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Abstract

To study microwave instability the tracking code is developed. For bench mark-
ing, results are compared with Oide-Yokoya results [1] for broad-band Q = 1
impedance. Results hint to two possible mechanisms determining the threshold
of instability.

1 Introduction

Longitudinal dynamics of particles in a bunch can be described by the Fokker-Plank
equation for the distribution function ρ(p, x, τ)

∂ρ

∂τ
+ {H(p, x, τ), ρ} = Γ

∂

∂p
{∂ρ

∂p
+ pρ}, (1)

where x = z/σ0, p = −δ/δ0, and τ = ωst are dimensionless variables, z is a particle shift
in respect to the bunch center, z > 0 corresponds to the shift forward, α is the momentum
compaction, and δ = (E − E0)/E0 is the relative offset in energy. The zero-current rms
bunch length σ0, the rms energy spread δ0 defined by the synchrotron radiation (SR),
and the zero-current synchrotron frequency are related, ωsσ0/c = αδ0. The bunch density
f(x, τ) =

∫

dpρ(p, x, τ) is normalized
∫

dxf(x, τ) = 1.
In this variables, the right-hand-side of Eq. (1) depends on one parameter Γ =

(ωstd)
−1, where td is SR damping time. The Hamiltonian in the Poisson brackets in

the left-hand-side (LHS) is

H(p, x, τ) =
p2

2
+

x2

2
+ λ

∫

dx′f(x′, τ)S[σ0(x
′ − x)], (2)
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where S(z) is given by the longitudinal wake per turn S(z) =
∫ z
0

dz′W (z′), and

λ =
Nbre

γαδ2
0C

. (3)

Here Nb is bunch population,γ is the relativistic factor, re is the classical electron
radius, and C is the ring circumference. The positive wake means energy loss. In the
ultra-relativistic case, W (z) = 0 for z < 0.

Eq. (1) has the steady-state (Haissinski) solution ρ ∝ e−H . In the variables x, p the
rms 〈x2〉 = 〈p2〉 = 1.

The LHS of Eq. (1) corresponds to the the system of equations of particles motion

dxi

dτ
= p,

dpi

dτ
= −xi + λσ0

∑

j

W [σ0(xj(τ) − xi(τ))], (4)

while the RHS describes diffusion and SR damping.
Actually, the LHS of the Fokker-Plank equation is only an approximation to Eqs. (4)

which,generally speaking, contain higher-order particle correlations neglected in Eq. (1).
Usually, the threshold of instability can be defined neglecting the RHS of the Fokker-

Plank equation and linearizing the LHS around the steady-state solution.
Alternative approach is tracking, i.e. solution of Eq. (4) for a number of macro

particles i = 1, 2, ..,M , where M has to be sufficiently large but still M << Nb. Tracking
is a standard method to study beam dynamics. It was used before to study microwave
instability by K. Bane and K. Oide [2] and by K. Oide and K. Yokoya [1].

In simulations, equations of motion for macro-particles are solved with a time step δτ .
At each time step, equations are replaced by the transform (p, x)− > (p̄, x̄)

p̄i = pi + δτ(−xi + λσ0

∑

j

W [σ0(xj(τ) − xi(τ))] − δτ Γ pi + a
nk
∑

k=1

ξk,

x̄i = xi + δτ p̄. (5)

Here ξk is a random variable uniformly distributed in the interval −1 < ξ < 1. The
term proportional to ξk is introduced to describe diffusion of the RHS of Eq. (1) with

the rate d < p2 > /dτ = 2Γ. That defines the coefficient a =
√

6Γ/ṅk where the rate

ṅk = nk/δτ depends on the number of random kicks nk applied at each time step. For a
single kick, nk = 1, and a =

√
6Γδτ .

Parameter Γ defines both damping and diffusion rates. The map Eq. (5) is simplectic
if Γ = 0.

Simulations are faster if the sum over macro-particles W [σ0(xj(τ)− xi(τ))] in Eq. (5)
is replaced by the integral
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∫

dx′f(x′, τ)W [σ0(x
′ − xi(τ))], (6)

where f(x, τ) is defined on each time step by interpolating the actual distribution of
macro-particles on a mesh centered at the bunch centroid.

The FORTRAN code was generated utilizing Eqs.(5),(6). The code starts with calcu-
lations of the steady-state Haissinki distribution ρ(x, p) using Newton’s iteration method
suggested by R. Warnock. The loop over the bunch current starts from a low current
and use obtained Haissinski distribution as starting function for the next higher value
of the current. Then, coordinates {xi, pi} of M macro-particles are generated with the
probability given by ρ(xi, pi). After that, the tracking starts for specified number of time
steps nm. The code stops when the calculated rms energy spread exceeds some specified
value δmax or number of steps exceeds nm. In the first case, the current is taken as the
threshold of instability. In the later case, the process is repeated with the higher value of
current.

2 Results

Simulations were carried out, for bench mark purpose, with the broad-band Q = 1 res-
onator wake. In this case, there are only two independent parameters given by the reso-
nance frequency ωr and the shunt impedance Rs,

xr =
ωrσ0

c
, Sr =

Ibunchre

ec

4πωr

γωsδ0

Rs

Z0

, (7)

where Z0 = 120π Ohm.
The results were checked with different time steps. For the time step less that δτ < 0.5

calculations are stable. For example, the threshold Sr = {9.22, 9.32, 9.22} for δτ =
{0.25, 0.125, 0.0625}, respectively. Calculations give results independent on the number
of random kicks per time step.

Normally, we use the time step δτ = 0.125 (50 steps per synchrotron period), one
random kick per time step, the damping time Γ = 1. 10−2, and the number of time steps
8000 corresponding to 10 damping times. Interpolation of macro-particle distribution
over x is carried out on the 101 bins mesh with the mesh size −10 < x < 10. At large
bunch currents, the bunch distribution usually is tilted forward. Respectively, the mesh
is redefined to keep the maximum of the distribution at the mesh center. The average
CPU time is 1.1 µs on 2.4 GHz PC. For each xr, the threshold Sr was found increasing
Sr by steps, usually, δSr = 0.5.

The results of simulations are shown in Fig. (1)-(3). In Fig. (1) we compare Oide-
Yokoya and our results for 1. 104 and 5. 104 macro-particles. Fig. (2) results are compared
for two damping times: Γ = 10−2 (red), and Γ reduced by the factor (1/3) (blue).

3



Fig. (1) shows that the tracking results deviate from the curve predicted by Oide-
Yokoya at large xr > 0.5 in agreement with their own tracking results. It was suggested
before (P. Wilson, private communication) that the threshold of the microwave instability
is related to appearance of a new minimum of the Haissinski steady-state potential. In Fig.
(3) we plot Oide-Yokoya result (blue line) and the threshold Sr at which the Haissinski
potential UH(x) has two minima. The threshold for the second minimum is defined
searching equation dUH/dx = 0 for an additional root. The length of the bars in Fig. (3)
gives the distance of the new minimum from the bunch center. The additional minimum
(double horn Haissinski distribution) at small xr appears in the tail of the distribution.
However, for larger xr the minimum shifts toward the bunch center and, at large xr > 0.5,
the conjecture seems to be valid: the threshold of instability found by tracking deviates
from the Oide-Yokoya theory following the curve of the new minimum. The crossings
takes place around xr = 0.5.
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Figure 1: The threshold of the microwave instability for Q = 1 impedance. The result
of Oide-Yokoya theory is shown by blue line and their own tracking results by large blue
dots. Our calculations are shown by small dots: for 104 macro-particles in green, and for
5. 104 macro-particles in red. A single point means that two points are overlap.

The main uncertainty in defining the threshold of instability δth comes from the uncer-
tainty of the criterion δth > δmax. The microwave instability does not lead to exponential
growth but to increasing energy spread and, sometimes, to saw-tooth modulation of the
rms bunch length. Because the energy spread close to the threshold grows slowly and
δ in tracking fluctuates, the threshold is smeared. This problem can be elevated using
large number of macro-particles what requires larger CPU time. In simulations we use
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Figure 2: Dependence of the threshold on the damping time. Results of Oide-Yokoya are
shown in blue. Our calculations are shown by small dots for two damping times: Γ = 10−2

(red), and Γ = (1/3) 10−2 (green).

δmax = 1.1 (Oide and Yokoya used δmax = 1.05).
In Figs. (4)-(8) we study the dynamics of instability in more details. Fig. (4) is an

example of the dynamics at small xr = 0.3 above the threshold of instability. Calculated
are the average over macroparticle distribution < x >, < p >, rms energy spread δ, and
the spectrum of δ(ω). The spectrum is shown as function of the number i related to
the frequency ωi = 2π(i − 1)/(nsδτ), where ns = 16000 is the number of records and
δτ = 0.125 is the time step (each 5-th step is recorded). Note, that < x >, < p >, and δ
all show the saw-tooth behavior. Fig. (5) shows that such behavior at small xr appears
only above the threshold of the instability. Comparing behavior for xr = 0.3 and xr = 0.4
in Fig. (6) we see that the period and amplitude of saw-tooth kinks decreases for xr

approaching the crossing point xr = 0.5. Parameters Sr in both cases were chosen to be
approximately above the threshold of instability on the same amount. Fig. (7) shows that
the amplitude and repetition rate of the saw-tooth kinks depend on the damping time.
All that is consistent with the Baartman-Dyachkov [3] mechanism of instability. In terms
of the mode analysis, similar behavior can be obtained close to the threshold as result of
the nonlinear interaction of few unstable mode [4].

For large xr above the crossing the dynamics is quite different. Fig. (8) show the
time variation of the rms energy spread at xr = 0.8 for two currents above the threshold
of instability. The bunch temperature increases, δ > 1 with Sr above the threshold, but
there is no evidence of the saw-tooth instability. That is consistent with the smaller
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Figure 3: Comparison of the threshold of the microwave instability (blue line) with the
threshold of two-minima Haissinski potential well. The total length of the bar is the
distance ∆x to the additional minimum. Both curves tend to coincide at xr > 0.5 while
for smaller xr the second minimum is on the far tail of the distribution and does not cause
the instability.

separation of the two minima of the Haissinski potential for large xr.
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Figure 4: Dynamics of the microwave instability above threshold, xr = 0.3, Sr = 13.84,
Γ = 1.0 10−2. Total number of time steps 16000 with δτ = 0.125 (each 5-th step is
recorded). The total time of tracking t/td = 10.
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Figure 5: Dependence of the saw-tooth behavior on current. xr = 0.3, Top row: Sr =
11.74 (left), 12.84 (right), bottom row: 13.84 (left), and 14.84 (right). Other parameters
are the same as in Fig. (4).
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Figure 6: Time dependence of the rms energy spread above the threshold of microwave
instability for xr = 0.3, Sr = 13.84 (top) and xr = 0.4, Sr = 12.02 (bottom). Other
parameters are the same as in Fig. (4).
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Figure 7: Effect of the damping time on the time variation of the rms energy spread above
the threshold of microwave instability. Γ = 1.0 10−2 (top) and Γ = 3.0 10−2 (bottom).
Other parameters the same as in Fig. (4).
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Figure 8: Time dependence of the rms energy spread above the threshold of microwave
instability for large xr. Sr = 11.8 (red), Sr = 13.02 (blue), in both cases xr = 0.8. (4).
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