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The Giant Flare from SGR1806-20 and its Radio Afterglow
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ABSTRACT

The multi-wavelength observations of the 2004 December 27 Giant Flare (GF)

from SGR 1806−20 and its long-lived radio afterglow are briefly reviewed. The

GF appears to have been produced by a dramatic reconfiguration of the magnetic

field near the surface of the neutron star, possibly accompanied by fractures in

the crust. The explosive release of over 1046 erg (isotropic equivalent) powered

a one-sided mildly relativistic outflow. The outflow produced a new expanding

radio nebula, that is still visible over a year after the GF. Also considered are the

constraints on the total energy in the GF, the energy and mass in the outflow,

and on the external density, as well as possible implications for short γ-ray bursts

and potential signatures in high energy neutrinos, photons, or cosmic rays. Some

possible future observations of this and other GFs are briefly discussed.

Subject headings: pulsars: individual (SGR 1806-20) – stars: neutron – stars:flare

– stars: winds,outflows – radio continuum: general

1. Introduction

Magnetars are a small class of young, isolated, neutron stars with extremely large mag-

netic fields of up to ∼ 1015 G at the surface (Duncan & Thompson 1992; Paczyński 1992;

Kouveliotou et al. 1998). These objects give rise to occasional bursts peaking in the hard

X-ray to soft γ-ray range, thus manifesting themselves as Soft Gamma-ray Repeaters (SGRs)

and Anomalous X-ray Pulsars (AXPs) (for a review see Woods & Thompson 2004). They

have quiescent X-ray luminosities of ∼ 1034 − 1035 erg s−1, and are seen to pulse in the

X-rays with periods of P ∼ 5 − 12 s (the pulsed fraction of the flux is ∼ 5 − 11% for SGRs
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and 4− 60% for AXPs). The pulsation period is identified with the rotational period of the

star. They have rapid spin-down rates, Ṗ ∼ 10−11 − 10−10 s s−1, leading to age estimates of

P/2Ṗ ∼ 103 − 104 yr. They have no detectable quiescent radio emission. From the rapid

spin-down, and lack of any signs of accretion (e.g., infrared excess, radio emission) or orbital

modulation of their emission, they are thought to be isolated (and not in binary or multiple

star systems). Only 13 magnetars are known (Harding 2005), all in our Galaxy or the Large

Magellenic Cloud (LMC) satellite galaxy.

The SGRs are more boisterous compared to the AXPs, giving rise to frequent bursts

(with energies of . 1041 erg and typical durations of ∼ 0.2 s), and on rare occasions, also

emit giant flares. SGRs also have somewhat larger period derivatives, and shorter spin-down

ages, than AXPs. SGR-like flares have been detected from a few AXPs (Kaspi et al. 2003),

supporting the notion that SGRs and AXPs can be unified within the magnetar model.

Quite rarely, about once every ∼ 50 yr per source, SGRs produce a giant flare (GF).

A GF consists of a very bright initial spike that peaks in soft gamma rays (a few hundred

keV) and lasts for about a quarter of a second, followed by a longer and dimmer tail that

peaks in the hard X-rays (∼ 10 keV) and lasts for a few hundred seconds, with a strong

modulation at the rotational period of the neutron star. So far only three GFs have been

detected, originating from within our galaxy or the LMC. On 1979 March 5, SGR 0526−66

in the LMC produced the first GF that could be witnessed using satellites in orbit about

the Earth. The peak (isotropic equivalent) luminosity from this flare was estimated at

∼ 4× 1044 erg s−1, which exceeds the luminosity of the entire Galaxy, for the 0.2 seconds of

the peak emission. A fading tail lasted 3 minutes and exhibited strong oscillations with a

period of 8.1 seconds (Mazets et al. 1979). The total isotropic equivalent energy release was

∼ 5×1044 erg. A similar GF event was detected from SGR 1900+14 on 1998 August 27, with

an isotropic equivalent peak luminosity and total energy in excess of 3 × 1044 erg s−1 and

1044 erg, respectively. Its initial spike and tail lasted for ∼ 0.35 s and ∼ 400 s, respectively.

A faint radio afterglow was detected in the days following this GF (Frail, Kulkarni & Bloom

1999). In both of these two GFs the (isotropic equivalent) energy in the initial spike was

comparable to that in the tail.

There are also some intermediate events between the short, more frequent, bursts and

the giant flares, in terms of their total duration and isotropic equivalent peak luminosity

and energy (see Woods & Thompson 2004, and references therein). They often occur fol-

lowing giant flares. The largest so far of these intermediate events (on 2001 April 18, from

SGR 1900+14) also showed several strong flux modulations at the stellar rotational period.

All this suggests that there might be a continuum of events, differing mainly in their energy

release, and consequently also in their duration and peak luminosity. It might make sense
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to roughly divide the different types of such events according to their isotropic equivalent

energy release, Eiso: (i) short, more frequent, bursts (Eiso . 1041 erg), (ii) intermediate

events (1041 erg . Eiso . 1044 erg), and (iii) giant flares (Eiso & 1044 erg).

The last and most spectacular of the three GFs we have witnessed so far occurred on

2004 December 27 from GSR 1806−20. The GF was preceded by a gradual change in the

spectral hardness, photon index, and spin-down rate that peaked several months in advance

of the GF (Woods et al. 2006). The sudden energy release of more than 1046 erg in gamma-

rays (assuming isotropic emission at a distance of 15 kpc) managed to eject a significant

amount of baryons, probably accompanied by some pairs and magnetic fields, from the

neutron star (Palmer et al. 2005; Gelfand et al. 2005; Granot et al. 2006). As this outflow

interacted with the external medium, it powered an expanding radio nebula (Cameron &

Kulkarni 2005; Gaensler et al. 2005) at least 500 times more luminous than the only other

radio afterglow detected from an SGR GF (Frail, Kulkarni & Bloom 1999).

We note that the energetics are reduced by a factor of 6−2 if one adopts a lower distance

of 6−10 kpc found by Cameron et al. (2005) based on H i absorption observations. However,

a more detailed analysis by McClure-Griffiths & Gaensler (2005) suggests that the H i obser-

vations are consistent with the X-ray absorption measurements that give a distance of 14.5

± 1.4 kpc (Corbel et al. 1997), and with the distance of 15.1+1.8
−1.3 kpc of the associated stellar

cluster in G10.0−0.3 (Corbel & Eikenberry 2004). For this review we adopt a distance to

SGR 1806−20 of 15d15 kpc, so that 1 mas corresponds to 15d15 AU or 2.25 × 1014d15 cm.

In this brief review we first consider how the GF was powered along with implications

for the neutron star (§ 2.1-§ 2.4), for the possible connection to short gamma-ray bursts

(§ 2.5), and for possible signatures in high energy neutrinos, photons or cosmic rays (§ 2.6).

We go on to discuss the radio afterglow that is still being studied over a year after the GF

(§ 3) and its implications for the properties of the outflow from the GF and its environment.

We conclude with a short discussion of possible future work (§ 4). The primary focus is on

the observations and the immediate insights gained from them. A detailed discussion of the

physics of the GF is beyond the scope of this review.

2. The Giant Flare Itself

2.1. Observational Highlights

The initial spike of the GF was the brightest astrophysical transient event ever recorded

(see Fig. 1, where its peak saturated the instrument and is way-off the scale), surpassing

even the most intense solar flares (Terasawa et al. 2005). In particular, it was the brightest
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blast of γ-rays detected in the ∼ 40 years that we have had detectors in orbit around the

Earth. The total fluence of ∼ 1 − 2 erg cm−2 saturated all but the least sensitive particle

detectors regardless of where the γ-ray telescopes were pointed, and it created a disturbance

in the Earth’s ionosphere (Campbell et al. 2005). The (isotropic equivalent) luminosity of

the initial spike was ∼ (2 − 5) × 1047d2
15 erg s−1 (Palmer et al. 2005; Hurley et al. 2005;

Terasawa et al. 2005), or ∼ 103 times that of the Galaxy, and ∼ 500 times more luminous

than the two previous GFs. In fact, it was so bright that even its echo off of the moon (due to

Compton scattering at the moon’s surface) was detected (Mazets et al. 2005). The isotropic

equivalent energy in the initial spike was ∼ (2− 5)× 1046d2
15 erg (Palmer et al. 2005; Hurley

et al. 2005; Terasawa et al. 2005) which is ∼ 100 times larger than in the two previous GFs.

The spectrum of the initial spike was quasi-thermal (showing an exponential cutoff at high

energies and Fν ∝ ν0.8 at low energies) with a temperature of kT ≈ 0.2 − 0.5 MeV (Palmer

et al. 2005; Hurley et al. 2005). A fading tail was detected with a strong modulation at

the known rotational period of the neutron star (P = 7.56 s), with an isotropic equivalent

energy release [∼ (0.5− 1.2)× 1044d15 erg] and duration (∼ 380 s) similar to the tails of the

previous two GFs (Palmer et al. 2005; Hurley et al. 2005).

A precursor to the GF was detected 142 s before the initial spike, and lasted for ∼ 1 s

with a flat peak (Palmer et al. 2005; Hurley et al. 2005). The initial spike was preceded by a

gradual rise in the count rate which reached a moderate value (of ∼ 3× 104 counts s−1 with

BAT on board Swift) within 40 ms, at which point the main rise to the initial spike started

with an exponential rise in the flux by a factor of ∼ 103 within ∼ 2 ms, corresponding to an

e-folding time of 0.3 ms. Thus the rise time was resolved for the first time by Swift (Palmer

et al. 2005). After the initial exponential rise there was at least one dip before the flux

continued to rise. Later, there is evidence for two more stages of exponential flux increase

with slower e-folding times of 5 ms and 70 ms (Schwartz et al. 2005).

2.2. The Basic Current Theoretical Framework

The GF is believed to have originated from a violent magnetic reconnection event in this

magnetar (Thompson & Duncan 1995, 2001; Palmer et al. 2005; Hurley et al. 2005). The

intense internal magnetic field of ∼ 1016 G gradually unwinds and transfers helicity across

the stellar surface into the magnetosphere. The stresses on the crust gradually build up until

a fracture occurs, and the movement of the crust triggers a catastrophic rearrangement of

the external magnetic field. The rise time and the duration of the initial spike are of the

order of the Alfvén crossing time of the magnetosphere and of the star, respectively, while

the duration of the tail corresponds to the cooling time of the trapped fireball (Thompson
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& Duncan 1995, 2001; Palmer et al. 2005; Hurley et al. 2005). The intermediate ∼ 5 ms

time scale might be attributed to the propagation time of a ∼ 5 km triggering fracture in

the crust of the neutron star (Schwartz et al. 2005). The observed temperature and isotropic

equivalent luminosity of the initial spike suggest that the energy was released within a stellar

radius or so from the surface of the neutron star (Hurley et al. 2005; Nakar, Piran & Sari

2005).

The energy in the tail of the GF is believed to reflect the storage capacity of the mag-

netosphere, and its near constancy between the three GFs reflects the approximately similar

magnetic energy between these three magnetars. This is supported by the good fit to the

trapped fireball model (Thompson & Duncan 1995, 2001) of the time averaged (which takes

out the strong modulation at the rotational period of the neutron star) light curve and spec-

trum of the tail for the GFs from SGR 1900+14 (Feroci 2001) and SGR 1806−20 (Hurley et

al. 2005). Any excess energy release during the initial spike, beyond the storage capacity of

the magnetosphere, is channeled either into radiation (mainly soft γ-rays and hard X-rays),

or into an outflow. Therefore, for very energetic events most of the energy output comes out

during the initial spike, and thus the energy radiated in the initial spike can vary dramati-

cally between different GFs (not only for different sources, as existing observations show, but

also between different GFs in the same source – which cannot yet be tested observationally),

reflecting the diversity in the total energy release between different events (Palmer et al.

2005; Hurley et al. 2005).

2.3. Constraints on the Spin Down During the Giant Flare

Interestingly enough, there is no change in the spin or spin-down rate associated with

the GF (Palmer et al. 2005; Woods et al. 2005, 2006). This is consistent with the idea

that the GF is powered by a reconfiguration of the magnetic field and not by tapping the

rotational energy (which is insufficient anyway). Furthermore, this limits the amount of

angular momentum that could have been carried away by the outflow that was launched

during the GF. The extrapolation of the measurements before and after the GF to the time

of the GF gives |∆ν/ν| < 5 × 10−6, which is significantly smaller than the spin-down of

∆ν/ν ≈ −1 × 10−4 that was measured across the 1998 August 27 GF from SGR 1900+14

(Woods et al. 1999). The spin-down during the initial spike of the 2004 December 27 GF

from SGR 1806−20 might still be smaller than during its tail, despite the much larger energy

in the initial spike, because the much larger luminosity in the initial spike reduces the radius

out to which the outflowing material co-rotates with the star, thereby reducing its specific

angular momentum (Thompson et al. 2000). Nevertheless, the strict upper limit on |∆ν/ν|
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favors a relatively small outflowing mass, not much larger than the lower limit (of & 1024.5 g)

that is implied by the late time radio observations (Gelfand et al. 2005; Granot et al. 2006).

2.4. QPOs in the Tail and Possible Fracture in the Crust

Quasi-periodic oscillations (QPOs) with frequencies of 18, 30.4, and 92.5 Hz have been

detected in the oscillating tail of the GF (Israel et al. 2005) by RXTE, during part of the tail

and over a certain rotational phase of the neutron star. The 92.5 Hz QPO occurred between

170 and 220 s after the initial spike, in association with a bump in the unpulsed component

(corresponding to a reduction in the amplitude of the pulsations at the rotational period of

the neutron star). The QPOs at 18 and 92.5 Hz have been confirmed by RHESSI (Watts

& Strohmayer 2006) which also found a stronger QPO at higher energies with a frequency

of 626.5 Hz that is visible at a different rotational phase. Broadly similar QPOs were also

found by RXTE in the tail of the 1998 August 27 GF from SGR 1900+14 (Strohmayer &

Watts 2005). Such QPOs might arise from seismic modes in the neutrons star crust that

drive sheared Alfvén waves in the magnetosphere, and in particular toroidal torsional modes

that might be excited by a large scale fracture of the crust (Israel et al. 2005; Strohmayer

& Watts 2005; Piro 2005; Glampedakis et al. 2006), which had been predicted to be excited

in GFs (Duncan 1998; for a different view see Levin 2006). The different rotational phase

of the 626.5 Hz and 92.5 Hz QPOs might suggest an origin in different crustal fractures or

magnetic reconnection events, the former associated with the main flare and the latter with

the late time increase in the unpulsed emission (Watts & Strohmayer 2006).

2.5. Possible Connection to Short-Hard Gamma-Ray Bursts

The GF from SGR 1806−20 could have been detected by BATSE out to a distance of

about 40 ± 10 Mpc (Palmer et al. 2005; Hurley et al. 2005; Nakar et al. 2006). At such

large extragalactic distances only the bright initial spike would be detected, while the much

dimmer pulsating tail would be below detection threshold. Given that the initial spike has

a duration, variability, and energy spectrum roughly similar to gamma-ray bursts (GRBs)

of the short-hard class, this raises the possibility that some fraction of the short GRBs are

in fact extragalactic SGR GFs in disguise (Hurley et al. 2005; Palmer et al. 2005; Nakar et

al. 2006; Lazzati, Ghirlanda & Ghisellini 2005). There are at least three different lines of

evidence which argue that the fraction fGF of short-hard GRBs in the BATSE catalog that

might be GFs from extragalactic SGRs is small.



– 7 –

First, the lack of sufficiently bright host galaxies in the error boxes of the six best

localized short BATSE GRBs implies that these events are fairly distant and more energetic

than GFs (with an isotropic equivalent energy release of & 1049 erg), and therefore fGF . 0.15

(Nakar et al. 2006). Second, if indeed the birth rate of magnetars follows the star formation

rate (SFR; as is suggested by their relatively small inferred ages of a few thousand years)

we would expect to see an excess of events from the direction of the Virgo galaxy cluster

(Palmer et al. 2005) or of nearby star forming galaxies (Popov & Stern 2006). The lack of

such an excess (there is no apparent deviation from an isotropic distribution on the sky)

implies fGF . 0.05, and that either the Galactic rate of GFs as luminous as the 2004

December 27 GF from SGR 1806−20 is smaller (no more than three per millennium) than

might be expected naively from the single such event that was detected so far (about three

per century), or that the distance to SGR 1806−20 is ∼ 6 − 7 kpc instead of 15 kpc (which

does not appear very likely; McClure-Griffiths & Gaensler 2005). A third line of argument is

based on the quasi-thermal spectrum of the initial spikes of GFs, which has an exponential

cutoff at high energies, in contrast to the power law spectrum at high energies of almost all

short-hard BATSE GRBs (Lazzati, Ghirlanda & Ghisellini 2005), which suggests fGF . 0.04.

Interestingly enough, there is some evidence for a correlation between the directions

of short-hard BATSE GRBs, and those of nearby galaxies (Tanvir et al. 2005). Within

40 Mpc, this implies about fGF ≈ 0.09+0.04
−0.03, which is marginally consistent with the upper

limits mentioned above. However, there is a stronger correlation with early-type galaxies

(which have a low current SFR) compared to galaxies of all types, which is strange if this

correlation is indeed due to extragalactic SGR GFs. This correlation, if true, might arise

more naturally in models that involve a long time delay between the star formation epoch

and the onset of short GRBs, such as binary mergers, if their luminosity function is broad

enough to account for the relatively low luminosities of the required nearby events.

2.6. High Energy Neutrinos, Photons, and Cosmic-rays

The huge fluence of the 2004 December 27 GF from SGR 1806−20, of ∼ 1−2 erg cm−2,

is ∼ 104 times larger than that of the brightest recorded GRBs. This makes it an excellent

candidate for the detection of high-energy neutrinos (Gelfand et al. 2005; Ioka et al. 2005;

Halzen, Landsman & Montaruli 2005; Eichler 2005) and potentially also of ultra-high energy

cosmic rays (UHECRs; Asano, Yamazaki & Sugiyama 2006) or high-energy photons (Fan,

Zhang & Wei 2005). High-energy neutrinos are expected to be produced in internal shocks

within the outflow, that arise due to variations in its velocity, similar to the mechanism

that had been proposed for GRBs (Paczyński & Xu 1994; Waxman & Bahcall 1997). These
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mildly relativistic internal shocks are believed to accelerate protons to high energies, which

in turn produce pions through p-γ or p-p interactions. As these pions decay they produce

high-energy neutrinos and photons. Some of the shock accelerated protons may escape as

UHECRs. In order for this mechanism to work efficiently in SGR GFs, the outflow must

be variable and contain a significant amount of protons. Indeed, a significant amount of

protons in the outflow is implied by its large mass, that is required in order to reproduce the

extended coasting phase at a mildly relativistic velocity (see §3.2), while a variable outflow

is suggested by the significant millisecond timescale variability seen in the initial spike of the

GF from SGR 1806−20 (Palmer et al. 2005).

The expected neutrino event rates obviously depend on the model assumptions. Most

works have assumed a highly relativistic outflow, while the radio observations suggest that

at most ∼ 1% of the total energy was in such a highly relativistic component, and most of

the energy was in a mildly relativistic outflow (Granot et al. 2006). Therefore, the expected

event rates may require some revisions. Recently, the IceCube collaboration has put out

limits on the flux of high-energy neutrinos and photons during the GF from SGR1806−20,

using the AMANDA-II detector (Achtenberg et al. 2006). These limits may constrain the

conditions in the outflow from the GF and call for further work. An interesting related

prediction (Stella, Dall’Osso & Israel 2005) is that if the internal toroidal magnetic field in

newly born rapidly rotating magnetars is large enough (& 1016.5 G) then it would deform

the star sufficiently such that its gravitational wave signal might be detected by Advanced

LIGO from a magnetar as far away as the Virgo cluster. Such a high internal magnetic field,

however, is more than an order of magnitude larger than that required in order to power

giant flares (Ofek 2006).

3. The Radio Afterglow of the Giant Flare

3.1. A One-Sided Mildly Relativistic Outflow

Radio observations of SGR 1806−20 began 6.9 days after the GF, using the Very Large

Array (VLA) which fortuitously was in its largest, A configuration, at the time. The high

angular resolution (0.2 arcsec) afforded by the VLA in this configuration, together with its

high brightness, allowed the radio afterglow to be marginally resolved by modelfitting to

the visibility data. The geometric mean size measured was 57 mas, 7 days after the burst

(Cameron et al. 2005; Gaensler et al. 2005; Taylor et al. 2005). After 30 days (the time of a

rebrightening reported by Gelfand et al. 2005) the radio afterglow had grown to ∼ 260 mas.

Between 7 and 30 days the growth of the radio nebula from 57 mas to 260 mas corresponds

to an average expansion velocity of 9.0 ± 1.6 mas/day (0.78 ± 0.14 d15c). After this time,
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the growth rate appeared to slow down (see Fig. 2) so that the average expansion velocity

between day 30 and day 80 is 1.0 ± 2 mas/day (< 0.4d15c) where the source size reached

∼322 mas (Taylor et al. 2005). As the radio afterglow was quite bright (170 mJy at 1.4 GHz

after 7 days), it was also observed with a host of radio telescopes including MERLIN and

the Very Long Baseline Array (VLBA) to provide even higher angular resolution (Fender et

al. 2006). These observations revealed an elongated source with a ∼ 2 : 1 axis ratio. The

spectrum of the emission between 10 and 20 days after the GF is well fit by a single power

law with slope, α = −0.75 ± 0.02 (where Sν ∝ να) Gaensler et al. (2005). There is some

evidence for a flatter spectrum before day 10 (α = −0.62 ± 0.02) and a steeper spectrum

after day 20 (α = −0.9 ± 0.1) (Cameron et al. 2005).

Furthermore, the centroid of the radio afterglow from SGR 1806−20 was found to shift

by ∼200 mas over the course of the first 80 days (see Figs. 3 and 4; Taylor et al. 2005).

The radial proper motion is 3.0 ± 0.34 mas/day at a position angle of −44 ± 6 ◦ (measured

north through east). This motion corresponds to 0.26 ± 0.03d15c. There is some indication

that the time of fastest proper motion also corresponds to the time of fastest growth.

The motion of the radio flux centroid is along the major axis of the source and is roughly

half of the growth rate. This may be naturally explained by a predominantly one-sided

outflow, which produces a radio nebula extending from around the location of the magnetar

out to a particular preferred direction corresponding to the direction of the ejection (Fig. 5).

This suggests that either the catastrophic reconfiguration of the magnetic field which caused

the GF was relatively localized, rather than a global event involving the whole magnetar

(c.f., Eichler 2002), or that the baryonic content of the ejecta is highly asymmetric. The

outflow must be intrinsically one-sided since if there was a similar “counter outflow” in the

opposite direction, it should have produced significant radio emission. The collision of the

observed flow with the external shell occurred around tcol ∼ 5 days after the GF, so in order

not to detect emission from a counter outflow up to a time t after the GF, the distance

of the shell (i.e. outer edge of the cavity) in the opposite direction must be at least t/tcol
times larger. Therefore, the fact that there is no evidence for radio emission from such a

counter outflow up to hundreds of days (∼ 100tcol) after the GF would require an extreme

asymmetry in the external medium.

In the first 30 days, the leading edge of the one-sided expansion moves away from the

magnetar position at an apparent velocity of vap ≈ 0.8d15c (Taylor et al. 2005). The intrinsic

velocity is generally different and depends on the unknown inclination angle θ of the outflow

velocity at the apparent leading edge relative to the line of sight. The minimum velocity

is vmin ≈ 0.62c for an inclination angle of θmin ≈ 51◦, and the true velocity is expected to

be close to this value (Granot et al. 2006). Interestingly enough, this is rather similar to
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the escape velocity of vesc ≈ 0.5c from a neutron star. At these mildly relativistic velocities

(minimal Lorentz factor Γmin ≈ 1.3) there is a modest increase in the total kinetic energy

for such a wide one-sided outflow compared to simple estimates based on a spherical outflow

(Gelfand et al. 2005). The total kinetic energy increases by a factor of ∼ 2 – 3, owing to

the factor ∼ 2 higher velocity at the leading edge but lower velocities elsewhere, while the

isotropic equivalent kinetic energy increases by a larger factor (Granot et al. 2006). This

leads to a revised estimate for the total kinetic energy in the ejecta of & 1044.5 ergs. By

momentum conservation, a one-sided outflow of 1024.5 g (Granot et al. 2006) at 0.62c imparts

a kick to the magnetar of 21(M∗/1.4 M⊙)−1 cm s−1 where M∗ is the mass of the neutron star

(such a low kick velocity would be very hard to detect).

The outflow does not remain (mildly) relativistic indefinitely. Following Gelfand et al.

(2005, see their Eq. 4), the data from day 9 onwards is reasonably fit by a model featuring a

supersonically expanding spherical shell that is decelerated as it sweeps up material (Taylor

et al. 2005). While the deceleration of an anisotropic outflow might be somewhat different

than in the spherical case, the latter may still serve as a rough approximation. The fit

(reduced χ2 of 0.76; shown as the solid line in Fig. 2) implies a deceleration time of 40 ±

13 days after the GF, consistent with the time of the peak rebrightening at ∼ 33 days (see

upper panel of Fig. 2).

3.2. The Underlying Dynamical Model

Here we present a simple dynamical model that can naturally account for the radio

observations (Granot et al. 2006; Gaensler et al. 2005; Gelfand et al. 2005). The reader is

referred to the literature for alternative views (Wang et al. 2005; Yamazaki et al. 2005; Dai

et al. 2005; Lyutikov 2006), which in our view are not as successful in explaining all of the

radio observations.

If the electrons that emit in the radio at the time of the first observation (6.9 days),

at a distance of ∼ 1016 cm from the neutron star, had been accelerated near the neutron

star (whose radius is ∼ 106 cm), then they would have suffered huge adiabatic losses, thus

requiring an exceedingly large initial energy. In addition, in the first 2−3 days of radio

observations (taken 7−9 days after the GF) the flux was still rounding off (∼ t−1.5) before

reaching the asymptotic steeper power law decay (∼ t−2.7) that lasted until ∼ 25 days.

This suggests that the radio emission lit up slightly before the first observation (i.e, around

∼ 5 days), as a result of a collision between the outflow that was ejected during the initial

spike of the GF and an external shell. Such an external shell naturally results due to the

bow shock that is formed by the quiescent relativistic pulsar-type wind of the neutron star
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as it moves supersonically through the ambient medium (Gaensler et al. 2005; Granot et al.

2006).

During the collision the external shell is swept up by a forward shock while the outflow is

slightly decelerated by a reverse shock. After the collision the merged shell keeps propagating

outwards at a constant coasting speed, and gradually sweeps up an increasing amount of

external medium. Initially the emission is dominated by the electrons of the shocked shells.

After the forward and reverse shocks finish crossing these shells there is no fresh supply of

shock accelerated electrons and the emitting electrons cool adiabatically while the magnetic

field in the shell decreases as the shell expands outwards to larger radii. This naturally

accounts for the steep decay of ∼ t−3 until ∼ 25 days (Gaensler et al. 2005; Gelfand et al.

2005; Granot et al. 2006). Fig. 6 illustrates the underlying geometry in this model.

As an increasing mass of external medium is swept up, the emission from the newly shock

accelerated electrons within the shocked external medium rises with time, until eventually

(at around ∼ 25 days) it starts to dominate over the rapidly decaying emission from the

merged shocked shell. When the mass of the swept-up external medium exceeds that of the

merged shell, most of the energy has been transfered to the shocked external medium and

the flow starts to significantly decelerate, naturally producing a peak in the radio light curve

(at ∼ 33 days), followed by a more moderate flux decay (Gelfand et al. 2005; Granot et al.

2006). The fact that the deceleration in the apparent expansion speed coincides with the

peak of the bump in the radio light curve (see Fig. 2) nicely supports this model.

In order to reproduce the observed coasting phase at a constant mildly relativistic

apparent expansion velocity over a factor of ∼ 4 − 5 in radius, the bulk of the original

outflow (in terms of mass and energy) could not have been ultra-relativistic, and must have

instead been only mildy relativistic with a velocity very close to that observed during the

coasting phase, i.e. ∼ 0.7c at the leading edge (Granot et al. 2006). This also implies a

large baryonic mass (& 1024.5 g) in the outflow which, if spread uniformly over the outflow,

would have obscured the first ∼ 30 s of the pulsating tail of the GF. The fact that such

an obscuration did not occur suggests an anisotropic distribution of baryons in the outflow,

where our line of sight was relatively baryon-poor (and radiation-rich, in order to see a bright

initial spike; Granot et al. 2006). A similar requirement arises in order to produce the quasi-

thermal initial spike (Nakar, Piran & Sari 2005). This could be manifested, e.g., either if

the baryons are concentrated in a large number of clumps or by some more ordered global

configuration of the outflow (see panels b and c in Fig. 6).
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3.3. Linear Polarization

Linear polarization from the radio afterglow was detected during the first 20 days after

the GF at 8.5 GHz (Gaensler et al. 2005; Taylor et al. 2005). Thereafter only upper limits on

the polarization (Taylor et al. 2005) could be set (see Fig. 7). The polarization is found to

be 2.1% on day 7 and it decreases to a minimum of 1.1% on day 10. At that time the linear

polarization began to increase steadily up to a maximum value of 3.4% on day 20 while the

polarization angle swung rapidly from 4◦ to 40◦. The polarization falls below our detection

limit of 2% around the time of the rebrightening in the light curve. Limits as late as 55 days

after the GF are below 2% (Taylor et al. 2005). The measured linear polarization and the

spectral shape strongly suggest that synchrotron radiation dominates the radio emission.

During the first 20 days of high polarization, the emission is attributed to the shocked

ejecta and a shocked external shell (Gaensler et al. 2005; Gelfand et al. 2005; Granot et al.

2006). If the emission is mostly from the shocked ejecta, then the degree of polarization of

a few percent suggests that the magnetic field in the ejecta is not dominated by a magnetic

field component ordered on large scales, but is instead tangled on relatively small scales.

A similar conclusion is reached for GRB outflows, from ‘radio flare’ observations (Granot

& Taylor 2005). Alternatively, if the emission is dominated by the shocked external shell

(as suggested by the dynamics; Granot et al. 2006) then the degree of polarization of a few

percent might suggest that the doubly shocked material in the external shell has a magnetic

field that is not predominantly ordered on large scales.

The degree of polarization decreased around the same time when the emission started to

be dominated by the shocked external medium. This suggests a lower degree of polarization

in this component, and in turn that the magnetic field in the shocked external medium is

less ordered than that in the shocked ejecta and/or in the shocked external shell (Taylor et

al. 2005).

The position angle of the linear polarization is roughly perpendicular to the major axis

of the image and to the direction of motion of the flux centroid. Because of the elongated

shape of the emitting region and due to projection effects (Gaensler et al. 2005), such a

polarization may naturally arise for a shock-produced magnetic field. This assumes that

such a magnetic field is tangled predominantly within the plane of the shock, as expected

from a simple linear stability analysis (Medvedev & Loeb 1999), and manages to survive in

the bulk of the shocked fluid (which is not obvious). Alternatively, such a polarization might

be caused by shearing motion along the sides of the one-sided outflow, which can stretch the

magnetic field in the emitting region along its direction of motion.
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3.4. Beaming and Energetics

It is usually argued that, unlike GRBs, the initial γ-ray spike of GFs is not significantly

beamed. The main argument for this is as follows. The strong modulation of the tail emission

with the rotational period of the neutron star implies that it is emitted by material that is

confined to the neutron star and co-rotates with it. This argues against strong beaming of

the tail emission (although some degree of anisotropy is still required in order to produce

the observed pulsations). Furthermore, the pulsating tail of the GFs from Galactic SGRs

(or SGR 0526−66 in the LMC) is bright enough to be detected even without the initial

spike. Nevertheless, there is no observed pulsating tail without a bright initial spike (with

an isotropic equivalent energy output at least comparable to that in the tail). Such “spikeless

tails” should, however, be observed if the initial spike of GFs was strongly beamed into a

solid angle ∆Ω < 4π and had a negligible (isotropic equivalent) luminosity outside of this

solid angle, for lines of sight outside of ∆Ω (in fact, they should even be more frequent than

the observed GFs which have an initial spike, for a significant beaming where ∆Ω < 2π).

However, one should keep in mind that in practice such a simple picture might not be

very realistic, and if the luminosity outside of ∆Ω was smaller than inside ∆Ω by a large but

finite factor, fL ≫ 1, rather than being totally negligible, then this might explain the lack of

“spikeless tails”, as well as the difference in the isotropic equivalent luminosity and energy in

the initial spike of the GF from SGR 1806−20 compared to that of the two previous GFs. The

peak isotropic equivalent luminosity of initial spike of the GF from SGR 1806−20 was several

hundred times larger than that of the previous two GFs, suggesting that fL ∼ 102−103. The

current event rate statistics (one out of three giant flares observed so far from within ∆Ω

under this interpretation) suggest 4π/∆Ω . 100. Therefore, there is a significant uncertainty

on the degree of beaming of the initial spike, which implies a similar uncertainty on the true

energy that was radiated during the GF (by a factor of up to ∼ 100).

There is, however, a somewhat better handle on the kinetic energy of the outflow from

the radio afterglow. The expanding radio nebula provides a more robust calorimeter for the

kinetic energy output of the GF. Reproducing the observed synchrotron flux and the size of

the radio nebula around the peak of the bump in the light curve at ∼ 33 days provides lower

limits on the energy (E & 1044.5 erg) and mass (M & 1024.5 g) of the outflow, as well as on

the external density (n & 10−2.3 cm−3) (Gelfand et al. 2005; Granot et al. 2006). Since the

source size and velocity are measured directly, only the external density n is missing in order

to determine the total mass M and energy E (which both scale linearly with n). The lower

limits above correspond to the minimal energy that produces the observed synchrotron flux

when the fraction of internal energy in the relativistic electrons (ǫe) and in the magnetic

field (ǫB) in the shocked external medium reach equipartition values. An upper limit on
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n, M , and E may be obtained by the requirement that the synchrotron self-absorption

frequency is below ∼ 240 MHz at ∼ 30 days, as implied by low frequency radio observations

(Gelfand et al. in prep.; Cameron et al. 2005), and that ǫB & 10−3 (or that ǫe & 0.025):

n . 0.5(ǫB/10−3)−0.4 cm−3, M . 1026.5(ǫB/10−3)−0.4 g, and E . 1046.5(ǫB/10−3)−0.4 erg

(Gelfand et al. in prep.).

4. Future Work

Recent A configuration observations with the VLA should provide a good image of the

resolved afterglow one year after the GF. It will be interesting to look for signs of limb

brightening, or circularization away from the 2:1 axis ratio seen in the early period of rapid

growth. Owing to the brightness of the afterglow, its slow decay, and improvements planned

for the VLA, this afterglow could potentially be studied for the next 15 years. Deep Chandra

observations will also look for the presence of an X-ray nebula.

More detailed modeling of the dynamics of the interaction between the outflow and

its surrounding, including a special relativistic 2D and 3D hydrodynamic calculations are

already underway (Ramirez-Ruiz et al. in prep.), and the effects of magnetic fields are

also considered. Together with better resolution of the radio image with the VLA in its A

configuration, this can provide better constraints on the properties of the outflow from the

GF, and on its immediate environment.

This event provides a unique opportunity to study the evolution of a collisionless shock

that is initially mildly relativistic, as it decelerates and becomes increasingly Newtonian.

A detailed study of the radio light curve and spectrum, as well as the evolution of the

source size and morphology, can provide valuable information on the evolution of the shock

microphysical parameters in this interesting dynamical range around the transition between

relativistic and Newtonian shocks (Gelfand et al. in prep.), bridging the gap between gamma-

ray burst (GRB) afterglows and supernova remnants.

The recent limits from AMANDA-II on the flux of high-energy neutrinos and photons

from the SGR 1806−20 GF (Achtenberg et al. 2006) can be used to constrain the physical

properties of the outflow. This could potentially have interesting implications for the effi-

ciency of neutrino production and/or the acceleration of UHECRs in the internal shocks of

GRBs.

Ultra-high energy cosmic rays (UHECRs) from the SGR 1806−20 GF could in principal

arrive at the Earth from its direction years after the event, and might be detected by AUGER

if the deflection of the UHECRs by Galactic magnetic fields is not too large (Asano, Yamazaki
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& Sugiyama 2006). This can be tested by AUGER in the years to come.
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Nakar for useful comments on the manuscript. GBT thanks Pablo Parkinson at UCSC
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DEAC03-76SF00515 (JG).
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Fig. 1.— Gamma-ray observations observed by SWIFT (from Palmer et al. 2005) for the

first 6 minutes after the GF from SGR 1806−20 . The peak of the emission is not shown,

and some of the fluctuations in the count rate are due to the changing orientation of the

spacecraft as it was slewing.
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Fig. 2.— Expansion of the radio afterglow from SGR 1806−20 as a function of time (adapted

from Taylor et al. 2005) (bottom panel). The size shown is the geometric mean of the semi-

major and semi-minor axes of the best fitting elliptical Gaussian for each observation. The

solid line is a fit of a supersonically expanding shell model as described by Eq. 4 of Gelfand

et al. (2005). The top panel shows the 8.5 GHz light curve also from Taylor et al. 2005.
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Fig. 3.— The trajectory of the afterglow of SGR 1806−20 (from Taylor et al. 2005). Dates

are labeled. The small ellipses denote the first and last days used.
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Fig. 4.— Proper motion of the afterglow of SGR 1806−20 . The motion has been decomposed

into Right Ascension and Declination components of motion.
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Fig. 5.— A schematic of the growth and motion of the radio afterglow from SGR 1806−20

with time. The best fitting elliptical fits are drawn for each epoch, properly centered on the

derived position. The position of the initial explosion is illustrated in red.
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Fig. 6.— Illustration of the basic underlying geometry in the dynamical model (from Granot

et al. 2006). (a) A preexisting shell surrounding a cavity (i.e., an evacuated region) is formed

due to the interaction of the SGR quiescent wind with the external medium, and the SGR’s

supersonic motion relative to the external medium. The outflow from the SGR 1806−20

GF was ejected mainly in one preferred direction, probably not aligned with the head of

the bow shock (which is in the direction of the SGR’s systemic motion). The ejecta collide

with the external shell at a radius Rext, and then the merged shell of shocked ejecta and

shocked swept up external shell continues to move outward at a constant (mildly relativistic)

velocity. As it coasts outward, it gradually sweeps up the external medium until at a radius

Rdec ∼ (4 − 5)Rext it has accumulated a sufficient mass to be significantly decelerated. At

R > Rdec the structure of the flow gradually approaches the spherical self-similar Sedov-

Taylor solution. (b, c) Most of the mass in the outflow was in baryons that were decoupled

from the radiation, and our line of sight was baryon-poor. This naturally occurs if there are

separate baryon-rich (radiation-poor) and baryon-poor (radiation-rich) regions. Such regions

might consist of small baryon-rich clumps surrounded by baryon-poor regions (b) or might

alternatively be part of a global large-scale, possibly concentric configuration (c).
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Fig. 7.— Linear fractional polarization (circles; right y-axis) and polarization angles (trian-

gles; left y-axis) for the radio afterglow of the giant flare from SGR 1806−20 as a function of

time at 8.5 GHz (from Taylor et al. 2005). All polarization angles have been corrected for the

observed RM of 272 ± 10 rad m−2 (Gaensler et al. 2005). Limits on fractional polarization

are drawn at 3σ.


