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Abstract

The Pedersen analysis [1, 2] of the low-level rf feedback system assumes that
all bunches oscillate in phase what corresponds to the lowest coupled bunch mode.
This analysis is extended here to take into account all other coupled-bunch modes
what might be important for the strongly detuned cavities in large storage rings
such as PEP-II.

1 Introduction

The Pedersen analysis [1, 2] of the low-level rf feedback system gives a solid ground for
the design of the low-level rf feedback (FB) system and has been used for analysis and
modeling of the FB in PEP-II B-factory. The analysis assumes that all bunches oscillate
in phase what corresponds to the lowest coupled bunch mode. This analysis is extended
here to take into account all other coupled-bunch modes what might be important for the
strongly detuned cavities in large storage rings such as PEP-II.

For completeness and to define notations we, first, reproduce the basic definitions of
the steady-state parameters of the rf FB system. In the derivation of the beam response,
all coupled-bunch (CB) modes are taken into account and their effect is included in the
analysis of the FB stability.

2 Cavity voltage

A rf cavity can be described as an LC contour excited by the power from a klystron
and the beam current. Following P. Wilson [3] and G. Kraft [4], we describe the time
dependence of the cavity voltage Vc(t) by the equation



(
d2

dt2
+
ωc
QL

d

dt
+ ω2

c )Vc(t) =
ωcRL

QL

dItot
dt

. (1)

Here ωc/2π is the fundamental frequency of the cavity, Q0 and R0 are the quality
factor and shunt impedance of the cavity, and QL and RL are the loaded Q-factor and
loaded shunt impedance, depending on the rf coupling parameter β,

QL =
Q0

1 + β
, RL =

R0

1 + β
. (2)

The cavity is excited by the total current Itot = Ig(t)− IB(t), where Ig and IB are the
excitation current of the generator and the beam current, respectively.

Consider the rf cavity with the rf feedback system (FB). The FB loop is shown in Fig.
(1). The voltage on the cavity is generated by the generator current Ig and the beam
current IB and is defined by the cavity impedance Zc as it is followed from Eq. (1):

Vc(ω) = ZC(ω)(Ig(ω) − IB(ω)),

Zc(ω) =
RL

1 − iQL( ω
ωc

− ωc

ω
)
. (3)
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Figure 1: Schematic of the longitudinal rf FB system.

We use the time dependence of all quantities at the frequency ω in the form e−iωt.
The input voltage on the amplifier is VΣ = Vs−κVc, where Vs is the setup voltage and

κ is a real parameter of the attenuator, κ ' 10−6. After the amplifier with the transfer
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function TA, the input voltage to the klystron is VK = TAVΣ. The output generator
current feeding the rf cavity is

Ig =
VK
TK

=
TA
TK

(Vs − κVc). (4)

Substituting Eq. (4) into Eq. (3) we obtain

Vc(ω) =
(G/κ)Vs(ω) −RLIB(ω)

1 − 2iQL(ω−ωc

ωc
) +G

,

Ig(ω) =
G

κRL

Vs(ω) −G
Vc(ω)

RL

. (5)

Here we use notation G for the FB transfer function defined in terms of the electronic
gain H and the delay time τd as

G = κ
TA
TK

RL = H ei(ω−ωc)τd . (6)

ParametersH and τd are, approximately, independent of frequency. For PEP-II,H ' 6
and τd = 450 ns.

The FB stability requires that the poles of Vc(ω) as function of complex ω have to be
in the lower half plane. In other words, for the FB stability, the imaginary part of zeros
of the denominator in Eq. (5) for Vc(ω) has to be negative. Result of the calculation for
the PEP-II coupling βRF = 3.6, QL = 6956.5, and delay time τd = 450 ns is shown in Fig.
(2). The FB system is stable for H <' 15. The actual limit is lower and is defined by
distortion of the cavity impedance at large H [5], see Fig. (3).

2.1 Steady-state conditions

Consider the rf frequency ωg = hω0, where ω0/(2π) is the revolution frequency, and h is
the harmonic number. We define quantities

µ = (ωg − ωc)τd,

ζ = 2QL
ωg − ωc
ωc

,

RH =
RL

1 +H cosµ
,

tanψ =
ζ −H sinµ

1 +H cosµ
. (7)

Let us define the amplitudes and phases †

†F. Pedersen uses phases φL, φB , and φz related to our φc, φs, and ψ: φL = −φc, π/2 − φB = φs,
φz = ψ.
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Figure 2: Imaginary part of the poles of Vc(ω) as function of the FB gain H. The FB is
stable if imaginary part shown in the plot is negative.

Vc(t) = V cos(ωgt+ φc) =
1

2
V̂c e

−iωgt + c.c., V̂c = V e−iφc ,

IB(t) = 2Idc cos(ωgt+ φc − φs) =
1

2
ÎBe

−iωgt + c.c., , ÎB = 2Idc e
−i(φc−φs),

Ig(t) =
1

2
Îge

−iωgt + c.c.,

Vs(t) =
1

2
V̂se

−iωgt + c.c. (8)

The common phase is arbitrary and we assume that Îg is real.
In this notations and at ω = ωg, Eq. (5) takes the form

V̂c = ZH(ωg)Îtot,

Îtot =
H

κRL

V̂se
iµ − ÎB. (9)

The impedance ZH(ωg) at the rf frequency is

ZH(ωg) = RH cos(ψ) eiψ. (10)

Hence, the detuning angle ψ is the angle between Vc and the total current Itot.
A bunch crosses the cavity at the moments when IB(t) is maximum and sees the

accelerating voltage Vacc = V cos(φs). The synchronous phase φs, therefore, is defined
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Figure 3: Real part of the impedance for several values of the FB gain H. The impedance
starts to grow at large H and can cause instability at the rf sidebands for detuned cavities.

by the energy loss per particle per turn due to synchrotron radiation USR and the HOM
losses UHOM = Nbe

2κl proportional to the bunch population NB and the total loss factor
κl (except of the loss factor of the fundamental mode).

For the ncav cavities in the ring,

ncavV cosφs = USR + UHOM . (11)

For the beam stability, the accelerating voltage has to have a negative slope, dVacc/dφs <
0. In this case, a particle having larger energy and shifted above the transition energy to
the tail of the bunch sees the accelerating voltage smaller than the equilibrium particle.
The derivative dVacc/dφsis taken for fixed parameters Idc, ωg, ωc, κ, β,H, τd and the setup

voltage Vs. Therefore, RL, QL, RH , µ and ψ are also constant, while |V̂c| and φc vary.
Taking derivative of Vc given by the first of Eqs. (9), we get

d|V̂c|
dφs

= i|V̂c|
dφc
dφs

+ 2iIdcRH cosψ ei(φs+ψ) (
dφc
dφs

− 1), |V̂c| = V. (12)

The real and imaginary parts give two equations

dφc
dφs

=
YH cosψ cos(ψ + φs)

1 + YH cosψ cos(ψ + φs)
,

d|V̂c|
dφs

= |V̂c| tan(ψ + φs)
dφc
dφs

. (13)

Here
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YH =
YL

1 +H cosµ
, YL =

2IdcRL

V
. (14)

The Robinson condition of stability takes the form

sin(φs) >
YH
2

sin(2ψ). (15)

Without FB, H = 0, it takes the standard form. Limitation on the beam current are
shown in Fig. (4). At a fixed voltage, the maximum current increases with the FB on.
However, as it was mentioned above, the maximum gain H is limited by the stability of
the rf sidebands, see Fig. (3).
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Figure 4: For each rf voltage of the PEP-II LER, the beam currents corresponding to
Robinson criterion of stability are shown by dots. Upper plot: with the FB Hg = 6.0,
bottom plot with the FB turned off, Hg = 0.
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2.2 Optimum conditions

The optimum conditions correspond to the minimum of reflected power

Pr =
β

2(1 + β)RL

|V̂c −
RL(1 + β)

2β
Ig|2. (16)

Substituting

Îg = V̂c/Zc + ÎB, (17)

from Eq. (3), V̂c = |V̂c|e−iφc , ÎB = 2Idce
i(φs−φc), and using definition of YL, we get

Pr =
(1 + β)|V̂c|2

8βRL

|β − 1

β + 1
− YL cosφs + i(ζ − YL sinφs)|2. (18)

Pr is minimum if the imaginary part is zero. This defines the optimum detuning

ζ = 2QL
ωg − ωc
ωc

= YL sinφs, (19)

and the detuning angle ψ by Eq. (7).
The reflected power in the optimum

Pr =
(1 + β)|V̂c|2

8βRL

|β − 1

β + 1
− YL cosφs|2. (20)

is zero for fixed cavity voltage only at certain current, when

YL cosφs =
β − 1

β + 1
. (21)

Eqs. (19),(17) give

Îg =
|V̂c|
RL

e−iφc (1 + YL cosφs). (22)

By definition, Îg is real. Hence, φc in the optimum is zero.
Usually, the FB system operates to produce a given cavity voltage Vc for a beam

current IB. Then Eq. (5) taken at ω = ωg defines the reference voltage Vs,

Vs(ωg) =
κVc
H

e−iµ {1 − iζ +Heiµ + YLe
iφs}, (23)

where µ and ζ are defined by Eq. (7).
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3 Analysis of small perturbations

The steady-state cavity voltage V (0)(t) = 1
2
V̂ 0e−iωgt + c.c. is the sum of voltages induced

by the setup voltage V (s)
cav , the voltage V (B)

cav induced by the beam current IB, and of the
FB V (FB)

cav ,

V 0 = V (s)
cav − V (B)

cav − V (FB)
cav . (24)

If there is a beam perturbation δIB, the setup voltage V (s)
cav do not change, but the

cavity voltage and the total current change.
Following F. Pedersen [1], we write the small variations of the voltage and the total

current around the steady-state as

δVc(t) =
1

2
V̂ce

−iωgtU(t) + c.c., U(t) = u[t] − iΦ[t],

δItot(t) =
1

2
Îtote

−iωgtJ [t] + c.c., J(t) = a(t) − ib(t). (25)

where the slow functions of time U(t) and J(t) are split in the real and imaginary
parts.

V̂c and Îtot are related by Eq. (9), V̂c = ZH(ωg)Îtot. Eq. (25) gives for Fourier
harmonics

δVc(ω) =
1

2
V̂cU−(ω − ωg) +

1

2
V̂ ∗
c U+(ω + ωg), U±(ω) = u(ω) ± iΦ(ω),

δItot(ω) =
1

2
ÎtotJ−(ω − ωg) +

1

2
Î∗totJ+(ω + ωg), J±(ω) = a(ω) ± ib(ω), (26)

where U(ω) = u(ω) − iΦ(ω), J(ω) = a(ω) − ib(ω), u(−ω) = u∗(ω), Φ(−ω) = Φ∗(ω),
a(−ω) = a∗(ω), b(−ω) = b∗(ω) and the star indicates complex conjugation.

The perturbation δItot(ω) = δIg − δIB causes δVc(ω) = Zc(ω)δItot(ω). Because, the
reference voltage Vs is fixed, then δVΣ = −κZcδItot, see Fig.(1). The variation δVΣ

propagates giving δVK = TAδVΣ and δIg = δVK/TK . Hence,

(1 + κ
TA
TK

Zc(ω)) δItot(ω) = −δIB(ω), (27)

or

δItot(ω) = −ZH(ω)

Zc(ω)
δIB(ω),

δVc(ω) = −ZH(ω)δIB(ω) = Zc(ω)δItot(ω). (28)
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Combining Eq. (26) and the second Eq. (28) produces the first set of F. Pedersen’s
relations

u(ω) = G+(ω)a(ω) − iG−(ω)b(ω),

Φ(ω) = iG−(ω)a(ω) +G+(ω)b(ω), (29)

where

G± =
1

2
[±Zc(ω − ωg)

Z∗
H(ωg)

+
Zc(ω + ωg)

ZH(ωg)
]. (30)

Note that G∗
±(−ω) = ±G±(ω).

The beam dynamics relates δVc to δIB(ω) and, through the first Eq. (28), to δItot.
This is considered in the next section.

3.1 Beam dynamics

Let us consider a train of nb ultra-relativistic bunches in the ring with the circumference
2πR = cT0 = 2πc/ω0. For the frequencies within the bandwidth of the FB system,
bunches can be considered as point-like macro-particles. In an equilibrium, the center of
the n-th bunch is at the distance sn = (n− 1)sb from the head of the train. The position
of the bunch in the ring sn is

sn(t) = c(t− t0) − (n− 1)sb + ζn(t) (31)

where c is velocity of light, t0 = const, and ζn > 0 means the displacement of the
bunch center to the head of the train. ζn(t) describes the synchrotron oscillations. The
amplitude of oscillations may be itself a slow function of time. The constant longitudinal
offset of the bunches in the train is included in t0.

On the k-th turn, the n-th bunch centroid arrives to an rf cavity located at s = 0 in
the ring at the moment tk,n = kT0 + t0 + (n− 1)sb/c.

The beam current exciting a cavity located at s = 0 around the ring is

IB(t) =
Idc c T0

nb

nb∑
n=1

∞∑
k=−∞

δ[c(t− t0) − (n− 1)sb + ζn(t) + kcT0] =

IdcT0

nb

nb∑
n=1

∫ dω

2π

∞∑
k=−∞

exp[−iω(t− t0 − (n− 1)
sb
c

+
ζn(t)

c
+ kT0)]. (32)

Using the identity

∞∑
k=−∞

exp[−ikωT0] =
2π

T0

∞∑
k=−∞

δ[ω − kω0], (33)
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Eq. (32) in the linear over ζ approximation can be written in the form

IB(t) =
Idc
nb

nb∑
n=1

∞∑
k=−∞

exp[ikω0(t− t0 − (n− 1)
sb
c

)] (1 + i
kω0

c
ζn(t)). (34)

We assume the uniform fill of bunches, ω0sb/c = 2π/nb, expanding ζn(t) over the
coupled-bunch eigen modes Xµ

n with amplitudes Aµ(t), A
∗
µ(t) = A−µ(t), µ = 0, 1, .., nb−1,

ζn(t) =
nb−1∑
µ=0

Aµ(t)X
µ
n , Xµ

n =
1√
nb
e2πi(n−1)µ/nb . (35)

Now we can use the identity

nb∑
n=1

exp[−ikω0(n− 1)sb/c] = nb
∞∑

p=−∞

δk,pnb
, (36)

and

nb∑
n=1

(Xµ
n )e−ikω0(n−1)sb/c =

√
nb

∞∑
p=−∞

δk−µ,pnb
, (37)

where δi,k = 1 for i = k and δi,k = 0 otherwise.
Eq. (32) is transformed to

IB(t) = Idc
∞∑

p=−∞

eipnbω0(t−t0) {1 + i
ω0

c
√
nb

∑
µ

(pnb + µ)Aµ(t)e
iµω0(t−t0)}. (38)

Here harmonics p = ±h/nb corresponds to the steady-state beam current. Hence,

ωgt0 = (φs − φc). (39)

All other harmonics are separated in frequency by nbω0 and can be ignored for the
analysis of the low-level FB with the bandwidth limited to few revolution harmonics.

The perturbation of the beam current is given by the second term in Eq. (38),

δIB(t) = i
Idcωg
c
√
nb

∑
µ

∑
p

(
pnB + µ

h
)ei(

pnb+µ

h
)(ωgt−φs)Aµ(t). (40)

The Fourier harmonics for the optimum φc = 0 are

δIB(ω) = i
Idcωg
c
√
nb

∑
µ

∑
p

(
pnB + µ

h
)e−i(

pnb+µ

h
)φsAµ[ω + (pnb + µ)ω0]. (41)
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3.2 Synchrotron motion

The synchrotron oscillations are defined by the rf voltage and the longitudinal wake W (t).
The later produces two effects: it changes the synchrotron frequency and generates bunch
coupling.

Consider equation of motion for the n-th bunch in the linear approximation over ζn
taking into account the wake and the perturbation of the rf voltage δVc(t),

d2ζn(t)

dt2
+ ω2

s,0ζn(t) =
∞∑

k=−∞

δ[t− tk,n]{−(
αcencav
E

) δVc(t) +

(
αNbe

2

E
)

∞∑
k′=−∞

nb∑
m=1

W ′[tk,n − tk′,m](ζm(tk′,m) − ζn(tk,n))}. (42)

Here NB and E are the bunch population and the beam energy, respectively, α is the
momentum compaction factor, and ω0

s/2π is the zero-current synchrotron frequency. The
longitudinal wake per turn is defined to be zero for t < 0, and the prime in W ′[t] means
derivative over t. The longitudinal impedance Z(ω) is the Fourier component of the wake
W [t] analytic in the upper half plane of ω.

It is well known [7], that for equidistant bunches and δVc = 0, expansion Eq. (35) in
the orthogonal modes Xµ

n reduces Eq. (42) to independent equations for the constant in
time amplitudes Aµ. The same is true for a slow perturbation δVc(t) 6= 0 giving equations
for the amplitudes Aµ(t) slowly varying in time.

The Fourier harmonics Aµ(ω),

Aµ(t) =
∫
dω/(2π)Aµ(ω)e−iωt (43)

satisfy equations

(ω2
s,0 − ω2)Aµ(ω) = Gµ(ω), (44)

where

Gµ(ω) =
∫
dteiωt

∞∑
k=−∞

nb∑
n=1

[Xµ
n ]∗δ[t− tkn] {−(

αcencav
E

) δVc(t) +

(
αNbe

2

E
)

∞∑
k′=−∞

nb∑
m=1

W ′[tk,n − tk′,m](ζm(tk′,m) − ζn(tk,n))}. (45)

Substituting Fourier expansion for δV (t), for the wake, and ζ(T ), we can carry out
integration over t. That gives
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Gµ(ω) = −(
αcencavω0

2πE
)
√
nb

∞∑
p=−∞

δVc[ω + (pnb − µ)ω0] e
−i(pnb−µ)ω0t0

−i(αNbnbe
2

E
) (
ω0

2π
)2

∞∑
p,p′=−∞

nb−1∑
µ′=0

Aµ′ [ω − (p+ p′)nbω0 − (µ− µ′)ω0] e
i[(p+p′)nb−µ

′+µ]ω0t0

[(ω − pnbω0 − µω0)Z(ω − (pnb + µ)ω0) − p′nbω0Z(p′nbω0)]. (46)

The amplitude Aµ(ω) 6= 0 for low frequencies, |ω| << nbω0. Therefore, we can drop
all terms with p′ 6= p. The impedance dependent diagonal term µ′ = µ can be combined
with the term ω2

s,0 in the LHS of Eq. (44) redefining the synchrotron frequency of the
mode µ,

ω2
µ,s = ω2

s,0 + δω2
s,µ

δω2
s,µ = i(

αNbnbe
2

E
) (
ω0

2π
)2

∞∑
p

[(ω + pnbω0 − µω0)Z(ω + (pnb − µ)ω0) − pnbω0Z(pnbω0)] (47)

Eq. (46) takes the form

Gµ(ω) = −(
αcencavω0

2πE
)
√
nb

∞∑
p=−∞

δVc[ω + (pnb − µ)ω0] e
−i(pnb−µ)ω0t0

−δω2
s,µ

∑
µ′ 6=µ

Aµ′ [ω − (µ− µ′)ω0] e
−i(µ′−µ)ω0t0 . (48)

The last sum (proportional to the synchrotron tune shift δω2
s,µ) is zero for amplitudes

Aµ independent of time. For slow dependence on time it produces coupling of the ampli-
tudes Aµ. Usually, however, δωs,µ is small, δωs,µ << ωs,0, and we can neglect coupling.
In this case,

Gµ(ω) = −(
αcencavω0

2πE
)
√
nb

∞∑
p=−∞

δVc[ω + (pnb − µ)ω0] e
−i(pnb−µ)ω0t0 . (49)

Eq. (44) defines Aµ(ω) in terms of Fourier harmonics of the perturbation δV (ω),

Aµ(ω) = −(
αcencav
E

)
ω0

√
nb

2π[ω2
sµ − ω2]

∞∑
p=−∞

δVc[(pnb − µ)ω0 + ω]e−i(pnb−µ)ω0t0 . (50)

The coefficient can be written in terms of ωs,0,

(
αcencav
E

) = (
ω2
s,0cT0

ωgVc sin(φs)
). (51)
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3.3 Beam transfer function

In the optimum, φc = 0 and V̂c = V̂ ∗
c . Substituting Eq. (50) in Eq. (41) we get for δIB(ω)

expression

δIB(ω) = −i Idc
Vc sin(φs)

∞∑
p=−∞

∞∑
p′=−∞

σ[ω, p] δVc[ω + (p+ p′)nbω0] e
−i(

(p+p′)nb
h

)φs , (52)

where

σ[ω, p] =
∑
µ

(
pnb + µ

h
)

ω2
s0

ω2
s,µ − [ω + (pnb + µ)ω0]2

. (53)

Let us define δIB(t) in terms of the slow functions κb(t) = aB(t) − ibB(t) similarly to
Eq. (25),

δIb(t) =
ÎB
2
e−iωgtκb[t] + c.c. (54)

The Fourier harmonics

δIb(ω) =
ÎB
2
κ−(ω − ωg) +

Î∗B
2
κ+(ω + ωg), (55)

where

κ±(ω) = aB(ω) ± ibB(ω). (56)

Neglecting components κ±(±2ωg), we get from Eq. (55)

κ−(ω) =
2

ÎB
δIB(ω + ωg), κ+(ω) =

2

Î∗B
δIB(ω − ωg). (57)

Substituting here Eq. (52), using Eq. (26) and

V̂c

ÎB
=
RL

YL
e−iφs , (58)

we get

κ−(ω) = − i

2 sinφs

∑
p

∑
p′

σ[ω + ωg, p]e
−i(

(p+p′)nb
h

)φs−iφs{U−[ω + (p+ p′)nbω0]

+U+[ω + 2ωg + (p+ p′)nbω0]},

κ+(ω) = − i

2 sinφs

∑
p

∑
p′
σ[ω − ωg, p]e

−i(
(p+p′)nb

h
)φs+iφs{U−[ω − 2ωg + (p+ p′)nbω0]

+U+[ω + (p+ p′)nbω0]}. (59)
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Because Fourier harmonics of the slow functions U±(ω) are not zero only at low ω, we
can simplify Eq. (59) retaining only the main terms in the sum over p′:

κ−(ω) = − i

2 sinφs

∑
p

σ[ω + ωg, p]{U−(ω)e−iφs + U+(ω)eiφs},

κ+(ω) = − i

2 sinφs

∑
p

σ[ω − ωg, p]{U−[ω]e−iφs + U+[ω]eiφs}. (60)

In the sum
∑
p σ[ω ± ωg, p] we can retain terms with small denominators. In this

approximation,

∑
p

σ[ω ± ωg, p] = ∓σ±(ω), (61)

where

σ±(ω) =
1

2

ω2
s0

ω2
s,µ − ω2

+
1

2

nb−1∑
µ=1−nb

(1 ± µ

h
)

ω2
s0

ω2
s,µ − [ω − µω0]2

. (62)

Let us substitute κ±(ω) = aB(ω) ± ibB(ω) and the definition Upm(ω) = u(ω) ± iΦ(ω).
Eq. (60) takes the form

aB(ω) − ibB(ω) =
iσ+(ω)

sinφs
{u(ω) cos(φs) − Φ(ω) sin(φs)},

aB(ω) + ibB(ω) = − iσ−
sinφs

{u(ω) cos(φs) − Φ(ω) sin(φs)}. (63)

With the accuracy of the terms of the order of µ/h, σ+(ω) = σ−(ω) ≡ σ(ω). Then,
aB(ω) = 0 and

bB(ω) = σ(ω) [−u(ω) cot(φs) + Φ(ω)]. (64)

The phase-to-phase beam transfer function is TBV defined as bB(ω) = TBV Φ(ω).
Therefore, TBV = σ(ω) or

TBV =
1

2

ω2
s0

ω2
s,µ − ω2

+
1

2

nb−1∑
µ=1−nb

ω2
s0

ω2
s,µ − [ω − µω0]2

. (65)

The first term here is the Pedersen’s beam transfer function. The sum defines contri-
bution of the µ 6= 0 CB modes.
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3.4 Dispersion equation

The perturbation of the total current is related to δIB(ω) by Eq. (28),

δItot(ω) = −R(ω)δIB(ω), (66)

where R(ω) = ZH(ω)/Zc(ω). Eq. (66) gives after substitution of Eq. (26) and Eq.
(55)

ÎtotJ−(ω − ωg) + Î∗totJ+(ω + ωg) = −R(ω)[ÎBκ−(ω − ωg) + Î∗Bκ+(ω + ωg)]. (67)

Because J±(ω) and κ±(ω) are Fourier harmonics of the slow functions, Eq. (67) can
be separated in two for ω ' ±ωg:

J−(ω) = −R(ω + ωg)
ÎB

Îtot
κ−(ω), J+(ω) = −R(ω − ωg)(

ÎB

Îtot
)∗κ+(ω). (68)

From Eq. (9), Îtot = V̂c/ZH(ωg). Eq. (8) gives ÎB = 2Idc e
iφs . Therefore, using the

definition of YL,

ÎB

Îtot
=
YL
RL

ZH(ωg)e
iφs . (69)

Substitute Eq. (60) for κ±(ω) and use definition of J±, U± of Eq. (26). That gives
a(ω) and (

¯
ω) in terms of u(ω) and Φ(ω):

a(ω) = iK−[u(ω)cot(φs) − Φ(ω)],

b(ω) = K+[u(ω)cot(φs) − Φ(ω)], (70)

where

K± =
YL

2RL

[±R(ω + ωg)ZH(ωg)σ+(ω)eiφs +R(ω − ωg)Z
∗
H(ωg)σ−(ω)e−iφs ]. (71)

Combining Eq. (70) and Eq. (66), we obtain the homogeneous system of two linear
equations. The nontrivial solution exists if the determinant of the system is equal to zero
what gives the dispersion equation for ω,

1 + i
YL

2RL sin(φs)
{R(ω + ωg))σ+(ω)Zc[ωg + ω] −R(ω − ωg))σ−(ω)Zc[ω − ωg]} = 0. (72)

In terms of the Laplace variable s = −iω, Eq. (72) takes the form
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1 + i
YL

2RL sin(φs)
{R(s− iωg)σ+(s)Zc[s− iωg] −R(s+ iωg))σ−(s)Zc[s+ iωg]} = 0. (73)

Here R(s) = ZH(s)/Zc(s), ZH(s) is equal to Zc(s) if H = 0, and

σ±(s) =
1

2

ω2
s0

ω2
s0 + s2

+
1

2

nb−1∑
µ=1−nb

(1 ± µ

h
)

ω2
s0

ω2
s,µ + (s+ iµω0)2

ZH(s) = RL[
σr

s+ iωc + σr(1 +He−(s+iωc)τd)
+

σr
s− iωc + σr(1 +He−(s−iωc)τd)

],(74)

where σr = ωc/(2QL).
If only a single coupled-bunch mode µ = 0 is taken into account, then σ−(ω) = σ+(ω)

what is the same as the Pedersen’s beam transfer function B(s) = ω2
s0/(ω

2
s0 + s2).

4 Analysis of stability

The dispersion equation Eq. (72) generalize Pedersen’s result including all CB mode. The
system is stable if all eigenvalues ω have negative imaginary parts. In terms of s = −iω,
the growth rate Γµ = Re[s].

As an example, we analyze stability of the LER of PEP-II B-factory. The main
parameters of the system are given in Table 1. Harmonic number h = 2nb. The optimum
calculated steady-state parameters are given in Table 2.

Table 1: Parameters of the LER PEP-II.

ncav 6.
frf MHz 476.
Vc/cavity MeV 0.85
R0 MOhm 3.5
Q0 3.0 104

Uloss MeVr 0.77
Idc Amp 2.25
NB 1010 5.8
sb m 1.24
nb 1658

The growth rate was calculated by solving numerically the dispersion equation Eq.
(72), (73) using MATHEMATICA.
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Table 2: The steady-state parameters.

β 3.909
Y/(1 + β) 3.774
QL 6111.
RL MOhm 0.712
φs degree 80.96
ψ degree 74.95
fs kHz 4.5
(ωc − ωg)/ω0 1.064
τd ns 450

Figs. (5-7) show results of calculations. Fig. (5) gives results with only µ = 0 mode
taken into account for several values of the gain H. The upper pane gives the growth
rate Γ with the FB off (H = 0) and for single mode taken into account (µmax = 0). The
result in this case is exactly the same as given by the Pedersen dispersion equation. The
next panes show how the growth rate is modified with the increasing gain. The threshold
of instability increases with H and instability is completely suppressed at H = 6. Fig.
(6) shows effect of one additional mode µmax = 1 taken into account for H = 0, H = 3,
and H = 6. The instability starts from the zero current as it is suppose to do for the
coupled-bunch case. Fig. (7) gives similar result for four CB modes taken into account
µmax = 3. In all cases the delay time of the FB is τd = 450 ns.

5 Conclusion

F. Pedersen analysis gives the foundation for the design of the low-level rf feedback sys-
tem. In his analysis the beam response is described by the beam transfer function which
takes into account the single m = 0 CB mode. We generalize this analysis defining in
Eqs. (72),(73) the dispersion equation taking into account all CB modes. The growth rate
for the PEP-II was calculated by solving dispersion equation numerically using MATH-
EMATICA with a single m = 0 CB mode (µmax = 0) and with several CB modes. The
difference of the results shows effect of the unstable CB modes.
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