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1 Parameters

The paper presents the first attempt to estimates the ILC damping ring impedance

and compare thresholds of the classical instabilities for several designs initially

proposed for the DR. The work was carried out in the spring of 2006. Since then

the choice of the DR is narrowed. Nevertheless, the analysis described below

may be useful for the next iterations of the beam stability.

We use parameters for the damping rings vacuum chamber from A. Wolsky’s
paper [1]. They are summarized in the following Table I1 where 7, are the SR
longitudinal and vertical damping times, respectively.

] Ring \ PPA \ OTW \ 0OCS \ BRU \ MCH \ DAS \ TESLA ‘
C (m) 2824 3223 6114 6333 15935 17014 17000
Lic peam, (MA) 959 839 443 426 170 159 159
Lic bunch, (mA) | 0.408 | 0.326 | 0.157 | 0.152 | 0.0603 | 0.0565 | 0.0565
Ipeak, (A) 76.7 70.0 63.9 42.6 42.6 63.9 63.9
Vrr,(MeV/ring) | 17.76 | 21.78 | 19.27 | 23.16 | 53.7 48.17 50.

Qy 47.680 | 24.157 | 40.800 | 66.413 | 76.413 | 83.65 41.18
Qs 0.0269 | 0.0418 | 0.0394 | 0.120 | 0.150 0.0668 | 0.07
a* 103 0.283 | 0.362 | 0.159 | 1.19 0.409 0.114 0.122
o,(mm) 6. 6. 6 9. 9. 6. 6.

5o 103 1.27 1.36 1.29 0.973 | 1.30 1.3 1.29
(By), (m) 12.5 63.8 31.0 55.4 108.0 106.0 121.0
77, (ms) 10.0 6.07 11.1 12.8 13.4 13.5 13.9
Ty, (m8) 20. 12.1 22.2 25.5 26.9 27. 27.9
Quads/ring 768 240 760 850 1038 808 946

L Arcs, (m) 2709.0 | 1002.0 | 5846.0 | 3634.0 | 3634.0 | 3240.0 | 2229.0
L Wigglers, (m) | 115.0 | 202.0 | 268.0 | 540.0 | 540.0 560.0 529.0
L Straights, (m) | 0.0 2019.0 | 0.0 2159.0 | 11761.0 | 13214.0 | 14242.0

Table 1: Parameters of the rings.

"Work supported by Department of Energy contract DE-AC02-76SF00515



The transverse dimensions (half gap or radius) of the beam pipe are assumed
to be the same for all machines: b = 22/8/49 mm for arcs, wigglers, and straight
sections, respectively. Aluminum beam pipe is implied everywhere with the
resistivity p = 0.1710~7 Ohmm.

The number of quads is used to estimate the number of optical cells which,
in turn, used to scale impedance of the vacuum components in the ring.

2 Impedance models

We model the total impedances and wakes of a ring as the sum of the con-
tributions of the HOMs in the rf cavities, resistive wall (RW), and vacuum
components in the ring.

2.1 Higher order modes in super-conducting cavities

Design of some rings specifies the number of cavities. In this study, for compari-
son, we rather assume the same type of RF cavities for all rings and, defining the
number of rf cavities n.4,, we use the voltage per ring (from Table. I) and 2 MV
voltage per cavity. (For comparison, voltage per cavity for CESR is 1.8 MeV;
for KEKB - 1.6/2.0, and for LHC 2.0 MeV.) Reported accelerating gradient up
to 20-25 MeV/m at 4.5 K may give 4-5 MeV for a gap g = 20 cm. TESLA DR
specifies the gradient of 15 MV /m and the active length 0.3 m which gives 4.5
MYV voltage per cavity with the total number of cavities equal to 12., so that
the calculated number of cavities (see Table 2) may not agree with the design
number (e.g., the TESLA design [2] specifies 12 cavities rather than 25 in the
table).

Ring PPA | OTW | BRU | OCS | MCH | DAS | TESLA
Number of cavities | 8 10 9 11 26 24 25

Table 2: Number of superconducting RF cavities n.q, in the rings.

We assume that the superconductive (SC) rf cavities are one cell cavities in
a cryomodule although in reality SC cavities can be arranged in pairs per one
cryomodule. The impedance relevant for the beam stability of the cryomodule
is defined by the impedances of the HOMs of the SC cavity (excluding the
fundamental mode), ferrite loading and tapers connecting the SC cavity with
the beam pipe. We do not consider here questions related to the beam loading.
Parameters of the HOMs given in Table 3, 4 and which were used in calculations
are borrowed from the KEK Design Report [3]. Note that R/Q is defined as
R/Q = V?/P, therefore the loss factor of a mode k = (w/4)(R/Q).

The narrow-band impedance is given as the sum of contributions of all modes
listed in the Tables 3 and 4,
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71, (MHz) 783.0 | 834.0 | 1018.0 | 1027.0 | 1065.0 | 1076.0 | 1134.0
(R/Q);, (Ohm) | 0.12 | 0.34 | 6.6 6.4 1.6 3.2 1.7
Loaded Qp, 132 | 72 106 95 76 65 54

Table 3: Longitudinal HOMs of KEK SC RF cavity.

f+, (MHz) 609.0 | 648.0 | 688.0 | 705.0 | 825.0 | 888.0
(R/Q);, (Ohm/m) | 1.9 | 40.2 | 170.4 | 227.3 | 6.16 | 3.52
Q1 92 120 [145 | 94 60 97

Table 4: Transverse HOMs of KEK SC RF cavities.

The total loss factor of fundamental mode is 0.15 V/pC and of the HOMs
is only 0.065 V/pC. The total loss factor of the KEK cryomodule, x; = 2.3
V/pC, is dominated by the contribution of the tapers and loads and is taken
into account below together with the rest of the vacuum components.

2.2 Resistive wall impedance

The vertical resistive wall wake field
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where C' is ring circumference, Zy = 120m Ohm, p is the wall resistivity,
and ¢ = 111 is conversion factor, 111 1/m is equal to one V/pC. The averaged
factor (1/b%) is calculated from the apertures of the arcs, wigglers, and straight
sections weighted proportional to the length of these components.

The RW loss factor
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W = {6.10561,4.97286, 13.2859, 6.68852,11.4246, 21.6208, 20.3398}.  (4)



2.3 Broadband impedance

The impedance of the numerous vacuum components is mostly inductive. It
can be defined by two parameters: inductance of the ring L and the total loss
factor of these components K,
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where parameter a has to be chosen to give the loss factor x, at the bunch
length o7,

Zi(w) =

alo) = [ Z)eeml” 52, (6)
27
Z(w) is the pure inductive impedance at low frequencies but rolls off as 1/v/w
at large frequencies according to the diffraction model.
Inductance L is obtained from the inductance Lpgp = 100 nH estimated for
the vacuum components of PEP-II LER by scaling proportional to the number
Nguads of quads in the ring and with the beam pipe radius,

Nquads ) (bPEP
Npep b

For PEP-II, Npgpp = 292 and bpgp = 3.15 cm. The last term takes into
account inductance of the cryomodule tapers. The inductance of a taper Lsc =
0.45 nH is estimated using Yokoya’s formula L = la?, the taper angle a = 10°
and the taper length [ = 15 cm.

The loss factor k; is taken as the sum of the PEP-II loss factor kpgp and
the loss factors of the SC cryomodules kscy,

L= LPEP ( )2 + ncavLSC- (7>
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The PEP-IT loss factor (without IR) has been estimated as kpgp = 2.5
V/pC at oppp = 10 mm. It is scaled here with the number of quads and with
the bunch length as (1/0)2, which is the measured in PEP-II o-dependence
typical for a tapers. The loss factor of a cryomodule kscps is obtained from
kscm = 0.5 V/pC at 0, = 10 mm by scaling proportional to 1/o. Such a
dependence approximately reproduces the experimental o dependence of the
KEK SC module loss factor.

The loss factor « defines the roll-off parameter a of the inductive impedance.
Results are summarized in the Table 5.

An example of the longitudinal wake of the inductive components PPA ma-
chine convoluted with 1 mm Gaussian bunch is shown in Fig. 1.

The transverse impedance is calculated as the sum of the HOMs of the
SC rf cavities, transverse RW impedance, and the transverse impedance Z; of
the vacuum components scaled from the longitudinal impedance Z;, Z;(w) =
(2R/b®)Z;(n)/n, where n = (wg/w). Example of the transverse narrow-band



L, (nH) 340.6 | 1185 | 276.8 | 281.7 | 290.2 | 212.7 | 216.7
a, (cm) 0.07 | 011 |0.09 |017 |035 |022 |027
ksc, (V/pC) | 5.8 | 72 |65 |49 |11.6 | 174 | 181
5, (V/pC) | 241 | 129 | 246 | 139 | 226 | 366 | 40.6

Table 5: Estimate of the inductance L, roll-off parameter a, broad-band loss
factor kgc of cryomodules in the ring, and the total loss factor x of vacuum
components.
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Figure 1: Longitudinal wake of the vacuum components for PPA convoluted
with lmm Gaussian bunch.

impedance (in the range of frequencies corresponding to HOMs) is shown in

Fig.2.
The magnitude of the overall impedance of a machine can be illustrated by

the parameter |Z(n)/n| defined as

Z ag s Z[nwo] _n2(ﬂ)2
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Calculations give

Z
12| = {246,94, 210, 214, 155,116,107} mOhm. (10)
n

Our estimate is based on assumption that the number of vacuum components
is scaled proportional to the number of quadrupoles in the ring which is roughly
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Figure 2: Narrow-band total transverse impedance wake for PPA.

proportional to the number of optical cells in the ring. That is, probably, the
best what we can assume now. However, such scaling may be wrong. For
example, the very long cells of straight sections can have few quads, but the
number of vacuum pumps can be large to avoid the pressure instability.

3 Multibunch instabilities

3.1 Multibunch transverse instability

The growth rate of the I-th coupled-bunch(CB) mode of the transverse multi-
bunch instability is given by imaginary part of the coherent frequency shift [4]:

Tpeamw
Awy(l) = —ip T E/j Z ByZylws + (PM + L] (11)

where Z,(w) is the transverse impedance, Ipeqm = eN.M fy is the average beam
current, fo = wp/(27) is revolution frequency, F is the beam energy, and M is
the number of bunches in the ring. The formula assumes a uniform distribution
of bunches in the ring and assumes a point-like bunches with the charge equal
to Ne.

The summation can be carried out analytically, if one uses wake-fields instead
of impedances.
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The main contribution to the growth rate of the CB transverse instability is
given by the RW impedance. For the resistive wall the transverse wake decays

with distance as wy = Az~1/2, where
4Cc' p
=—/—. 12
b3 7TZ() ( )
The approximate value of the growth rate of the instability
AI eam
I=ImAw(l) = beam By (13)
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where {v,} means the fractional part of the tune. The growth rate can be
reduced choosing tune below half-integer.
The growth rate I' for the instability and the factor A is given in Table 6.

[Ring [PPA | OTW | OCS [ BRU | MCH [ DAS | TESLA |
A, V/(pC-y/m) | 80.87 | 85.40 | 181.1 | 238.8 | 252.6 | 255.0 | 230.2
T, (1/ms) 138 [ 080 | 328 |1.75 | 054 | 049 |0.42
T,, turns 770 | 116. | 149 | 27.0 | 346 | 35.7 | 424

Table 6: The growth time for the multi-bunch transverse instability due to
resistive wall impedance.

The growth rate is substantially depend on the beam pipe aperture. Re-
sults shown in Table 6 correspond to the set barcs/bwigg/bstr = 22/8/49 mm
and requires the transverse feedback system (TFB) which is stronger than the
available state-of-the-art TFB which can handle the growth time not less than
15 turns. Increasing apertures to the larger values (mostly in the wigglers)
barcs/bwigg/bstr = 25/16/49 mm makes the growth time much more accept-
able. The growth time in number of turns in this case is

T = {113.,164.,17.8,55.1,50.0, 49.6, 63.6} turns. (14)

The tune shift Av, ~ (I'/wy) caused by the RW impedance is equal to the
growth rate I'. Generally speaking, it can vary along the bunch train and distort
optics for bunches in the tail of the train. However, effect is very small,

Av, =107 {2.1, 1.36, 10.6, 5.9, 4.6, 4.46, 3.76}. (15)

In the calculations we implied that the skin depth for the frequencies equal
to {vy wo is small compared with the thickness of the vacuum chamber.

The growth rate calculated with the total transverse impedance differs very
little from the result obtained with the pure RW, see Fig.3
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Figure 3: Transverse CB instability with the total impedance for PPA. The pure
RW impedance would give a smooth curve with the same fastest growth rate.

3.2 Multibunch longitudinal instability due to HOMs

Contrary to the RW instability, the coupled-bunch longitudinal instability does
not look dangerous. The coherent tune shift of the /-th rigid longitudinal
coupled-bunch oscillations is [4]

. aIbeam‘UO > _ 2 2
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where p.yy = pny + 1 + Q5. The instability of the [-th mode corresponds to
the positive values of the growth rate I'; = I'm[AQ].

An example of the growth rate for all modes in the PPA machine is shown
in Fig. 4. The maximum growth rate I' for several machines is given in the
Table 7. In all cases, the threshold current I;;, defined by the SR damping time
is higher than the nominal beam current at least by an order of magnitude.

— 00

[ Ring | PPA. |OTW [OCS [BRU [ MCH | DAS | TESLA |
T, (1/ms) ] 0.0034 ] 0.00297 [ 0.000767 [ 0.0025
Tpeam, (A) [ 27.73 [46.51 | 52.0 13.3

Table 7: The growth rate I' of a strongest mode and the threshold current Iy,
for the CB longitudinal instability.

It is worth noting that the typical @ factor for the HOMs in SC cavities using
ferrite HOM absorbers is of the order of 100. For the frequencies of HOMs in the
range from 1 to 3 GHz this means that the width of the resonance of each mode
A fres is of the order of 10 to 30 MHz. In the sum of Eq. (11) the summation
over the frequency goes with the step equal to Mwqy. For the typical number
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Figure 4: Longitudinal CB instability

of bunches in the ILC damping ring M ~ 3000 and the revolution frequencies
from 27 x 100 kHZ for a 3-km ring to 27 x 18 kHZ for a 17-km ring, we find that
A fres 2, Mwo/2m, which means that for each oscillation mode [ the dominant
contribution comes from only one term in the sum.

The transient beam loading in the SC cavities due to gaps in the bunch train
is known to cause rf phase variation of the individual bunches. Effect, however,

should be small due to high Q-factor of the SC cavities.

3.3 Bunch lengthening

We study the bunch lengthening solving the Haissinski equation by the Newton’s
method as it was suggested by R. Warnock. Results of calculations show that
the bunch length o changes linearly with current and is given below in terms of
dg/dlbuncha

do

mm
= {0.0250, 0.0053, 0.033, 0.0098, 0.0060, 0.017, 0.011} (—-). (17)
dIbunch m
3.4 Microwave instability
To evaluate the microwave instability we use Boussard-Schnell criterion
4 T ayoio,
Z Z 18
n %/ 2 Npre (18)

This gives the values Z/n shown in Table 8 where for comparison we also give
the estimated Z/n obtained above.



Ring PPA | OTW | OCS | BRU | MCH | DAS | TESLA

(Z/n)¢, mOhm 187 | 300 621 132 509 95 100

(Z/n)., mOhm 246 | 94 210 | 214 | 155 | 116 | 107

Threshold Tppunen, mA | 0.31 | 1.04 | 0.44 | 0.098 | 0.20 | 0.046 | 0.052

Nominal Ipombunch, mA | 0.41 | 0.32 0.16 | 0.15 | 0.06 0.056 | 0.056

Table 8: Estimates for the microwave instability. The table gives the tolera-
ble (Z/n); and estimated (Z/n). values of the impedance Z/n as well as the
threshold I, and the nominal I,,,,, bunch currents.

Taken literary, the result means that PPA, BRU rings may have the mi-
crowave instability, while DAS and TESLA are close to the threshold. In a
sense, that contradicts results for bunch lengthening which is small for all ma-
chines. To check the situation, we used the Oide’s code for microwave instability.
The result for PPA machine shown in Fig. 5 predicts the threshold of the mi-
crowave instability around N, = 2.10' particles per bunch. The independent
tracking code with 10° macroparticles, however, shows that the bunch is stable
even at N, = 510!°, We are planing to make more elaborate calculations using
the Fokker-Plank solver and tracking when more detail impedance model will
be available.

3.5 Transverse mode coupling instability

We use the following criterion for the threshold peak current of the instability

16y/7 (E/e)vso,
Ipcak <= .
3 m(Z5) R

(19)

The peak current of the machines are listed in Table I. The tolerable values
of the product Im Z, 3, , are given in Table 9.

Ring PPA | OTW | BRU | OCS | MCH | DAS | TESLA
ImZ,3,, kOhm | 0.22 | 0.33 0.16 | 0.89 | 0.60 0.11 | 0.12

Table 9: The tolerable values of Im Z, 3| given by the mode coupling instability.

We studied the transverse mode coupling (MC) instability in more detailes
following Satoh-Chin formalism [5]. The coherent frequencies are given by nu-
meric solution of an eigenvalue problem. The threshold of instability is defined
by the mode crossing, usually mode m = 0 and m = —1. The results of calcu-
lations are shown in Fig. 6. The threshold bunch current is below 1 mA for
the last 3 machines, but the nominal bunch current is also low and all machines
should be stable.

10



w/ wy
T
I

. | | | |
1 2 3 4

N [10%7]

Figure 5: Result of the Oide’s code for PPA. The growth rate of a mode is pro-
portional to the size of the crosses in the plot. The code predicts the threshold
of the microwave instability around 2.10'° particles per bunch

4 Conclusion

Overall, the conventional instabilities will have little impact on the ring perfor-
mance provided the careful design of the ring minimizes the impedance below
acceptable level indicated above. The only exception is the transverse CB insta-
bility. The longitudinal CB is less demanding. However, even the transverse CB
instability would have threshold current above nominal provided the aperture
in the wigglers is increased from 8 mm to 16 mm. The the microwave instability
needs more studies.

Nevertheless, we should remember that the ILC DR is different from existing
high-current machines at least in two respects: absence of the beam-beam tune
spread stabilizing beams in colliders, and unusual strict requirements for low
emittance. That may cause new problems such as bunch emittance dilution due
to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists,
it probably universal for all machines and ought be addressed in the design of
vacuum components rather than have effect on the choice of the machine design.

11
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Figure 6: The head-tail instability. The threshold bunch current corresponds to
the first crossing of the modes.
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