistic conditional distribution allows a new statistical method to constrain the
Hubble constant from observed time delays. We find that 16 published time delay quasars constrain
the Hubble constant to be H0 = 70 ± 6 km s−1Mpc−1, where the value and its error are estimated
using jackknife resampling. Systematic errors coming from the heterogeneous nature of the quasar
sample and the uncertainty of the input distribution of lens potentials can be larger than the sta-
tistical error. After including rough estimates of the sizes of important systematic errors, we find
H0 = 68 ± 6(stat.) ± 8(syst.) km s−1Mpc−1. The reasonable agreement of the value of the Hubble
constant with other estimates indicates the usefulness of our new approach as a cosmological and
astrophysical probe, particularly in the era of large-scale synoptic surveys.

Subject headings: cosmology: theory — dark matter — distance scale — galaxies: elliptical and
lenticular, cD — gravitational lensing

1. INTRODUCTION

It has been known that time delays between multiple
images of strong gravitational lens systems offer an in-
teresting method to measure the Hubble constant H0,
the most fundamental cosmological parameter that gov-
erns the length and time scale of our universe (Refs-
dal 1964). A huge advantage of this method is that
it does not rely on so-called distance ladder and can
measure the global Hubble constant independently of
any local measurements. Motivated by this time de-
lays have been measured in more than 10 lensed quasar
systems (see, e.g., Kochanek 2006). The situation as it
presents is, however, somewhat confusing and controver-
sial. Kochanek (2002, 2003) claimed from the analysis of
several lens systems that the Hubble constant should be
relatively low, H0 ∼ 50 km s−1Mpc−1. The time delay
of SDSS J1650+4251 also prefers the low Hubble con-
stant (Vuissoz et al. 2007). On the other hand, Koop-
mans et al. (2003) performed systematic mass model-
ing of B1608+656 using all available data from radio to
optical and found constrained the value of the Hubble
constant to be H0 = 75+7

−6 km s−1Mpc−1. The anal-
ysis of the smallest separation lens B0218+357 yields
H0 = 78 ± 3 km s−1Mpc−1 (Wucknitz et al. 2004). By
combining time delays in 10 lensed quasar systems Saha
et al. (2006) obtained H0 = 72+8

−11 km s−1Mpc−1.
The large variation of derived values of the Hubble

constant from time delays reflects the fact that time de-
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lays are quite sensitive to mass distributions of lens ob-
jects, which leads to strong degeneracies between lens
mass profiles and the Hubble constant. The most funda-
mental, mathematically rigorous degeneracy is the mass-
sheet degeneracy (Falco et al. 1985); inserting an uni-
form sheet instead of decreasing the mass normalization
of lenses changes estimated values of the Hubble constant
while leaving unchanged the image observables. This de-
generacy implies that the derived values of the Hubble
constant also degenerates with radial density profiles of
of lens galaxies (Refsdal & Surdej 1994; Witt et al. 1995;
Keeton & Kochanek 1997; Witt et al. 2000; Saha 2000;
Tada & Futamase 2000; Wucknitz 2002; Treu & Koop-
mans 2002; Kochanek 2002, 2003; Oguri & Kawano 2003;
Rusin et al. 2003; Schechter 2005; Mörtsell et al. 2005;
Kawano & Oguri 2006). In addition, it may degenerate
with the angular structure of lenses as well (Zhao & Qin
2003; Saha & Williams 2006). The sensitivity of time de-
lays on mass profiles suggests that by assuming the Hub-
ble constant, which can be determined by other methods
(Freedman et al. 2001; Tegmark et al. 2006; Spergel et
al. 2007), we can put constraints on mass distributions
of lenses, in particular radial density profiles (e.g., Oguri
et al. 2004; Kochanek et al. 2006b; Dobke & King 2006).

One way to overcome the degeneracies is to adopt lens
systems whose lens potentials can well be constrained by
many observational constraints. An example of such con-
straints comes from lensed images of quasar host galaxies.
The lensed host galaxies often form Einstein rings, which
accurately and independently determines the structure
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of the lens potential as well as the shape of the lensed
host galaxy (e.g., Keeton et al. 2000; Kochanek et al.
2001; Koopmans et al. 2003). The small-scale structure
of lensed quasars, such as radio jets and sub-components,
determine lens potentials in a similar way as Einstein
rings (e.g., Cohn et al. 2001; Wucknitz et al. 2004). Fur-
thermore, the measurement of velocity dispersions of lens
galaxies serves as useful constraints on mass distribu-
tions, helping to break degeneracies between mass mod-
els (e.g., Treu & Koopmans 2002). Lens systems for
which these strong additional constraints are available,
sometime referred as “golden lenses”, have been thought
to be an effective probe of the Hubble constant.

Another potentially powerful, but less studied, method
to measure the Hubble constant is a statistical approach.
Even if each individual lens lacks strong constraints that
allow detailed investigations of the mass distribution, by
combining many lens systems one can put tight con-
straints on the Hubble constant. As mentioned above,
this approach was in some sense demonstrated recently
by Saha et al. (2006) who combined 10 lensed quasar
systems to constrain the Hubble constant. A caveat is
that lensed quasars sometimes suffer from selection ef-
fects. For instance, brighter lensed quasars with larger
image separations are more likely to lie in dense envi-
ronments such as groups and clusters (Oguri et al. 2005;
Oguri 2006), thus the Hubble constant from those lensed
quasars may be systematically higher than the true value
without any correction of the effect of dark matter along
the line of sight. This indicates the importance of well-
defined statistical sample of lensed quasars for which we
can quantitatively estimate and correct the selection ef-
fect. While the statistical sample has been very limited
so far, containing ∼ 20 lenses even for the largest lens
sample (Myers et al. 2003; Browne et al. 2003), larger
lens surveys will be soon available by ongoing/future
lens surveys such as done by the Sloan Digital Sky Sur-
vey (Oguri et al. 2006), the Large Synoptic Survey Tele-
scope (LSST)1, and the Supernova/Acceleration Probe
(SNAP)2. Future lens surveys will also find strong lens-
ing of distant supernovae (e.g., Oguri et al. 2003) for
which time delays can easily be measured (but see Dobler
& Keeton 2006). Therefore the statistical approach is
growing its importance.

In this paper, we study how time delays depend on
various properties of the lens potential and image config-
urations, which is essential for the determination of the
Hubble constant from time delays. Using both analytic
and numerical methods, we show how time delays are af-
fected by several complexity of the lens potential, such as
radial mass profiles, external perturbations, higher order
multipoles, and substructures. We then derive the ex-
pected distributions of time delays by adopting realistic
lens potentials. The distribution, in turn, can be used
to derive statistically the value of the Hubble constant
from observed time delays. This approach differs from
the statistical argument by Saha et al. (2006) in the sense
that they fit image positions of individual lens systems to
constrain the Hubble constant and then combined results
of all the lens systems: Our new approach does not even
require modeling of each lens system. This has an advan-

1 http://www.lsst.org/
2 http://snap.lbl.gov/

tage that we can include lens systems that have too few
constraints to determine the lens potential. In this sense
the approach is extension of study by Oguri et al. (2002)
in which only spherical halos are considered to compute
time delay distributions. We note that the methodology
is similar to that adopted by Keeton et al. (2003, 2005)
who derived distributions of flux ratios of image pairs to
identify small-scale structure in lens galaxies.

In addition to the measurement of the Hubble con-
stant, the sensitivity of time delays on mass models,
which we explore in this paper, offers guidance on the
usefulness of each time delay measurement as a cosmo-
logical or astrophysical probe: If time delays at some
image configuration is quite sensitive to detailed struc-
ture of the lens such as higher-order multipole terms with
small amplitudes or substructures, which are difficult to
be constrained even for best-studied lens systems, it is al-
most hopeless to use these time delays to extract either
radial mass profiles or the Hubble constant. Our result
can be used to assess quantitatively which lens systems
are more suitable for detailed studies, i.e., less sensitive
to the complexity of the lens potential. There has been
several insightful analytic work (e.g., Witt et al. 2000;
Kochanek 2002), but here we perform more systematic
and comprehensive survey of model dependences of time
delays by parameterizing image configurations of lensed
quasar systems using dimensionless quantities.

This paper is organized as follows. In §2 we intro-
duce several dimensionless quantities that are used to
explore the model dependence of time delays. We study
the sensitivity of time delays on the various lens poten-
tials analytically in §3. Section 4 is devoted to construct
the conditional distribution of time delays from realistic
Monte-Carlo simulations. We compare it with observed
time delays in §5, and constrain the Hubble constant
in §6. Finally discussion of our results and conclusion
are given in §7. Throughout the paper we adopt a flat
universe with the matter density ΩM = 0.24 and the
cosmological constant ΩΛ = 0.76 (Tegmark et al. 2006),
although our results are only weakly dependent on the
specific choice of the cosmological parameters. The Hub-
ble constant is sometimes described by the dimensionless
form h ≡ H0/(100 km s−1Mpc−1).

2. CHARACTERIZING TIME DELAY QUASARS

Let us consider a lens system in which a source at u =
(u, v) is multiply imaged at the image positions xi =
(xi, yi). We also use the polar coordinates for the image
positions, xi = (xi, yi) = (ri cos θi, ri sin θi). We always
choose the center of the lens object as the origin of the
coordinates. Time delays between these multiply images
are given by (e.g., Blandford & Narayan 1986)

∆tij =
1 + zl

2c

DolDos

Dls

×
[

(xi − u)2 − (xj − u)2 − 2φ(xi) + 2φ(xj)
]

, (1)

where zl is the redshift of the lens, c is the speed of light,
and Dol, Dos, and Dls are angular diameter distances
from the observer to the lens, from the observer to the
source, and from the lens to the source, respectively. The
lens potential φ(x) is related to the surface mass density
of the lens Σ(x) by the Poisson equation:

∇2φ(x) = 2κ(x) = 2
Σ(x)

Σcrit
, (2)
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with Σcrit = c2Dos/(4πGDolDls) being the critical sur-
face mass density (G is the gravitational constant). Note
that image positions and source positions are related by
the lens equation

u = xi −∇φ(xi). (3)

Equation (1) involves unobservable quantities such as
u and φ(x), indicating that time delays in general depend
on details of mass models. However, Witt et al. (2000)
has shown that for generalized isothermal potential

φ(x) = rF (θ), (4)

where F (θ) is an arbitrary function of θ, time delays can
be expressed in a very simple form involving only the
observed image positions:

∆tij =
1 + zl

2c

DolDos

Dls
(r2

j − r2
i ), (5)

where ri denote the distance of image i from the center of
the lens galaxy. Motivated by this analytic result, in this
paper we consider the reduced time delay that is defined
by:

Ξ≡
∣

∣

∣

∣

∣

∆tij
r2
j − r2

i

∣

∣

∣

∣

∣

2c

1 + zl

Dls

DolDos

=

∣

∣

∣

∣

∣

(xi − u)2 − (xj − u)2 − 2φ(xi) + 2φ(xj)

r2
j − r2

i

∣

∣

∣

∣

∣

. (6)

In this definition, the reduced time delay Ξ is always
unity if the lens potential can be expressed by equa-
tion (4), but can deviate from unity if the lens potential
has more complicated structures. In particular, from the
analysis of Kochanek (2002) we obtain Ξ = 2(1−〈κ〉) at
the lowest order of expansion, where 〈κ〉 is the average
surface density in the annulus bounded by the images.
This indicates that the deviation from the isothermal
mass distribution has a direct impact on the reduced time
delay. But as we will see later it is affected to some extent
by other factors such as external perturbations or small-
scale structures as well. Thus we can regard the reduced
time delay as a measure of the complexity of the lens.
In addition, equation (6) indicates that we can compute
reduced time delays for observed lensed quasar systems
with measured time delays by assuming the value of the
Hubble constant. In this sense, the reduced time delay Ξ
is a key quantity that represents a link between measured
time delays of lens systems and theoretical lens models.
We point out that Ξ is dimensionless because time de-
lays are proportional to the square of the size of a lens
(the Einstein radius). This allows us to directly compare
values of reduced time delays for different lens systems
that have different sizes.

We note that Saha (2004) adopted similar but differ-
ent dimensionless quantity to explore the dependence of
time delays on mass models. In the paper, the parame-
ter essentially same as equation (6) was also considered,
but it was discarded because of the correlation with time
delays. However, the correlation just reflects the effect
of surrounding dark matter that is larger for wider sep-
aration lenses (Oguri et al. 2005; Oguri 2006). Put an-
other way, such correlation is naturally expected from
very different mass distributions and environments be-
tween small (∼ 1′′) and large (& 3′′) separation lenses.

Indeed the apparent lack of the correlation between time
delays and the scaled time delays in Saha (2004) comes
mostly from the large scatter among different image con-
figurations: The effect of external mass is hindered by
the large scatter his parametrization involves. Therefore
in this paper we propose equation (6) as useful quantity
to extract the mass dependences on time delays.

Previous analytic calculations of time delays sug-
gest that the model dependence of time delays is a
strong function of image configurations (Witt et al. 2000;
Kochanek 2002). In this paper we characterize image
configurations by the following two parameters. One is
the asymmetry of the images define by

Rij ≡
∣

∣

∣

∣

rj − ri

rj + ri

∣

∣

∣

∣

. (7)

Again, Rij is dimensionless and does not depend on the
size of the lens: Rij ∼ 0 means the images are roughly
at the same distance from the lens galaxy, while Rij ∼ 1
indicates very asymmetric configurations that one image
lies very close to the lens center and the other image is
far apart from the lens. The other parameter we use is
the opening angle of images:

θij ≡ cos−1

(

xi · xi

rirj

)

. (8)

In this definition, if the images are directly opposite each
other, θij ∼ 180◦. On the other hand, close image pairs
such as merging images near cusp and fold catastrophe
have θij ∼ 0◦. Note that both Rij and θij are observables
in the sense that they can be derived without ambiguity
for each observed lens system as long as the lens galaxy is
identified: We do not have to perform mass modeling to
compute these quantity from observations. In summary,
our task of this paper is to explore model dependences
of reduced time delay Ξ as a function of image configu-
rations parameterized by Rij and θij .

3. ANALYTIC EXAMINATION

In this section, we analytically examine the behavior
of the reduced time delay Ξ (eq. [6]) for various lens po-
tentials, before showing the distribution of Ξ for realistic
complicated mass distributions. For this purpose, it is
convenient to study in terms of multipole expansion: We
consider the lens potential of the following from

φ(x) =
∑ cn

β
R2−β

Ein rβ cosn(θ − θn), (9)

where cn is the dimensionless amplitude and θn is the po-
sition angle. The coefficients are chosen such that REin

becomes the Einstein radius of the system if the am-
plitude of the monopole term is c0 = 1. Note that an
external shear (e.g., Kochanek 1991; Keeton et al. 1997)
can be described by this expression as β = n = 2 and
cn = −γ. For this potential the reduced time delay is
given by (Witt et al. 2000):

Ξ =

∣

∣

∣

∣

∣

1 +
∑

2(1 − β)
φ(xj ) − φ(xi)

r2
j − r2

i

∣

∣

∣

∣

∣

. (10)

This can be rewritten as

Ξ =

∣

∣

∣

∣

∣

1 +
∑

cn

(

2REin

rj + ri

)2−β

X(Rij , θij) cos(nθn − δ)

∣

∣

∣

∣

∣

,

(11)
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where δ and X(Rij , θij) are defined by

tan δ ≡
rβ
j sin nθj − rβ

i sin nθi

rβ
j cosnθj − rβ

i cosnθi

, (12)

X(Rij , θij)≡
1 − β

2β

1

Rij

[

(1 + Rij)
2β + (1 − Rij)

2β

−2(1− R2
ij)

β cosnθij

]1/2
. (13)

Here we assumed rj > ri without loss of generality. Note
that Rij and θij were defined in equations (7) and (8),
respectively.

The above expression of Ξ (eq. [11]) has several im-
portant implications. First, θn comes only in the last
cosine term, thus assuming n 6= 0 and cn is small Ξ > 1
and Ξ < 1 occurs equally if θn is uncorrelated with the
image configuration (as we will see later, however, this
is not necessarily the case). This indicates that we can
reduce the effect of multipole terms by averaging many
lens systems, suggesting the usefulness of our statistical
approach. Second, since 2RE/(rj +ri) ∼ 1 in most cases,
the dependence of the potential (β) and image configu-
rations (Rij and θij) on the deviation from Ξ = 1 is
encapsulated in X(Rij , θij), aside from the overall am-
plitude cn. In what follows, we use X(Rij , θij) to study
the behavior of Ξ.

First, we consider quite symmetric cases (Rij → 0)
for which images are nearly the same distance from the
lens center. Depending on the opening angles, limiting
behaviors are given by

X(Rij → 0, θij) ≈



















1 − β (cosnθij = 1)
1 − β√
2βRij

(cosnθij = 0)

1 − β

βRij
(cosnθij = −1).

(14)

Therefore, X(Rij , θij) diverges unless cosnθij = 1. More
rigorously, we should take the limit of Rij → 0 and θij →
0:

X(Rij → 0, θij → 0) ≈ (1 − β)

[

1 +

(

nθij

2βRij

)2
]1/2

,

(15)
indicating that the divergence at the symmetric limit
can be avoided if θij � Rij , or more appropriately
1 − cosnθij � R2

ij . Since close image pairs are always
near the circumference of the critical curve that has a
nearly circular shape centered on the lens galaxy, such
pairs in general have Rij � θij , indicating the diver-
gence cannot be avoided for two close images. On the
other hand, the divergence may not occur for opposite
images (θij ∼ 180◦), but only if n is even number.

Inversely, if images are very asymmetric (Rij → 1),
X(Rij , θij) reduces to the following simple form

X(Rij → 1, θij) ≈
2β−1(1 − β)

β
. (16)

This does not depends on θij , thus the opening angle is
no longer important in this situation. However it shows
stronger dependence on the radial slope β.

Fig. 1.— The behaviors of X(Rij , θij) (eq. [13]) as a function of
the asymmetry parameter Rij . From thick to thin lines, the radial
slope β is changed from 0.5 to 4.0. From top to bottom panels, the
opening angle θij is fixed to cos nθij = −1, 0, and 1, respectively.

Finally we plot X(Rij , θij) for various parameter val-
ues in Figures 1 and 2. In Figure 1, X(Rij , θij) is plot-
ted as a function of the asymmetry Rij . It grows quite
rapidly as Rij approaches to zero for cosnθij 6= 1. It
also shows stronger sensitivity on the slope β at larger
Rij . As is clear in Figure 2, the opening angle θij be-
comes more important for more symmetric lenses. All
these behaviors are consistent with analytical arguments
presented above.

4. TIME DELAYS IN REALISTIC LENS MODELS

In this section, we consider more realistic situations to
in order to study expected spread of the reduced time de-
lay Ξ as a function of image configurations. Specifically
we adopt theoretically and observationally determined
distributions of lens potentials such as ellipticities, ex-
ternal shear, substructures, and multipole components
to make predictions on realistic probability distributions
of Ξ. The methodology is similar to that in Keeton et
al. (2003, 2005) who studied cusp and fold relations to
identify lenses with small-scale structure.

4.1. Input Models

As primary lens galaxies we only consider elliptical
galaxies because most (> 80%) of quasar lenses are
caused by massive elliptical galaxies (e.g., Turner et al.
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Fig. 2.— Same as Figure 1, but X(Rij , θij) is plotted as a
function of the opening angle θij while fixing Rij = 0.1 (top panel),
0.5 (middle panel), and 0.9 (bottom panel).

1984; Kochanek 2006; Möller et al. 2007). We model the
lens galaxy as a power-law elliptical mass distribution.
The surface mass distribution is given by

κG(x) =
α

2

[

REin

r
√

1 − ε cos 2(θ − θe)

]2−α

, (17)

where REin is the Einstein ring radius and θe is the po-
sition angle of ellipse. The case α = 1 corresponds to
the standard singular isothermal mass distribution. The
ellipticity e, which is defined by e = 1 − q with q being
the axis ratio of the ellipse, is related to ε by

ε =
1 − (1 − e)2

1 + (1 − e)2
. (18)

The corresponding lens potential can be described by

φG(x) =
1

α
R2−α

Ein rαG(θ), (19)

with G(θ) being the complex function of θ, but notice
that G(θ) = 1 if e = 0.

Many previous work has shown that lens galaxies in-
deed have nearly isothermal mass distribution. Rusin &
Kochanek (2005) obtained α = 0.94± 0.17 by combining
the Einstein radii of many lensed quasars with the fun-
damental plane relation of elliptical galaxies. The slope

of the galaxy density profile α = 1.09± 0.01 constrained
from the faint third image of PMN J1632−0033 is con-
sistent with the nearly isothermal density profile (Winn
et al. 2004). Detailed mass modeling of B1933+503
also indicates nearly isothermal profile of the lens galaxy
(Cohn et al. 2001). By using measured velocity disper-
sions of lens galaxies of several lensed quasars, Treu &
Koopmans (2004, see also Hamana et al. 2007) derived
α = 1.25± 0.2. Koopmans et al. (2006) put tighter con-
strains α = 0.99+0.03

−0.02, but the results are derived from
a sample of much lower redshift lens systems than typi-
cal time delay quasars. From these results, in this paper
we adopt the Gaussian distribution α = 1 ± 0.15 as a
conservative input distribution of the slope.3 For the el-
lipticity, we use the Gaussian distribution with median
e = 0.3 and dispersion 0.16 that is consistent with ob-
served distributions of isodensity contour shapes of el-
liptical galaxies (Bender et al. 1989; Saglia et al. 1993;
Jorgensen et al. 1995; Rest et al. 2001; Sheth et al. 2003).

To allow more complex mass distribution of the galaxy,
we add higher order multipole terms to the potential:

φM(x) =
1

α
R2−α

Ein rα
∑

m

(1−m2)Am cosm(θ − θm). (20)

The factor 1 − m2 is inserted such that Am denotes the
standard parametrization for the deviation of the mass
density from an ellipsoid. We include only m = 3 and 4
terms, because m ≥ 5 perturbations have generally not
been reported. For both A3 and A4, the amplitudes are
distributed by the Gaussian with mean zero and disper-
sion 0.01 that is roughly consistent with reported distri-
butions (Bender et al. 1989; Saglia et al. 1993; Rest et al.
2001). It is also compatible with the level of the deviation
inferred from individual modeling of lensed quasar sys-
tems (Trotter et al. 2000; Kawano et al. 2004; Kochanek
& Dalal 2004; Congdon & Keeton 2005; Yoo et al. 2006).
We assume that position angles of these multipole per-
turbations and that of an ellipsoid are uncorrelated with
each other. In addition, we neglect the correlation of e
and A4 (Keeton et al. 2003) for simplicity. Note that
these multipole perturbations do not affect Ξ if the lens
galaxy is isothermal, α = 1, but can change quantita-
tive results when combined with non-isothermal profiles
and/or other small-scale structures. Since the effect of
A4 itself is small, we expect the effect of the correlation
between e and A4, which we have neglected here, is also
small.

We also include external perturbations that are known
to be important for individual mass modeling (e.g., Kee-
ton et al. 1997). The potential of lowest order external
shear is given by

φE2(x) = −γ

2
r2 cos 2(θ − θγ). (21)

We adopt a log-normal distribution with median γ =
0.05 and dispersion 0.2 dex for the distribution of shear

3 The adopted distribution does not include the mean value of
Treu & Koopmans (2004) within its 1-σ uncertainty. However, we
note that the result of Treu & Koopmans (2004) were drawn from
only five lensed quasar systems and therefore scatter should be
large. Moreover, many of lens systems used by Treu & Koopmans
(2004) appear to reside in dense environments, which may explain
their large value of α. Indeed, Rusin & Kochanek (2005) used a
larger sample of 22 lenses to derive the slope that is more consistent
with our input distribution.
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Fig. 3.— Dependences of the reduced time delay Ξ on several lens potentials as a function of asymmetry Rij (left panels) or opening angle
θij (right panels). In each panel, reduced time delays of 500 double lenses (filled squares) and 500 quadruple lenses (open circles) obtained
by the Monte-Carlo simulations are plotted. Magnification bias is not considered at this stage. From top to bottom panels, we consider
the external shear φE2 (eq. [21]), third order external perturbation φE3 (eq. [22]), subhalos φS (eq. [24]), and non-isothermality α 6= 1 in
the primary lens potential φG (eq. [19]). Besides the bottom panels, we adopt an isothermal elliptical lens as primary lens galaxies (eq.
[19], α = 1) and ignore the other perturbations (e.g., in the second row we only consider φE3 and ignore the external shear and subhalos),
thus the effect of each potential can be measured by the deviation from Ξ = 1. In all simulations higher order multipoles (eq. [20]) are
included.

amplitude. It is consistent with expected shear distribu-
tion from N -body simulations (Holder & Schechter 2003;
Dalal & Watson 2004). In addition to external shear,
we consider third order external perturbation (Kochanek
1991; Bernstein & Fischer 1999)

φE3(x) =
σ

4
R−1

Einr
3 [cos(θ − θσ) − cos 3(θ − θσ)] . (22)

Here we assumed the external perturber is a singular
isothermal object to relate the amplitudes and position
angles of n = 1 and n = 3 terms. In general we have
σ ≈ γ2 (Bernstein & Fischer 1999), thus for the am-
plitude we adopt a log-normal distribution with median
σ = γ2 and dispersion 0.2 dex. The adopted amplitude is
roughly consistent with values obtained from mass mod-
eling of individual lens systems (e.g., Kawano et al. 2004).
We allow small mis-alignment of the position angle θσ ,
which could happen when the external perturber is not

spherical, by adopting the Gaussian distribution around
θγ with dispersion 10◦.

Finally we consider substructures in the lens galaxy. A
significant fraction of substructures (subhalos) in galax-
ies have been predicted as a natural consequence of cold
dark matter cosmology (Moore et al. 1999; Klypin et al.
1999). Anomalous flux ratios observed in many gravita-
tional lens systems indicate that substructures are indeed
present (Metcalf & Madau 2001; Chiba 2002; Dalal &
Kochanek 2002; Bradač et al. 2002; Keeton et al. 2005;
Kochanek & Dalal 2004; Metcalf et al. 2004; Chiba et
al. 2005). Note that small perturbations may also come
from small halos along the line-of-sight (Keeton 2003;
Chen et al. 2003; Oguri 2005; Metcalf 2005). Although
time delays are thought to be less sensitive to small-scale
structure than flux ratios that are determined by the sec-
ond derivative of the time delay surface, they might be
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Fig. 4.— Contours of constant conditional probability p(Ξ|Rij) (left panels) and p(Ξ|θij) (right panels) computed from Monte-Carlo
simulations of realistic lens potentials. The contours are drawn at the 68% (solid lines), 95% (dashed lines), and 99.7% (dotted lines)
confidence levels. Upper panels show the conditional probability for double lenses, whereas lower panels are for quadruple lenses. For
double lenses we show p(Ξ|θij) only at θij & 110◦ because we have too few image pairs with θij . 110◦ to construct the probability
distribution.

affected to some extent particularly when two images are
close to each other. We model each subhalo by pseudo-
Jaffe (truncated singular isothermal) profile. The lens
potential of this profile is

φPJ,k(x)= bk

[

r −
√

r2 + a2
k

−ak

2
ln

∣

∣

∣

∣

∣

√

r2 + a2
k − ak

√

r2 + a2
k + ak

∣

∣

∣

∣

∣

+ ak ln r

]

, (23)

where ak is a truncation radius and bk is a mass normal-
ization that coincides the Einstein radius for sufficiently
large ak. We adopt ak =

√
bkRE assuming the truncation

radius of the tidal radius of the subhalo (see, e.g., Metcalf
& Madau 2001). For the velocity distribution we assume
N(> v) = (10v/V )−2.7 inside three times the Einstein
radius of the lens galaxy, where v and V are velocity dis-
persions of the subhalo and halo, respectively. The ve-
locities can be converted to bk through bk/RE ∝ (v/V )2.
We distribute subhalos randomly with an uniform spa-
tial density in the projected two-dimensional plane in
order to take account of the suggested anti-bias of the
subhalo spatial distribution (De Lucia et al. 2004; Mao
et al. 2004; Oguri & Lee 2004). The resulting mass frac-

tion of subhalos at around the Einstein radius is ∼ 0.5%,
being consistent with the expectation from N -body sim-
ulations and analytic calculation (e.g., Mao et al. 2004;
Oguri 2005). The effect of subhalos is described by the
sum of the lens potential of each subhalo:

φS(x) =
∑

k

φPJ,k(x − xsub,k) − 1

2
r2κ̄sub. (24)

Here we subtracted the convergence averaged over all
subhalos, κsub, to conserve the total mass and radial pro-
file of the lens galaxy. We include only 100 most massive
subhalos mainly for computational reason, but small sub-
halos are expected to have only very small effect on time
delays.

4.2. Simulation Method

Using the model described above, we perform a large
Monte-Carlo simulation containing > 106 lensed image
pairs. The simulation is done by first generating a lens
potential according to the distributions summarized in
§4.1. All lengths are scaled by the Einstein ring radius
RE: Since our results do not depend on adopted length
scales, we fix RE to unity in the simulations. We gener-
ate 10000 different lens potentials in total. For each lens
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Fig. 5.— Contour plot of median (left panels) and scatter (right panels) of the conditional probability p(Ξ|Rij , θij) in the Rij-θij plane.
Here the scatter is defined by the 68% confidence interval width in units of log Ξ. The probability distribution for double (upper panels)
and quadruple (lower panels) lenses are shown separately. Thick solid lines indicate the limit beyond which the number of image pairs in
Monte-Carlo simulations is too small to construct the conditional probability.

potential, we place random sources with an uniform den-
sity of ∼ 100R−2

E in the source plane. We use a public
software lensmodel (Keeton 2001) to solve the lens equa-
tion and compute time delays between multiple images.
The uniform sampling in the source plane indicates that
each lens potential is automatically weighted by the lens-
ing cross section (see Keeton et al. 2003). To account for
magnification bias as well, for each source we compute
the total magnification factor µtot, and when construct-
ing probability distributions of reduced time delays (see

below) we include a weight of µq−1
tot , where q is a power-

law slope of the luminosity function of source quasars.
We adopt q = 2.1 that is relevant for lenses identified by
the CLASS (Myers et al. 2003).

From the ensemble of image pairs, we compute condi-
tional probability distribution functions of the reduced
time delay Ξ for given values of the asymmetry Rij

and/or opening angle θij , i.e., p(Ξ|Rij), p(Ξ|θij), and
p(Ξ|Rij , θij). The probability distributions are computed
separately for double and quadruple lenses to see how

different distributions they exhibit. In what follow we
ignore central faint images that are unobserved in most
cases.

4.3. Contribution of Each Potential

Before presenting results that include all potentials, it
is useful to see how each potential affects the distribu-
tion of Ξ. To see this we adopt isothermal elliptical lens
potential plus multipole terms (φG + φM, α = 1), and
add each lens potential: Since the isothermal galaxy al-
ways yields Ξ = 1 (see §2) the effect of each potential
term can be estimated by the deviation from Ξ = 1. We
also study the effect of non-isothermality (α 6= 1). The
results are summarized in Figure 3. First, the effect of
external shear appears as a scatter around Ξ = 1, which
is consistent with discussion above (§3) as well as that of
Witt et al. (2000). Both the diverging scatter at Rij → 0
and the modest increase of the scatter at smaller θij are
expected from our analytic examination. The scatter in-
troduced by the third order external perturbation and
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Fig. 6.— Same as Figure 4, but observed values of Ξ with error-bars (see Table 1) are plotted on the contours by filled triangles with
error-bars. The Hubble constant of h = 0.73 is assumed when computing Ξ from observed time delays.

subhalos is smaller than that of external shear, but it is
still noticeable particularly for symmetric configurations.
This means that even if we can estimate external shear
and its orientation accurately for individual lens system
by detailed mass modeling, these third order perturba-
tions or subhalos can shift time delays, although these
small perturbations mainly affect image pairs with small
opening angles and only increase the scatter rather than
shift the mean. We comment that the use of image pairs
with small opening angles is also limited by the larger
uncertainties of their time delay measurements. As ex-
pected, non-isothermality has a large impact on Ξ, but
the size of its scatter is less dependent on image config-
urations compared with other potentials.

It is worth noting that there are systematic deviations
from Ξ = 1 for a few specific image configurations. For
instance, at small θij external shear preferentially pro-
duces image pairs with time delays smaller than the
isothermal case. In addition, very asymmetric image
pairs (Rij ∼ 1) tend to have larger time delays when we
consider non-isothermal lens galaxies. Such systematic
shifts were not predicted in our analytic arguments in §3,
thus invite careful consideration. We find that the selec-
tion effect can explain these systematic shifts. For very
asymmetric pairs, such configurations are possible only
when the lens galaxy has a profile steeper than isother-

mal for which inner critical curve is degenerated at the
center. If the density profile is shallower than isothermal,
any images (expect central faint images that we ignore
in this paper) are outside the inner critical curve. This
means that very asymmetric configuration, in which one
image lies very close to the center of the lens potential,
never occurs for the profile shallower than isothermal.
Since shallower profiles correspond to smaller Ξ, this in-
creases the mean Ξ at Rij ∼ 1. The effect of external
shear is more complicated, but can be explained as fol-
lows. Consider a close pair of two images. If we add
external shear whose position angle direction is perpen-
dicular to the segment that connects the two images, it
separates two images. On the other hand, external shear
that is parallel to the segment makes the two images
closer. Therefore, combined with the steep dependence
of the frequency of close image pairs on the opening an-
gle, this results in the situation that at fixed small open-
ing angle the direction of external shear is more likely
to be parallel to the segment than perpendicular. The
discussion in §3 indicates that the parallel shear yields
smaller time delays Ξ < 1 for fixed image positions, thus
we can conclude that close image pairs have statistically
smaller time delays than those expected without external
shear.
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4.4. Conditional Probability Distributions

We are now ready to compute conditional probabil-
ity distributions of the reduced time delay Ξ with all
lens potentials presented in §4.1. Figure 4 shows con-
tours of constant conditional probability projected to
one-dimensional surface, p(Ξ|Rij) and p(Ξ|θij). The be-
haviors of contours can well be understood from discus-
sions in §3 and §4.3. In particular, systematically small
Ξ at small opening angles and large Ξ for very asymmet-
ric image pairs, which we discussed in §4.3, are clearly
seen. It appears quadruple lenses have larger scatter
on average: This is because strong perturbations (exter-
nal shear, third order perturbation and subhalos), which
cause the scatter around Ξ = 1, also enhance the lensing
cross section for quadruple images.

To study the conditional probability distribution as a
function of both Rij and θij , p(Ξ|Rij , θij), in Figure 5
we plot contours of median and 68% confidence inter-
val of the probability distribution in the Rij-θij plane.
The features we have discussed, such as the divergence
of scatter at Rij → 0, smaller median time delays for
small opening angle pairs, larger median time delays for
asymmetric pairs, can be seen in this Figure as well. In
addition, the scatter presented here is useful to check
which lens systems are less dependent on lens potentials:
Our result indicates that asymmetric image pairs that
are collinear with their lens galaxies (θij ∼ 180◦) have
the least scatter and therefore are more suitable for the
determination of the Hubble constant. It is interesting to
note that in the statistical sense double lenses are more
valuable than quadruple lenses because it shows a smaller
sensitivity to various lens potentials. In addition, double
lenses have advantages of easier measurements of time
delays in observations and smaller fractional errors (be-
cause double lenses have longer time delays than quads).
This is in contrast to individual mass modeling in which
quadruple lenses are more useful because of much more
observational constraints on mass models.

5. COMPARISON WITH OBSERVED TIME DELAYS

We now examine if the conditional distribution com-
puted in §4 is consistent with the observed distribution
of time delays. Since we need to assume the Hubble con-
stant in order to convert observed time delays to reduce
time delays Ξ, in this section we adopt h = 0.73 that was
obtained from the combined analysis of the cosmic mi-
crowave background (CMB) anisotropy and clustering of
galaxies (Tegmark et al. 2006). We derive reduced time
delays for the 17 published time delay quasars (41 image
pairs), which is summarized in Table 1.

First, we compare these reduced time delays with the
conditional probability plotted in Figure 4. We show
p(Ξ|Rij) and p(Ξ|θij) with observed values overplotted
in Figure 6. It appears that the data are roughly consis-
tent with our probability distribution from simulations.
The large scatter of very symmetric lenses is also seen
for observed time delays. It is interesting that observed
time delays appear to exhibit the decline of time delays at
small opening angles, just as our theoretical model pre-
dicts. We may need more quasar time delays to confirm
this trend observationally.

More directly, observed time delays should be com-
pared with the probability distribution for given Rij and
θij , i.e., p(Ξ|Rij , θij). In Figure 7 we compare observed

Ξ with the probability distribution of Ξ expected from
corresponding image configuration of each image pair.
We find that the distributions agree with observed val-
ues on average, similarly as Figure 6. The reduced time
delays of B0218+357 and SBS0909+532 have larger er-
rors because the positions of the lens galaxies are poorly
determined. The large error of HE0435−1223 AC comes
from small r2

j − r2
i , whereas that of B1422+231 is sim-

ply because of the large time delay measurement errors.
We comment that RXJ0911+0551 and Q0957+561 has
significantly smaller Ξ compared with our model predic-
tion. This is clearly because of the cluster convergence:
The two lenses lie in near the centers of clusters and
therefore the observed time delays are pushed down by
the convergence coming from dark matter in the clusters
(see §6). The reduced time delays of B1608+656 and
SBS1520+530 are largely offset from the predicted val-
ues, and this is probably because of satellite galaxies in
the lens systems that significantly affect the time delays.
The large time delays of RXJ1131−1231 AB and AC were
also noted by Morgan et al. (2007): Our result indicates
that the broadened theoretical distributions due to small
perturbations are enough to explain the observed high
values of the time delays. The large offsets of B1422+231
and SDSS J1650+4251 may come from the large uncer-
tainties of measured time delays (see §6).

6. IMPLICATIONS FOR H0

In this section, we turn the problem around and con-
strain the Hubble constant using the conditional prob-
ability distribution constructed from the Monte-Carlo
simulations. Although the current sample of observed
time delays summarized in Table 1 is somewhat hetero-
geneous and may not be appropriate for the statistical
study, we do this to demonstrate how we can constrain
the Hubble constant from the probability distribution.
We basically take all lens systems listed in Table 1, but
adopt the following setup to reduce systematic errors.

• We do not use the AB time delay of SDSS
J1004+4112. It is a lens system caused by a mas-
sive cluster of galaxies, thus our input distribution,
which is designed for galaxies, does not represent a
fair distribution of lens potentials. Moreover, the
center of the lens potential appears to be offset from
the position of the brightest cluster galaxy (Oguri
et al. 2004), which makes it inaccurate to estimate
important parameters such Ξ, Rij , and θij .

• Both RXJ0911+0551 and Q0957+561 are known to
reside in the cluster environment, thus they are sig-
nificantly affected by the cluster convergence κclu.
Since the mass-sheet degeneracy says Ξ ∝ ∆t ∝
1 − κclu, we divide reduce time delays Ξ for these
two systems by 1 − κclu in order to deconvolve the
effect of the cluster convergence. As the values of
κclu, we adopt κclu = 0.3±0.04 for RXJ0911+0551
(Hjorth et al. 2002), and κclu = 0.26 ± 0.08 for
Q0957+561 (Fischer et al. 1997).

In summary, we use 16 lensed quasar systems (40 image
pairs) to constrain the Hubble constant. For each image
pair, we compute the likelihood as follows:

Lp(h) =

∫

dp

dΞ
(Ξ|Rij,obs, θij,obs)G(Ξ|Ξobs(h))dΞ, (25)
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TABLE 1
Summary of Observed Quasar Time Delays

Lens Name Nimg zs zl Images Rij θij [deg] ∆t [days] Ξ(h = 0.73)a References

B0218+357 2 0.944 0.685 AB 0.167 ± 0.181 176.5 ± 21.3 10.5 ± 0.2 3.835 ± 4.155 1, 2, 3, 4, 5
HE0435−1223 4 1.689 0.455 AD 0.099 ± 0.002 103.9 ± 0.2 14.4+0.9

−0.8 0.704+0.045
−0.041 6, 7, 8

AB 0.053 ± 0.001 79.3 ± 0.2 8.0+0.8
−0.7 0.671+0.069

−0.060

AC 0.002 ± 0.002 155.1 ± 0.2 2.1+0.7
−0.8 5.360+6.070

−6.150
BD 0.046 ± 0.002 176.8 ± 0.3 6.4 ± 0.8c 0.750 ± 0.100
CD 0.100 ± 0.002 100.9 ± 0.3 12.3 ± 0.8c 0.590 ± 0.040
BC 0.054 ± 0.001 75.9 ± 0.3 5.9 ± 0.8c 0.479 ± 0.066

RXJ0911+0551 4 2.800 0.769 A1B 0.452 ± 0.003 150.8 ± 0.4 143.0 ± 6.0 0.488 ± 0.021 9, 10, 11, 12
A2B 0.408 ± 0.003 179.3 ± 0.5 149.0 ± 8.0 0.530 ± 0.029
A3B 0.476 ± 0.003 139.6 ± 0.5 154.0 ± 16.0 0.516 ± 0.054

SBS0909+532 2 1.377 0.830 AB 0.291 ± 0.223 139.7 ± 17.6 45.0+5.5
−0.5 0.891+0.657

−0.648 4, 13, 14, 15
FBQ0951+2635 2 1.246 0.260 AB 0.591 ± 0.007 158.8 ± 1.2 16.0 ± 2.0 1.134 ± 0.142 12, 16, 17, 18
Q0957+561 2 1.413 0.36 AB 0.669 ± 0.002 154.5 ± 0.5 417.0 ± 1.5 0.558 ± 0.002 19, 20, 21, 22
SDSS J1004+4112 5 1.734 0.68 ABb 0.006 ± 0.001 25.9 ± 0.1 38.4 ± 1.0 0.315 ± 0.041 23, 24, 25, 26
HE1104−1805 2 2.319 0.729 AB 0.312 ± 0.002 175.5 ± 0.3 152.2+2.8

−3.0 0.738+0.015
−0.016 4, 27, 28, 29, 30

PG1115+080 4 1.735 0.310 A1B 0.105 ± 0.003 103.4 ± 0.4 11.7 ± 1.2 1.115 ± 0.120 31, 32, 33, 34, 35, 36
A2B 0.082 ± 0.004 127.5 ± 0.4 11.7 ± 1.2 1.487 ± 0.166
BC 0.191 ± 0.003 114.7 ± 0.3 25.0 ± 1.6 1.069 ± 0.070
A1C 0.088 ± 0.003 141.9 ± 0.3 13.3 ± 1.0 1.032 ± 0.083
A2C 0.110 ± 0.003 117.8 ± 0.3 13.3 ± 1.0 0.857 ± 0.067
A1A2 0.022 ± 0.003 24.1 ± 0.3 0.149 ± 0.006 0.057 ± 0.007

RXJ1131−1231 4 0.658 0.295 AB 0.008 ± 0.001 32.3 ± 0.1 12.0+1.5
−1.3 2.660+0.411

−0.376 37, 38

AC 0.028 ± 0.000 33.7 ± 0.0 9.6+2.0
−1.6 0.589+0.123

−0.098
BC 0.020 ± 0.001 66.0 ± 0.1 2.2 ± 1.6 0.187 ± 0.136
AD 0.311 ± 0.002 179.2 ± 0.1 87.0 ± 8.0 0.863 ± 0.079
BD 0.318 ± 0.002 148.5 ± 0.2 99.0 ± 8.0c 0.940 ± 0.076
CD 0.335 ± 0.002 145.5 ± 0.1 96.6 ± 8.0c 0.825 ± 0.068

B1422+231 4 3.620 0.337 AB 0.023 ± 0.002 28.4 ± 0.2 1.5 ± 1.4 0.726 ± 0.680 34, 39, 40
AC 0.022 ± 0.003 74.9 ± 0.3 7.6 ± 2.5 3.461 ± 1.216
BC 0.045 ± 0.003 46.5 ± 0.3 8.2 ± 2.0 1.924 ± 0.482

SBS1520+530 2 1.855 0.717 AB 0.501 ± 0.007 157.1 ± 0.8 130.0 ± 3.0 1.444 ± 0.037 41, 42, 43
B1600+434 2 1.589 0.414 AB 0.640 ± 0.073 179.4 ± 14.2 51.0 ± 2.0 1.242 ± 0.150 44, 45, 46, 47
B1608+656 4 1.394 0.630 AB 0.127 ± 0.004 105.9 ± 0.4 31.5+2.0

−1.0 0.525+0.037
−0.023 48, 49, 50, 51, 52

BC 0.056 ± 0.002 65.1 ± 0.3 36.0 ± 1.5 1.202 ± 0.072
BD 0.338 ± 0.005 126.4 ± 0.6 77.0+2.0

−1.0 0.681+0.020
−0.013

AC 0.072 ± 0.002 40.8 ± 0.2 4.5 ± 1.5c 0.150 ± 0.050
AD 0.220 ± 0.006 127.8 ± 0.7 45.5 ± 1.5c 0.858 ± 0.036
CD 0.287 ± 0.006 168.5 ± 0.7 41.0 ± 1.5c 0.494 ± 0.021

SDSS J1650+4251 2 1.547 0.577 AB 0.420 ± 0.043 145.8 ± 6.8 49.5 ± 1.9 1.415 ± 0.149 53, 54
PKS1830−211 2 2.507 0.89 AB 0.360 ± 0.157 160.5 ± 20.3 26.0+4.0

−5.0 0.874+0.401
−0.414 4, 55, 56, 57, 58

HE2149−2745 2 2.033 0.603 AB 0.594 ± 0.007 178.9 ± 1.5 103.0 ± 12.0 1.161 ± 0.136 12, 59, 60

References. — (1) Patnaik et al. 1993; (2) Browne et al. 1993; (3) Biggs et al. 1999; (4) Lehár et al. 2000; (5) Cohen et al. 2003; (6)
Wisotzki et al. 2002; (7) Morgan et al. 2005; (8) Kochanek et al. 2006b; (9) Bade et al. 1997; (10) Kneib et al. 2000; (11) Hjorth et al. 2002;
(12) CASTLES (http://cfa-www.harvard.edu/castles/); (13) Oscoz et al. 1997; (14) Lubin et al. 2000; (15) Ullán et al. 2006; (16) Schechter
et al. 1998; (17) Jakobsson et al. 2005; (18) Eigenbrod et al. 2007; (19) Walsh et al. 1979; (20) Young et al. 1981; (21) Kundic et al. 1997;
(22) Barkana et al. 1999; (23) Inada et al. 2003; (24) Oguri et al. 2004; (25) Inada et al. 2005; (26) Fohlmeister et al. 2007; (27) Wisotzki
et al. 1993; (28) Lidman et al. 2000; (29) Ofek & Maoz 2003; (30) Poindexter et al. 2006; (31) Weymann et al. 1980; (32) Schechter et al.
1997; (33) Barkana 1997; (34) Tonry 1998; (35) Impey et al. 1998; (36) Chartas et al. 2004; (37) Sluse et al. 2003; (38) Morgan et al. 2007;
(39) Patnaik et al. 1992; (40) Patnaik & Narasimha 2001; (41) Chavushyan et al. 1997; (42) Burud et al. 2002b; (43) Faure et al. 2002; (44)
Jackson et al. 1995; (45) Fassnacht & Cohen 1998; (46) Koopmans et al. 1998; (47) Burud et al. 2000; (48) Myers et al. 1995; (49) Fassnacht
et al. 1996; (50) Koopmans & Fassnacht 1999; (51) Fassnacht et al. 2002; (52) Koopmans et al. 2003; (53) Morgan et al. 2003; (54) Vuissoz
et al. 2007; (55) Subrahmanyan et al. 1990; (56) Wiklind & Combes 1996; (57) Lovell et al. 1998; (58) Lidman et al. 1999; (59) Wisotzki et
al. 1996; (60) Burud et al. 2002a.

Note. — All measured time delays are listed, except time delays between images A1—A3 of RXJ0911+0551 and images A—D of
Q2237+030 (Vakulik et al. 2006) for which error-bars are large and therefore the detections are marginal. For Q2237+030, a possible X-ray
detection of the time delay between image A and B was also reported by Dai et al. (2003). Errors indicate 1σ.
a The values of reduced time delays Ξ computed from observed time delays and image configurations. For the Hubble constant h = 0.73 is
assumed. Errors of Ξ come from those of ∆t and |r2

j − r2
i |.

b We assume the position of the brightest cluster galaxy G1 for the center of the

lens potential, though mass modeling implies the significant offset of the potential center from G1 (Oguri et al. 2004).c The values and errors
of time delays were not directly given in the literature, thus we inferred them from those of other image pairs.
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Fig. 7.— The conditional probability distributions p(Ξ|Rij , θij) are compared with reduced time delays Ξ computed from observed time

delays of 17 published time delay quasars. Again, the Hubble constant of h = 0.73 is assumed. Solid line curves are in fact differential
probability distribution . In each panel, we draw the differential probability distribution dp/d log Ξ computed from observed values of Rij

and θij by a solid line. Reduced time delays from observed time delays are shown by vertical dashed lines plus error-bars. See Table 1 for
the summary of observations.
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Fig. 8.— Statistical constraint on the Hubble constant from
16 time delay quasars (40 image pairs). Thick solid line indicates
goodness-of-fit parameter from all 16 lens systems plotted as a
function of the Hubble constant h. The resulting Hubble constant
is h = 0.70+0.03

−0.02 at 68% confidence and h = 0.70+0.09
−0.05 at 95% confi-

dence. The Hubble constant estimated using jackknife resampling
has a larger error, h = 0.70 ± 0.06 at 68% confidence (see text for
details). Thin solid lines show goodness-of-fit parameter for each
lens system.

where Rij,obs, θij,obs, Ξobs are those for this specific image
pair listed in Table 1, and G(Ξ|Ξobs(h)) indicates the
Gaussian distribution with median Ξ = Ξobs. Note that
calculating Ξobs from observed time delays require the
Hubble constant h, hence Lp is a function of h. Then
we compute the effective chi-square by summing up the
logarithm of the likelihoods:

χeff(h) =
∑

quasar

1

np

∑

pair

[−2 lnLp(h)] . (26)

The first summation runs over lens systems, whereas the
second summation runs over image pairs for each lens
system; the number of pairs for each lens is denoted by
np. Note that np = 1 all double lens systems, and a
quadruple lens system should have np ≤ 4C2 = 6 depend-
ing on how many time delays have been observed for the
lens system. The factor 1/np was introduced such that all
lens systems have equal weight on the effective chi-square
irrespective of the number of image pairs. We derive the
best-fit value and its error of h by the standard way using
a goodness-of-fit parameter ∆χeff ≡ χeff − χeff(min).

We show our result in Figure 8. The Hubble constant
measured from the combination of all 16 lens systems
is h = 0.70+0.03

−0.02 at 68% confidence and h = 0.70+0.09
−0.05 at

95% confidence. The obtained value is in good agreement
with other estimates, such as the local distance measure-
ment using Cepheid calibration (Freedman et al. 2001)
and the CMB anisotropy (Tegmark et al. 2006; Spergel
et al. 2007). The constraint from each lens system, which
is plotted in Figure 8, is summarized in Table 2.

We also derive the Hubble constant using the jackknife
resampling by regarding each 16 lens system as a subsam-
ple. The result h = 0.70±0.06 at 68% confidence has the
same mean but larger error than that estimated from the
effective chi-square. There are several possible source of
this difference. One is the underestimate of the width of
the input distributions. In particular, many of the time

TABLE 2
Hubble Constant from Each Lens

System

Lens Name h (1σ range)

B0218+357 0.21 (–)
HE0435−1223 1.02 (0.70–1.39)
RXJ0911+0551 0.96 (0.75–1.21)
SBS0909+532 0.84 (0.47–)
FBQ0951+2635 0.67 (0.56–0.81)
Q0957+561 0.99 (0.82–1.17)
HE1104−1805 1.04 (0.92–1.22)
PG1115+080 0.66 (0.49–0.84)
RXJ1131−1231 0.79 (0.59–1.03)
B1422+231 0.16 (–0.36)
SBS1520+530 0.53 (0.46–0.61)
B1600+434 0.65 (0.54–0.77)
B1608+656 0.89 (0.77–1.20)
SDSS J1650+4251 0.53 (0.44–0.63)
PKS1830−211 0.88 (0.58–)
HE2149−2745 0.69 (0.57–0.82)
All 0.70 (0.68–0.73)

Note. — The Hubble constant and
its error are estimated from the effective
chi-square.

delay quasar systems has been claimed to be affected by
lens galaxy environments (e.g., Morgan et al. 2005; Fass-
nacht et al. 2006; Momcheva et al. 2006; Williams et al.
2006; Auger et al. 2007), and thus our input strength of
external shear might be somewhat smaller than the true
one (see also discussion in §7). Another possible source
is the non-Gaussianity of measured time delays: In equa-
tion (25) we assumed the Gaussian distribution for the
measurement uncertainties of time delays, but sometimes
they are quite different from the Gaussian distribution.4

We note that in our method we can in principle include
non-Gaussianity by just replacing G(Ξ) in equation (25)
with any appropriate probability distributions, as long
as we know such distributions.

7. DISCUSSIONS AND CONCLUSION

In this paper, we have studied time delays between
multiply imaged quasars. Adopting the reduced time de-
lay, which is a measure of how the lens potential is com-
plicated compared with the simple isothermal form, we
have explored the dependence of time delays on various
complex structure of lens potentials such as external per-
turbations, non-isothermality, and substructures. The
distribution of time delays has been studied as a func-
tion of image configuration which we characterize using
two dimensionless quantities, the asymmetry and open-
ing angle of an image pair. We have pointed out that the
sensitivity on lens potentials is quite dependent on the
image configuration. For instance, more symmetric im-
age pairs are more affected by a small change of the lens
potential. Image pairs with smaller opening angles are
also more sensitive to lens potentials. In particular time
delays of close image pairs are very sensitive to higher-
order external perturbations and substructures that are
very hard to be constrained from mass modeling even for

4 Among time delays listed Table 1, those of SDSS J1650+4251
and B1422+231 could be significantly different from the true values
(C. S. Kochanek, private communication). We perform the same
analysis excluding these two systems and find the Hubble constant
to be h = 0.70+0.03

−0.04 at 68% confidence from the effective chi-square.
Therefore our result is not biased significantly by these systems.
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best studied lens systems. In addition, those pairs usu-
ally have the largest relative uncertainties of time delay
measurements. Therefore we conclude that it is quite
difficult to extract any information on the Hubble con-
stant or the mass distribution from close image pairs. It
is interesting to note that perturbations on lens potential
not only introduce scatter around the mean but also can
systematically shift the distribution of time delays. One
such example is smaller time delays for smaller opening
angle image pairs, which is caused by external shear.

We have performed Monte-Carlo simulations to de-
rive a probability distribution of reduced time delays
for each image configuration. Input distributions are de-
termined from observational and theoretical constraints.
The distribution is weighted by the lensing cross sec-
tion and magnification bias, allowing a realistic estimate
of time delay distributions. The probability distribu-
tion was then compared with observed time delays. We
have shown that the distribution of time delays com-
puted from our simulations is in good agreement with
observed time delays. In particular, distributions of ob-
served time delays also exhibit strong dependence of im-
age configuration in a consistent manner with our theo-
retical expectations. The probability distribution can be
used to constrain the Hubble constant. We have found
that 16 published time delay quasars constrain it to be
h = 0.70+0.03

−0.02 at 68% confidence using the effective chi-
square or h = 0.70 ± 0.06 estimated using jackknife re-
sampling, consistent with other estimates.

An important caveat is that our lensed quasar sample
is quite heterogeneous. In particular, it should be noted
that current time delay quasars (see Table 1) have sig-
nificantly larger image separations on average compared
with the other quasar lenses: The median image separa-
tion of time delay quasars listed in Table 1 is 1.′′7 (image
separations before and after the median are 1.′′5 and 2.′′1),
whereas that of all lensed quasars is ∼ 1.′′4. Quasar lenses
with larger image separations are more likely to lie in
dense environments because both the image separation
and biased cross section are boosted by surrounding dark
matter (Oguri et al. 2005; Oguri 2006), thus the Hubble
constant inferred from those lenses are more affected by
the environmental convergence. Indeed, the association
of group/cluster has been reported for more than half of
the time delay quasars (e.g., Morgan et al. 2005; Fass-
nacht et al. 2006; Momcheva et al. 2006; Williams et al.
2006; Auger et al. 2007). In addition, our input distribu-
tions of external perturbations may be underestimated
for these large separation lenses. To estimate this sys-
tematic effect, we exclude four lensed quasars with image
separation larger than 3′′ and repeat the analysis done in
§6. The resulting Hubble constant h = 0.67+0.04

−0.03 at 68%
confidence from the effective chi-square is consistent with
our full result, thus we conclude that the effect of lens
galaxy environments is not so drastic here. However, to
minimize the systematic effect, in the future we should
apply our statistical method to well-defined samples of
lensed quasars such as the CLASS (Myers et al. 2003;
Browne et al. 2003), SQLS (Oguri et al. 2006), and those
obtained in future lens surveys.

Another source of the systematic effect is the uncer-
tainty of our input distribution of lens potentials. Among
others, the most important systematic error comes from
the uncertainty of the mean value of the slope of the

radial profile, α. While α = 1 (isothermal) for the
mean appears to be a reasonable choice, direct studies
of lens galaxies (e.g., Treu & Koopmans 2004; Rusin &
Kochanek 2005; Hamana et al. 2007) indicate that the
error on the mean α could be as large as 0.1. The de-
rived Hubble constant depends on the slope as h ∝ 2−α,
therefore the change of the mean α systematically shifts
the best-fit value. The scaling relation suggests that the
0.1 error of the mean results in 10% error on h, indicat-
ing that the systematic error may be even larger than
the statistical error. Another important systematic ef-
fect is caused by external convergence from lens galaxy
environments. Since its effect on the Hubble constant is
straightforward (e.g., Keeton & Zabludoff 2004), one can
estimate the effect of external convergence rather easily
even without including the distribution in the simulation.
From the result of Oguri et al. (2005), we expect that the
posterior distribution of external convergence with lens-
ing bias taken into account is roughly κext ∼ 0.03± 0.03
unless the image separation is too large. This, com-
bined with the fact that the Hubble constant scales as
h ∝ 1 − κext, suggest that the effect of external conver-
gence is not so dominant here (note that external con-
vergence was already taken into account for two extreme
lenses, Q0957+561 and RXJ0911+0551). By including
rough estimates of these two systematic errors, we ob-
tain h = 0.68 ± 0.06(stat.) ± 0.08(syst.), indicating the
importance of reducing the systematic error.

Since the Hubble constant is now determined fairly
well by other methods, time delays are sometimes used
to study mass distributions of lens objects. Our statis-
tical technique offers a new method to study the lens
mass distribution. By comparing the probability distri-
butions for different input distributions of lens potentials
(e.g., different median slopes of the primary lens galaxy),
one can infer which input model is most plausible. Un-
like previous statistical studies (e.g., Oguri et al. 2002),
this new method allows us to include various complex-
ity of lens potentials relatively easily, particularly the
non-spherically symmetric nature of lens potentials. We
note that our input distribution of lens potentials was
designed for galaxies, but it is straightforward to modify
it to that of lensing by other populations, e.g., lensing by
a cluster of galaxies.

In summary, our new statistical approach is invaluable
for the study of both cosmological parameters and struc-
ture of lens potentials. We believe its importance grows
more and more in the era of large-scale synoptic surveys
such as LSST and SNAP: Quasar lens candidates are
easily recognized in these synoptic surveys by making
use of strong time variability of quasars (Pindor 2005;
Kochanek et al. 2006a). Strong lensing of distant super-
novae offers additional interesting opportunity to apply
our statistical technique. The statistical analysis is es-
sential to make efficient use of the large homogeneous
samples of strong lenses provided by these surveys.
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