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ABSTRACT
We derive the luminosity-temperature relation for the super-critically accreting black holes
(BHs) and compare it to the data on ultraluminous X-ray sources (ULXs). At super-Eddington
accretion rates, an outflow forms within the spherization radius. We construct the accretion
disc model accounting for the advection and the outflow, and compute characteristic disc
temperatures. The bolometric luminosity exceeds the Eddington luminosityLEdd by a loga-
rithmic factor1 + 0.6 ln ṁ (whereṁ is the accretion rate in Eddington units) and the wind
kinetic luminosity is close toLEdd. The apparent luminosity for the face-on observer is 2–7
times higher because of geometrical beaming. Such an observer has a direct view of the inner
hot accretion disc, which has a peak temperatureTmax of a few keV in stellar-mass BHs. The
emitted spectrum extends as a power-lawFE ∝ E−1 down to the temperature at the spher-
ization radiusTsp ≈ ṁ−1/2 keV. We associateTmax with a few keV spectral components
andTsp with the soft, 0.1–0.2 keV components observed in ULXs. An edge-on observer sees
only the soft emission from the extended envelope, with the photosphere radius exceeding the
spherization radius by orders of magnitude. The dependence of the photosphere temperature
on luminosity is consistent with that observed in the super-Eddington accreting BHs SS 433
and V4641 Sgr. Strong outflows combined with the large intrinsic X-ray luminosity of the
central BH explain naturally the presence of the photoionized nebulae around ULXs. An ex-
cellent agreement between the model and the observational data strongly argues in favour of
ULXs being super-critically accreting, stellar-mass BHs similar to SS 433, but viewed close
to the symmetry axis.
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1 INTRODUCTION

A large number of ultraluminous X-ray sources (ULXs) has been
discovered in the nearby star-forming galaxies (see Mushotzky
2004, for a review). Their luminosities exceed considerably2 ×
1039erg s−1, the Eddington limit for a stellar-mass (∼10M⊙)
black hole (BH). This was argued to be the evidence for ex-
istence of the intermediate-mass BHs (IMBHs, withM =
102–104M⊙; Colbert & Mushotzky 1999). The large apparent
luminosities can also be produced by super-critical accretion
on to a stellar-mass BH (Shakura & Sunyaev 1973, hereafter
SS73; Jaroszyński et al. 1980; Abramowicz et al. 1988; Lipunova
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1999; Fabrika 2004; Begelman et al. 2006), or by the geometric
(Fabrika & Mescheryakov 2001; King et al. 2001) or relativistic
(Reynolds et al. 1997; Körding et al. 2002) collimation of radia-
tion.

A strong argument in favour of IMBHs is the presence of a
soft, 0.1–0.2 keV component in their spectra (Kaaret et al. 2003;
Miller et al. 2003, 2004). Arguments against the IMBH interpreta-
tion include theoretical problems with their formation (King et al.
2001) and their non-standard spectra, which show a cutoff at a
few keV (Stobbart et al. 2006), while other BHs, stellar as well
as super-massive, at a few per cent of Eddington luminosity have
hard power-law-like spectra (Zdziarski et al. 1997). Furthermore,
the observed anti-correlation between luminosity and temperature
contradicts theL ∝ T 4 law expected for standard accretion discs
(Feng & Kaaret 2007) and some ULXs show a harder, 1–4 keV
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thermal component with the corresponding radius of only 30–40
km (Makishima et al. 2000; Stobbart et al. 2006). All this raises
further doubts on the IMBH interpretation. The soft components
can be interpreted as signatures of an extended photosphere(SS73;
Lipunova 1999; King & Pounds 2003), but then we need to explain
the simultaneous presence of the harder emission.

The low-frequency, 0.02–0.2 Hz, quasi-periodic oscilla-
tions detected from ULXs in M82 (Strohmayer & Mushotzky
2003), Holmberg IX (Dewangan et al. 2006), and NGC 5408
(Strohmayer et al. 2007), if interpreted as the Keplerian frequen-
cies at the innermost stable orbit around a BH, argue in favour
of IMBHs. However, oscillations with very similar frequencies
have been observed from the BHs in the Milky Way, Cygnus X-
1 (Vikhlinin et al. 1994) and GRS 1915+105 (Morgan et al. 1997),
which certainly are not IMBHs.

Important clues on the nature of ULXs come from the pres-
ence of extended photoionized nebulae around them (Wang 2002;
Pakull & Mirioni 2003; Kaaret et al. 2004). The observationsimply
a rather isotropic source of the ionizing radiation rejecting the idea
of a strong beaming of radiation. The nebulae are dynamically per-
turbed with the velocity gradients of∼ 50–100 kms−1 on the scale
of 50–100 pc (Lehmann et al. 2005; Fabrika & Abolmasov 2006;
Ramsey et al. 2006). This points towards the activity of the central
engine in form of a wind or a jet. The ULX nebulae are similar to
W50, the nebulae around SS 433, the only known persistent super-
critical accretor in the Milky Way, radiating presumably around
1040erg s−1 in the UV (Dolan et al. 1997). A super-critically ac-
creting compact source can produce strong winds and jets which
can inflate the nebulae (Begelman et al. 1980; Lehmann et al. 2005;
Pakull et al. 2006; Fabrika & Abolmasov 2006; Abolmasov et al.
2007). On the other hand, there is no good physical reason why
a sub-critically accreting IMBH would produce such a strongout-
flow.

The observed similarities between W50 and ULX nebulae lead
us to consider seriously the idea that the central engines ofULXs
are super-critically accreting stellar mass BHs similar toSS 433.
We do not see directly the X-ray source in SS 433, but if observed
along the symmetry axis, it would be a bright X-ray source (Katz
1986), which we interpret as an ULX (Fabrika & Mescheryakov
2001; King 2002; Fabrika 2004; Begelman et al. 2006).

In this paper, we develop a model for the super-critical accre-
tion disc accounting for the effects of advection and outflows. We
also construct a one-dimensional, vertically integrated model of the
wind, estimate the optical depth through the wind and determine
characteristic temperatures as a function of the mass accretion rate
and the luminosity. We further compare the resulting luminosity-
temperature relations to the data on ULXs as well as the BHs in
our galaxy and LMC.

2 SUBCRITICAL ACCRETION DISCS

The standard accretion disc theory (SS73) can be applied when the
accretion rate is not very high and the luminosity does not exceed
the Eddington limit

LEdd =
GMṀEdd

2Rin

=
4πGMc

κ
= 1.5 1038 m

1.7

1 + X
erg s−1, (1)

whereṀEdd = 48πGM/cκ = 2 1018m g s−1 is the Eddington
accretion rate,Rin = 3RS is the inner disc radius,RS = 2GM/c2

is the Schwarzschild radius. The stellar mass, measured in solar
masses, ism = M/M⊙, κ = 0.2(1 + X) = 0.34 cm2 g−1 is the

Thomson opacity andX is the hydrogen mass fraction (which we
assume equal to solarX = 0.7).

The energy flux from one face of the disc (in Newtonian ap-
proximation) as a function of radiusR is

Q+(R) =
3

8π

GMṀ

R3

h

1 − r−1/2
i

, (2)

whereṀ is the accretion rate andr = R/Rin. This results in the
effective temperature variationT (R) ∝ R−3/4 at largeR and the
maximum observed color temperature

Tc,max = 1.26fc m−1/4ṁ1/4 keV, (3)

which is reached atrmax = (3/2)4/5 ≈ 1.38. Here ṁ =
Ṁ/ṀEdd is dimensionless accretion rate. The color correction
fc ≈ 1.7 (e.g. Shimura & Takahara 1995) describes the harden-
ing of the spectrum relative to the black body. The emitted flux
FE ∝ E1/3 atE . kTc,max. The total emitted luminosity,

L =

Z ∞

Rin

Q+(R)4πRdR = ṁLEdd, (4)

depends on the maximum temperature asL ∝ T 4
c,max.

3 SUPERCRITICAL ACCRETION DISCS

The matter supply to the BH in a close binary can significantly
exceed the Eddington rate,ṁ0 = Ṁ0/ṀEdd ≫ 1. There are two
different views on the way the accretion proceeds in this regime.

(i) The ‘Polish doughnut’ or slim disc models
(Jaroszyński et al. 1980; Abramowicz et al. 1988) assume
that all the supplied gas reaches the BH, but most of the gravita-
tional energy released in the disc is advected into the hole as the
photons are trapped in the flow. Inside the trapping radiusRtr

(where photon diffusion and accretion time-scale are equal), the
vertical component of gravity scales asR−2 (as the disc relative
scale-heightH/R is of the order unity) resulting in the same radial
dependence of the radiation fluxQrad, because the disc is radiation
pressure supported. This implies the effective temperature distribu-
tion R−1/2 and a flat (inEFE) emitted spectrumFE ∝ E−1 (see
e.g. Watarai et al. 2000). Naturally, a logarithmic dependence of
bolometric luminosity of inner supercritical disc oṅM0 is yielded:

L ∝
Rtr
Z

Rin

Qrad(R)R dR ∝
Rtr
Z

Rin

R−1dR = ln

„

Rtr

Rin

«

≈ ln ṁ0.(5)

The last relation follows from the fact that the trapping radius scales
with the accretion rate asRtr ≈ ṁ0Rin ≫ Rin. The total disc
luminosity exceeds the Eddington one by a logarithmic factor:

Lbol ≈ LEdd (1 + ln ṁ0). (6)

(ii) Alternatively, instead of spending most of the dissipated
energy to increase the entropy of the gas, this energy can be spent to
eject the excess mass (SS73). In this model most of the gas is blown
away by the radiation pressure, the accretion rate decreased linearly
with radiusṀ(R) ∝ R, and only a small fraction of it,̇m ∼ 1,
makes it to the hole.1 The linear dependence of the accretion rate

1 A similar physics might operate at a very low accretion rate,when the gas
cannot cool resulting in a positive Bernoulli parameter. This implies that the
gas is effectively unbound and can easily produce outflows (Narayan & Yi
1994; Blandford & Begelman 1999).
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on radius results in theR−2 dependence of the radiative flux.2 The
luminosity and the disc effective temperature radial distribution are
very similar to the slim disc case (see below). The largest difference
is in the presence of a strong wind which blocks and reprocesses the
radiation from the central part of the disc. The observed spectrum,
therefore, depends on the velocity structure and geometry of the
wind and the position of the observer relative to the disc rotational
axis.

Reality might be somewhere in between, with both advection
and outflow operating together as shown by the numerical simula-
tions (Eggum et al. 1988; Ohsuga et al. 2005; Okuda et al. 2005).
Below we first construct a one-dimensional, vertically integrated
model of the supercritical disc with the outflow and then discuss
the effect of the wind on the emergent spectrum.

3.1 Supercritical disc with outflow and without advection

The scale-height of accretion discs forṁ0 ∼ 1 is determined by
the balance between the radiation pressure force and the vertical
component of gravity (SS73),

H

R
= ṁ0

3

r

h

1 − r−1/2
i

. (7)

When the accretion rate exceeds the critical valueṁcr = 9/4, the
ratioH/R exceeds unity at some radii and the outflow is inevitable.
Accurate calculations (Bisnovatyi-Kogan & Blinnikov 1977) show
that the outflow can start even at a smaller rate. Atṁ0 ≫ ṁcr, the
disc starts ‘feeling’ that it is supercritical at the spherization radius
rsp = Rsp/Rin ≈ ṁ0, where the outflow starts.

The wind affects the disc structure by removing the angular
momentum. The modified angular momentum conservation equa-
tion is (see e.g. Lipunova 1999)

d

dR

“

Ṁ(R)ωKR2
”

=
dg(R)

dR
+ ωKR2 dṀ(R)

dR
, (8)

whereωK(R) = (GM/R3)1/2 is the Keplerian angular velocity,

g(R) = 2π TrφR2 (9)

is the torque andTrφ = 2H trφ is the vertically integrated viscous
stress. The first term on the right hand side of equation (8) isre-
sponsible for transfer of the angular momentum by viscosity, while
the second term is the momentum transfer by the outflowing matter.
The viscous heating rate per unit area is

2Q+(R) = −TrφR
dωK

dR
=

3

2
TrφωK =

3

4π
ωK

g(R)

R2
. (10)

If advection is not accounted for, all dissipated energy is con-
verted locally to the radiation:

Q+(R) = Qrad(R). (11)

We can assume that a fractionǫw of the radiative energy goes to
accelerate the outflow:

ǫwQrad(R) =
1

2

1

2πR

dṀ(R)

dR

ω2
KR2

2
=

GM

8πR2

dṀ(R)

dR
. (12)

wherev2
K(R)/2 = ω2

KR2/2 is the energy required to eject a unit
mass from radiusR to infinity. Lipunova (1999) assumed the max-
imum outflow rate withǫw = 1 and obtained an analytical solu-

2 We note here that any supercritical disc model (with advection, with out-
flows, or both) predicts such a dependence, which just follows from the
vertical balance of gravity and radiative pressure.

tion of the system of equations (8)–(12), applying boundarycondi-
tionsṀ(Rsp) = Ṁ0 (whereRsp is a parameter of the model) and
g(Rin) = 0:

Ṁ(r)

ṀEdd

=

8

>

>

>

<

>

>

>

:

ṁ0

r

rsp

1 + 2

3
r−5/2

1 + 2

3
r
−5/2
sp

, r ≤ rsp,

ṁ0, r > rsp,

(13)

g(r)

g0

=

8

>

>

>

>

<

>

>

>

>

:

ṁ0r
3/2

3rsp

1 − r−5/2

1 + 2

3
r
−5/2
sp

, r ≤ rsp,

g(rsp)

g0

+ ṁ0

“

r1/2 − rsp
1/2

”

, r > rsp.

(14)

whereg0 = ṀEdd

√
GMRin.

At intermediate radii1 ≪ r < rsp, the accretion rate is close
to the dependencėM(r) = Ṁ0 r/rsp suggested by SS73 and the
radiative energy flux is

Qrad(R) =
3

8π

(GM)1/2g(r)

R7/2
≈

GMṀ(R)

8π R3
∝ R−2. (15)

Note that in the standard model there is a factor of 3 present in a
similar formula (see equation 2), which is related to the fact that
the energy dissipated close to the inner disc radius is transported to
larger radii and radiated there. In the model with the mass loss, this
factor is missing, implying that the energy transfer from the inner
part of the disc is negligible.

The luminosities produced within and outsidersp are

L(r < rsp)

LEdd

=
ṁ0

rsp

ln rsp − 2

5

“

1 − r
−5/2
sp

”

1 + 2

3
r
−5/2
sp

,

L(r > rsp)

LEdd

=
5

3

ṁ0

rsp

1

1 + 2

3
r
−5/2
sp

. (16)

Defining the spherization radius by the condition (SS73)

L(r > rsp) = LEdd, (17)

we obtain

rsp ≈ 5

3
ṁ0, (18)

which gives the total luminosity

L ≈ LEdd

„

1 +
3

5
ln ṁ0

«

(19)

and the Eddington accretion rate to the BH,ṁ(Rin) = 1. A frac-
tion of this luminosity can escape as radiation and the rest as kinetic
energy of the outflow.

It is worth noting here that if we assume in this model that
only a small fraction of the dissipated energy is used to produce the
outflow, i.e.ǫw < 1 (see eq. 12), then the resulting accretion rate
is too high. With the high radiative efficiency (because we neglect
advection) the locally emitted flux is strongly super-Eddington, and
therefore the model is unphysical. However, accounting forthe ad-
vection allows us to construct a self-consistent model evenin this
case (see below).

3.2 Supercritical disc with advection

At supercritical accretion rates, the advective transportof the vis-
cously generated heat to the black hole becomes important inthe
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Figure 1. (a) The radiative energy flux emitted from the disc (timesr2, i.e. energy flux per logarithm of radius) as a function of radius forṁ0 = 10 and103 .
The flux is measured in unitsQ0 = GMṀEdd/8πR3

in = c5/36GMκ = 1.52 1025m−1erg cm−2 s−1. The solid curves from the top to the bottom are the
exact solutions of the advective disc equations forǫw = 0, 1/2 and 1. Bold dots represent the positions of the spherizationradius defined by condition (17).
The dashed curves correspond to the analytical solution given by equations (10), (11) and (14). (b) The accretion rate asa function of radius forṁ0 = 103 .
The solid curves are the exact solutions for the advective disc, while the dashed curve is solution (13) for the non-advective disc with the outflow. The dotted
curves are the linear approximations given by formula (25).

energy balance equation. The diffusion time for photons, traveling
to the disc surface, becomes larger than the characteristictime of
the radial displacement of the matter. Due to the advective remov-
ing of the heat, the locally radiated flux becomes smaller:

Qrad = Q+ − Qadv . (20)

A model of a supercritical advective disc with an out-
flow was first proposed by Lipunova (1999) (see also
Kitabatake, Fukue & Matsumoto 2002; Fukue 2004). The
maximum mass loss from an advective disc by the energy-driven
wind is about twice smaller than in the model without advection
and amounts to about 3/5 of initial accretion rateṀ0. We modify
the model considered by Lipunova (1999) assuming that a fraction
ǫw < 1 of the radiation energy flux is spent on the production of
the outflow (see eq. [12]). We solve the standard set of equations
for the advective disc (as described in details in Lipunova 1999)
for variousṁ0 andǫw.

The outflow occurs within the spherization radiusrsp, which
is defined self-consistently from condition (17). For different ǫw,
the spherization radius varies because a different amount of angu-
lar momentum is gone with the wind, and, consequently, the struc-
ture of the outer subcritical disc is different as it dependson the
boundary condition atrsp. The results of our calculations can be
approximated (with the accuracy of 2 per cent forṁ0 > 5) by a
simple formula:
rsp

ṁ0

≈ 1.34 − 0.4ǫw + 0.1ǫ2w − (1.1 − 0.7ǫw)ṁ
−2/3

0 . (21)

The resulting radiation flux and the mass accretion rate as
functions of radius are shown in Fig. 1. One sees that the radia-
tive energy flux depends very weakly onǫw. This also means that a
similar solution will be obtained if a smaller mass is ejected with a
larger velocity. The radial dependence ofQrad(r) is similar to that
in discs with strong mass loss and no advection (see section 3.1 and
the dashed curve in Fig. 1a). Atr < rsp ≈ ṁ0, Qrad(r)r2 is al-
most constant. This is just the consequence of the fact that the disc
is close to the Eddington limit locally everywhere, i.e.H/R is close
to unity. Atr ≫ rsp, Qrad decreases asr−3 as in the standard disc.

The total luminosity is well approximated by equation (19).As we
assume that a fractionǫw < 1 of the radiative energy flux is spent to
drive the wind to infinity, a fraction1− ǫw can escape as radiation.
We note that in the advective disc (with or without the outflow) the
scale-height (see Beloborodov 1998; Lipunova 1999, and Fig. 1a)

H/R ≈
r2 Qrad(r)

Q0

< 0.8, (22)

which justifies our use of the vertically integrated quantities.
Because the outflow is optically thick at most radii and the

radiation is partially trapped (see below), it isenergy-driven (not
momentum-driven as was assumed by King & Pounds 2003), and
its kinetic luminosity can exceedLEdd.

The fraction of the initial accretion rate that passes through the
inner radius can be approximated forṁ0 > 2.5 as

ṁin

ṁ0

≈
1 − a

1 − a
`

2

5
ṁ0

´−1/2
, (23)

wherea = ǫw(0.83 − 0.25ǫw). For example, forṁ0 = 1000 and
ǫw = 1/2 we getrsp = 1.16 ṁ0 andṁin = 0.66 ṁ0, while in the
case of the maximal outflow withǫw = 1 we haversp = 1.04 ṁ0

andṁin = 0.43 ṁ0. The total outflow rate for largėm0 is thus

Ṁw ≈ aṀ0. (24)

The exact solutions for the accretion rate inside the spheriza-
tion radius can be approximated by the linear relation (compare
solid and dotted curves in Fig. 1b)

ṁ(r) ≈ ṁin + (ṁ0 − ṁin)
r

rsp

. (25)

This can be easily understood from equation (12): the radialderiva-
tive of the accretion rate is proportional tor2Q(r), which is almost
constant atr < rsp. The linear behaviour of the accretion rate on
radius is also obtained in the numerical simulations (Ohsuga et al.
2005).
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Figure 2. The Thomson optical depth through the wind as a function of
radius in the direction parallel and perpendicular to the disc forṁ0 = 10

3.
The wind parameters areβ = ζ = 1 andǫw = 1/2. The perpendicular

optical depth reaches the maximum of∼3ṁ
1/2

0
ǫw
β
∼50 at the spherization

radiusrsp ≈ ṁ0.

4 STRUCTURE OF THE OUTFLOW

4.1 Optical depth through the outflow

The gas ejected from the accretion disc at cylindrical radius R
gains the velocity perpendicular to the disc (in thez direction),
vz = ξvK(R) with ξ & 1. A mass element reaches asymptotically
the velocity ofζvK(R), with ζ =

p

ξ2 − 1. If the angular momen-
tum is conserved, the gas moves (in the ballistic approximation)
along the linez/R = ζ at large radii. The radial (i.e. projected to
the disc plane) velocity is thusζvK(R)/ξ. Because the disc scale-
heightH/R∼0.6 andξ is not expected to exceed 1.5–2 (owing to
the energy constraints),ζ∼0.6–1.7. The outflow is thus confined in
the region outside the cone of opening angleθ given bycot θ = ζ
and it occupiesΩw/4π = cos θ =0.5–0.85 fraction of the sky.

Let us construct the vertically averaged wind model. As our
baseline we take the advective disc model with the outflow de-
scribed in the previous section. We take the accretion rate as given
by equation (25) withrsp andṁin given by equations (21) and (23).
The mass outflow rate (atr < rsp) is then

Ṁw(R) =

Z R

Rin

dṀ(R)

dR
dR = ṀEdd(ṁ0 − ṁin)

r − 1

rsp

. (26)

Within the spherization radius the mean wind radial velocity should
scale with the local Keplerian velocity. AtR > Rsp, the mass loss
rate is constant and the gas reaches asymptotically velocity of ∼
β vK(Rsp), whereβ ∼ ζ ∼ 1. We can then approximate the wind
radial velocity profile by a simple function:

vw(R) =

8

<

:

β
q

GM
R

, R ≤ Rsp,

β
q

GM
Rsp

, R > Rsp.
(27)

From the mass conservation law,

Ṁw(R) = ζ 4πR2 ρ(R) vw, (28)

we find the mean densityρ and the optical depth in the perpendic-
ular direction,τ⊥(R) = κρζR:

τ⊥(r) =
τ0

β

ṁ0 − ṁin

rsp

8

<

:

r1/2 − r−1/2, r ≤ rsp,

(rsp − 1)r
1/2
sp r−1, r > rsp.

(29)

Hereτ0=ṀEdd

√
6κ/4πcRin ≈5. The optical depth has the maxi-

mumτ⊥,max≈3(ṁ
1/2

0 −ṁ
−1/2

0 )ǫw/β at r = rsp (see Fig. 2).
The Thomson optical depth from radiusr in the direction par-

allel to the disc is

τ‖(r) = κ

Z ∞

R

ρ(R′)dR′ =
1

ζ

Z ∞

r

τ⊥(r′)
dr′

r′
. (30)

The maximum of∼ 8(ṁ
1/2

0 − 4/3)ǫw/ζβ is reached atr = 1. At
r > rsp it decays in the way identical toτ⊥ (Fig. 2):

τ‖(r) = τ⊥(r)/ζ ∝ r−1. (31)

The outflow becomes optically thick atṁ0 ∼ 2.5 for ǫw ∼ 1/2.

4.2 Photospheres and the emitted spectrum

We can define three characteristic radii (see Fig. 2): (1) theradius
of the inner photosphererph,in, whereτ⊥ = 1; (2) the spherization
radiusrsp ≈ ṁ0, where the optical depth through the wind in the
normal direction is maximal; and (3) the outer photosphererph,
where the wind becomes transparentτ⊥ ≈ τ‖ = 1.

The inner photosphere is almost independent ofṁ0:

rph,in ≈ 1 +
β

3ǫw
. (32)

The outer photosphere (foṙm0 ≫ 1),

rph ≈ 3
ǫw
ζβ

ṁ
3/2

0 , (33)

is much larger than the spherization radius.
A face-on observer would see the emission from three separate

zones defined by the three characteristic radii:

r < rph,in, zone A,
rph,in < r < rsp, zone B,
rsp < r < rph, zone C.

(34)

The characteristic disc temperatures can be obtained from the
Stefan-Boltzmann law

Qrad(R) = σSBT 4(R). (35)

For the advective disc withǫw = 1/2 the maximum effective tem-
perature is about

Tmax = 1.6 m−1/4
“

1 − 0.2ṁ
−1/3

0

”

keV. (36)

It is reached atrmax ≈ 1.06 < rph,in for large ṁ0 and varies
little with the accretion rate. Variations inǫw affects this temper-
ature only by a per cent or so (see Fig. 1a). The observed color
temperature differs fromTmax by a color correction factorfc. The
exact values forTmax andrmax, however, depend on general rela-
tivity corrections, which are neglected here. In zone A, thewind is
transparent (i.e. it is momentum-driven) and the radiationescapes
unaffected by the outflow.

In zone B, the wind is opaque and the energy generated in
the disc is advected by the wind. The ratio of the photon diffusion
time in the wind,τ⊥ζR/c, to the dynamical time-scale,ζR/vw, is
3ǫw/

√
6 ∼ 1 (this supports the view that the wind here is energy-

driven). Thus the radiation escapes at a radius about twice the en-
ergy generation radius. This does not change the radial dependence
of the effective temperatureT ∝ R−1/2, resulting in a power-law



6 J. Poutanen et al.

Figure 3. (a) The luminosity-temperature relation for sub-critically accreting BHs in the Milky Way and Large Magellanic Cloud (data from Gierliński & Done
2004). Most objects (except LMC X-1) show a well pronounced correlationL ∝ T 4

max consistent with the standard accretion theory (SS73). The bolometric
luminosity and the color temperatureTc,max are corrected here for the effect of inclination and relativistic effects (see details in Gierliński & Done 2004).
Theoretical dependences are shown for 1.5, 5 and 10 solar mass BHs. (b) The luminosity-temperature relation for super-critically accreting BHs. The curves
are theoretical dependences for the model of the advective disc with the outflow given by equations (19) and (36)–(38). The accretion rate iṡm0 ≈ 2 at the
point of separation of various temperatures, and the curvescontinue untilṁ0 = 103 (filled circles at the curves indicate a change inṁ0 by a factor of 10).
The following temperatures are shown (from the right curve to the left): the maximal color disc temperatureTc,max = fcTmax with the color correction
factor fc = 1.7, the color temperature at the spherization radiusTc,sp (also withfc = 1.7), and the temperature at the outer photosphereTph. The wind
parameters areβ = ζ = 1, ǫw = 1/2. The upper (solid) set of curves is for the BH massm = 15 and the lower dashed curves are form = 5. The stars
show the positions of the super-critically accreting stellar-mass BHs, SS 433 (Dolan et al. 1997) and V4641 Sgr (Revnivtsev et al. 2002). Other symbols are
the apparent bolometric luminosities and the temperaturesobtained from the spectral fits with the blackbody andDISKBB model to theXMM-Newton data of
a set of ULXs (from Table 5 of Stobbart et al. 2006). The crosses show the data for LMC X-1 if one increases the apparent luminosity by a factor of 5.

spectrumFE ∝ E−1 extending from aboutTph,in to the tempera-
ture at the spherization radiusrsp ≈ ṁ0:

Tsp ≈ 1.5 m−1/4ṁ
−1/2

0

“

1 + 0.3 ṁ
−3/4

0

”

keV. (37)

The resulting temperature should also be reduced by(1 − ǫw)1/4,
because some energy is transferred to the outflow.

The outer zone C emits about the Eddington luminosity which
is produced mostly in the disc at radiir > rsp. The photon diffu-
sion time here is smaller than the dynamical time, thus most of the
radiation escapes not far from the radius it is produced. This results
in the effective temperature variation close tor−3/4 and the nearly
standard spectrumFE ∝ E1/3 (SS73).

An edge-on observer would see only the blackbody-like emis-
sion corresponding to the temperature at the outer photosphere,
which for ṁ0 ≫ 1 (i.e.rph ≫ rsp) takes the form:

Tph ≈ 0.8

„

ζβ

ǫw

«1/2

m−1/4ṁ
−3/4

0 keV. (38)

For accretion rates slightly exceeding the Eddington,rph . rsp,
and the dependence ofTph on ṁ0 is much stronger.

At intermediate inclinations, the central hot part of the disc
may be partially blocked by the wind, and an observer would see a
soft spectrum peaking atTsp.

5 COMPARISON WITH OBSERVATIONS

The standard model for sub-critically accreting BHs (SS73;Sect.
2) predicts the relationL ∝ T 4

max ∝ Ṁ . At super-Eddington ac-
cretion rates, three characteristic temperatures are identified: (i) the
maximal color disc temperatureTc,max = fcTmax ≈ 1.6fcm

−1/4

keV, (ii) the color temperature at the spherization radiusTc,sp ≈
1.5fcm

−1/4ṁ
−1/2

0 keV, and (iii) the outer photosphere temper-
ature given by equation (38). The bolometric luminosity andthe
temperatures depend parametrically onṁ0 according to equations
(19) and (36)–(38). These theoretical dependences are shown in
Fig. 3(b). The luminosity observed along the symmetry axis may
exceedLbol by a factor1/(1− cos θ)∼2–10 for the outflow height
z/R∼0.6–2. On the other hand, a fractionǫw is spent on accel-
eration of the outflow. Together these effects result in the 10–30-
fold excess overLEdd at high accretion rates (see also Ohsuga et al.
2005; Begelman et al. 2006; Fabrika et al. 2006). Thus the absolute
maximum apparent luminosity in our model is about1041erg s−1

for a 20M⊙ BH.

The BHs in the Milky Way and LMC, accreting at a rate above
a few per cent of Eddington, show spectra peaking at 0.4–1.5 keV.
They closely follow the standardL ∝ T 4

max dependence (except
LMC X-1, see Gierliński & Done 2004, and Fig. 3a). The spread
around it can result from varying contribution of the non-thermal
emission. A shift of the microquasar GRO J1655-40 to the right
from theL–T relation for a 7M⊙ BH (Orosz & Bailyn 1997) is
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probably related to a high spin of the BH there, which resultsin a
higher disc temperature compared to the Schwarzschild BH.

Two super-Eddington accretors in our galaxy, a persistent
source SS 433 (Dolan et al. 1997) and a super-critical transient
V4641 Sgr (Revnivtsev et al. 2002), show optical spectra with
characteristic temperatures of 30 000–50 000 K, which we asso-
ciate with the emission from the outer photosphere (and not with
the spherization temperatureTsp as proposed by Begelman et al.
2006). We estimate the accretion rate to be about103 higher than
the Eddington one. SS 433 is a bright UV source with total luminos-
ity of about1040erg s−1 (Dolan et al. 1997), but is underluminous
in the X-rays. V4641 Sgr, on the other hand, exceeded 12 Crab in
the X-rays during the outburst and and was extremely bright in the
optical band. Such a difference may be caused by a different mode
of accretion and/or different inclination of the two systems.

In Fig. 3(b) we present the data for ULXs with the luminosities
exceeding1039erg s−1 and the most reliable spectra obtained by
XMM-Newton. The temperatures obtained by Stobbart et al. (2006)
from the fits with the blackbody andDISKBB models and the corre-
sponding observed bolometric luminosities are plotted. A theoret-
ical spectrum from a super-critical disc with aT (R) ∝ R−1/2

dependence, can, in principle, be represented as a sum of such
components. We associate a high temperature component withthe
hot inner disc ofTmax∼1 keV. A high BH spin and an over-
heating of the disc above the effective temperature atṁ0∼2–
20 (Beloborodov 1998; Suleimanov et al. 2002; Kawaguchi 2003)
may be responsible for sometimes observed higher (up to 4 keV)
temperatures. A soft,∼0.2 keV component may correspond to
the spherization temperature implying the accretion rateṁ0 =
m−1/2(1.5fc/Tc,sp[keV])2≈30–40 onto a stellar mass, 10–20
M⊙, BH. The observed higher luminosities can result from the ge-
ometrical beaming.

LMC X-1 deserves a more detailed discussion. Its apparent
luminosity is sub-Eddington for a 10M⊙ BH, but its track on the
L–T diagram (see Fig. 3a) is perpendicular to that for other BHs.
This can be understood if its mass is only∼1.5M⊙ (i.e. it can be
a neutron star, but see Hutchings et al. 1983; Ebisawa et al. 1991)
and the source accretes atṁ0∼3. The observed rather soft spec-
trum is associated with the spherization region and resultsfrom
obscuration of the central hot disc. In that case, however, we se-
riously underestimate the true luminosity of the object. Assuming
that it is five time larger than the apparent one, the behaviour of
LMC X-1 on theL–T plane (Fig. 3b) becomes consistent with that
of the spherization temperature atṁ0 ≈1–3 for a 10M⊙ BH.

6 SUMMARY

A black hole accreting at a super-Eddington rate is likely toproduce
strong winds (and jets) as observed in SS 433, the only known BH
in the Milky Way accreting persistently at such a high rate. The
bolometric luminosity can exceed the Eddington limit by a loga-
rithmic factor∼ ln ṁ0, while the apparent luminosity can be factor
of 5 higher because of the geometrical beaming. The observational
appearance of such an object strongly depends on the inclination
angle of the system to the line-of-sight. In edge-on systems, the
central X-ray source is hidden by the wind and most of the radia-
tion, with the characteristic temperature of∼ 104–105 K, escapes
in the UV band. A face-on observer sees the hot inner flow with
the flat inEFE spectrum extending from a few keV down to the
temperature at spherization radiusTsp ≈ ṁ

−1/2

0 keV.
Strong winds from the accretion disc explain naturally the

presence around the ULXs of the expanding nebulae which are
photoionized by the X-ray and UV radiation of the central source.
An excellent agreement between the model and the data sup-
ports views (Fabrika & Mescheryakov 2001; King 2002; Fabrika
2004; Begelman et al. 2006; Vierdayanti et al. 2006) that ULXs are
super-critically accreting stellar-mass BHs similar to SS433, but
observed along the symmetry axis.
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