
Work supported in part by Department of Energy contract DE-AC02-76SF00515

Abstract--In the SMI++ framework, the real world is viewed as

a collection of objects behaving as finite-state machines. These
objects can represent real entities, such as hardware devices or
software tasks, or they can represent abstract subsystems. A
special language (SML) is provided for the object description.
The SML description is then interpreted by a logic engine (coded
in C++) to drive the control system. This allows rule-based
automation and error recovery. SMI++ objects can run
distributed over a variety of platforms, all communication being
handled transparently by an underlying communication system,
DIM. This framework was first used by the DELPHI experiment
at CERN for the experiment control. The BaBar experiment at
SLAC has adopted this framework for the design and
implementation of their Run Control system. For this purpose,
the framework was significantly upgraded. The BaBar Run
Control and the underlying SMI++ framework has been in
production since the beginning of 1999. SMI++ has recently been
adopted at CERN by all LHC experiments for their detector
control systems as recommended by the Joint Controls Project.
The main features of the framework and, in particular, of SML
language, as well as recent and near future upgrades, will be
discussed. SMI++ has, so far, been used only by large particle
physics experiments. It is, however, equally suitable for any other
control applications.

I. INTRODUCTION

 SMI++ is based on the original State Manager concept [1],
which was developed by the DELPHI experiment [2] in
collaboration with the CERN Computing Division (Geneva,
Switzerland).

Since then, the concept has undergone substantial
development through a series of upgrades. These were
primarily dictated by the user requirements within the
experiments, which adopted it as a tool for designing their
experiment control. The first significant upgrade (SMI++) was
completed in June 1997. This consisted of rewriting its most
important tool, State Manager, from ADA to C++. In July
1997, it was extensively tested in the DELPHI environment.
During that time, the DELPHI experiment control was fully

B. Franek is with PPD, Rutherford Appleton Laboratory, Chilton, Didcot,
UK (telephone: +44-1235-445643, e-mail: B.Franek@rl.ac.uk).

C. Gaspar is with PH, CERN, Geneva, Switzerland (telephone: +41-22-
7672082, e-mail: Clara.Gaspar@cern.ch).

converted from using the “old” version of SMI to the upgraded
version, SMI++. At that time, it was also adopted by the BaBar
experiment [3] at SLAC for the design and implementation of
their Run Control. From then on, it has been further upgraded
in smaller steps, increasing its flexibility, capabilities and
efficiency.
Recently, all four LHC experiments at CERN [4]-[7] decided
to use it either fully or partially for their experiment control.
Through this use by major particle experiments and continuous
user feedback, SMI++ has become a well-proven, robust and
time-tested tool.

II. BASIC CONCEPTS
The real world to be controlled is typically a set of concrete

entities, such as hardware devices or software tasks. In the
SMI++ framework, this world is described as a collection of
objects behaving as finite-state machines (FSM). These objects
are called associated objects, because they are associated with
an actual piece of hardware or a real software task. Each of
these objects interacts with the concrete entity it represents,
through a so-called proxy process. The proxy process provides
a bridge between the real and the SMI++ worlds, while
fulfilling two functions. First, it follows and simplifies the
behavior of the concrete entity, and second, it sends to it
commands originating from the associated object.

By analogy, the control system to be designed is conceived
as a set of abstract (or logical) objects behaving as FSMs.
They represent abstract entities and contain the control logic.
They can also send commands to other objects (associated or
abstract).

The main attribute of an SMI++ object is its state. In each
state, it can accept commands that trigger actions. An abstract
object, while executing an action, can send commands to other
objects, interrogate the states of other objects, and eventually
change its own state. It can also spontaneously respond to state
changes of other objects. The associated objects only pass on
the received commands to the proxy processes.

In order to reduce complexity of large systems, logically
related objects are grouped into SMI++ domains. In each
domain, the objects are organized in a hierarchical structure,
and form a subsystem control. Usually only one object (the
top-level object) in each domain is accessed by other domains.

SMI++
Object Oriented Framework for Designing and

Implementing Distributed Control Systems
B. Franek and C. Gaspar

Submitted to IEEE Transactions on Nuclear Science

SLAC-PUB-12067

August 2006

The final control system is then constructed as a hierarchy of
SMI++ domains. These basic concepts are graphically
summarized in Fig. 1. and Fig. 2.

Fig. 1. Basic concepts of SMI++

Fig. 2. Basic concepts of SMI++. Hierarchy of domains.

 The framework consists of a set of tools. The most
important are State Manager Language (SML), State Manager
process (SM), and Application Program Interface (API).

III. STATE MANAGER LANGUAGE
 The tool used to formally describe the object model of the
real world and of the control system is SML. This language
allows for detailed specification of the objects, such as their
states, actions, and associated conditions. The main
characteristics of this language are the following.

• Finite-State Logic
 Objects are described as FSMs. The main attribute of an
object is its state. Commands sent to an object trigger object
actions that can bring about a change in its state.

• Sequencing
An action performed by abstract object is specified as a

sequence of instructions. These consist mainly of commands
sent to other objects, and of logical tests on states of other
objects. Commands sent to objects representing concrete
entities (associated objects) are sent off as messages to the
proxy processes.

• Asynchronous Behavior
In principle, all actions proceed in parallel. A command sent

by object A to object B does not suspend the instruction
sequence of object A (i.e., object A does not wait for
completion of the command sent to object B before it
continues with its instruction sequence). Only a test by object
A on the state of object B suspends the instruction sequence of
object A, until object B reaches a stable state.

• AI-Like Rules
Each object can specify logical conditions based on states of

other objects. These, when satisfied, will trigger an execution
of the action specified in the condition. This provides the
mechanism for an object to respond to unsolicited state
changes of other objects in the system.

Example of SML code is shown below:

object : RUN-CONTROL
 state : READY
 action : START-RUN
 do INITIALISE DATA-LOGGER
 if (DATA-LOGGER not_in_state READY) then
 move_to ERROR
 endif
 do START CONTROLLER
 if (CONTROLLER in_state RUNNING) then
 move_to RUN-IN-PROGRESS
 endif
 …
 state : RUN-IN-PROGRESS
 when (DATA-LOGGER in_state FILE-FULL)
 do PAUSE
 when (CONTROLLER in_state ERROR) do ABORT

 action : ABORT
 …
 action : PAUSE
 do PAUSE CONTROLLER
 do INITIALIZE DATA-LOGGER
 …
 move_to PAUSED

object : CONTROLLER / associated
 state : READY
 action : START
 …
 state : RUNNING
 action : PAUSE
 action : ABORT

IV. STATE MANAGER
This is the key tool of the SMI++ framework. It is a program
which, at its startup, uses the SML code for a particular
domain, and becomes the SM of that domain. In the complete
operating control system there is, therefore, one such process
per domain. When the process is running, it takes full control
of the hardware components assigned to the domain,
sequences and synchronizes their activities, and responds to
spontaneous changes in their behavior. It does this by
following the instructions in the SML code, and by sending the
necessary commands to proxies through their associated
objects. In a given domain, it is possible to reference objects
in other domains. These are then locally treated as associated
objects, with their relevant proxies being the other SMs. This
way, full cooperation among SMs in the control system is
achieved.

 SM was designed using an object-oriented design tool
(Rational Rose/C++) [8] and coded in C++. Its main C++
classes are shown in Fig. 3. They are grouped into two class
categories:

• SML Classes
These classes represent all the elements defined in the

language, such as states, actions, instructions, etc. They are all
contained within the SMIObject class (representing SMI++
objects). At the startup of the process, they are instantiated
from the SML code.

• Logic Engine Classes
Based on external events, these classes 'drive' the

instantiations of the language classes.
CommHandler takes care of all the communication issues.

It detects state changes in remote SMI++ objects and “feeds”
the state queue (StateQ). It receives external actions coming
from remote objects or from an operator and “feeds” the
relevant queue (ExternalActionQ). It also communicates the
state changes in local SMI++ objects to the outside world and
sends commands from local SMI ++objects to remote objects.

Scheduler takes the information from the state and action
queues and operates on the SMIObject instantiations in such a
way that in effect each local object executes its own thread.

SMIObject
(from SML)

Scheduler

When
Handler

External
ActionQ

StateQ

If
Handler

1

n

1

1

1
1

1 1

1

1

Comm
Handler

Executable
ObjQ

n

11

n

 Fig. 3. Main classes of the SM.

V. APPLICATION PROGRAM INTERFACE

There are two API libraries available to application designers,
in C, C++, and FORTRAN:

1. SMIRTL library
It provides the routines used by proxies to connect and

transmit state changes to their associated objects in the SMI++
world, and to receive commands from them.

2. SMIUIRTL library
It provides the routines used by the processes that require

information about the states of objects in the running system.
This information is provided in an asynchronous manner ; the
process is notified about the state change as soon as it happens.
The library also provides the routines to send commands to
any object in the running system. An example of such a
process is a user interface.

There is a generic user interface provided. It is configurable,
i.e., the monitored objects can be selectively displayed, moved
around the display, etc. It is based on Motif. However, we
found from experience that users generally prefer to write their
own user interfaces, tailored to the specifics of their control
systems.

VI. DISTRIBUTED ENVIRONMENTS

SMs representing SMI++ domains can run on a variety of
computer platforms. The cooperation between the domains,
including all exchanges between objects, are embedded in the
SMI++ system. All issues related to distribution and
heterogeneity of platforms are transparently handled by the
underlying communication system DIM [9] on top of TCP/IP.
The asynchronous communication mechanism allows the
objects to operate in parallel when required.

At run time, no matter where a SMI++ process (SM or
proxy) runs, it is able to communicate with any other process
in the system, independently of where the processes are
located. At user level, the name of the object and its domain
uniquely determine its location (address). Processes can move
freely from one machine to another, and all communications
are automatically re-established. This feature also allows for
machine load balancing.

The communication layer also provides an automatic
recovery from crash situations, such as restarting a process.

SMI++ is available on any mixed environments comprised
of VMS (VAX and ALPHA) and UNIX flavors (OSF, AIX,
HPUX, SunOS, Solaris), Linux, Windows, OS9, LynxOS, and
VXWorks

VII. USE OF SMI++ IN DELPHI
In DELPHI, the full online system was designed and

implemented using this framework. The various areas of
DELPHI have been mapped into SMI++ domains: sub-
detector domains, data acquisition system (DAS) domain, slow
controls (SC) domain, TRIGGER domain, etc. The full system
consisted of about 1000 objects in 50 different domains and
distributed over 40 computers.

A high level of automation of the experiment's control
system was very important, in order to avoid human mistakes
and to speed up standard procedures.

Using the SMI++ framework, the creation of a top-level
domain, ‘BIG BROTHER’, which contained the logic
allowing interconnection of the underlying domains (LEP,
DAS, SC, etc.) was a relatively easy task.

Under normal running conditions, BIG BROTHER piloted
the system with minimal operator intervention. During test and
setup periods, the human operator effectively replaced the top-
level object and using the user-interfaces, he could send
commands to any SMI++ domain.

VIII. USE OF SMI++ IN BABAR
BaBar is a detector that has been designed and built by a

large international collaboration of physicists. The
collaboration includes over 550 physicists and engineers from
the USA, Canada, China, France, Germany, Italy, Norway,
Russia, and the United Kingdom. There are currently 72
collaborating institutions. The detector is exploiting the PEP-II

facility at SLAC, Stanford, CA, USA. Its primary purpose is to
study matter-antimatter asymmetry in electron-positron
collisions. It does this by collecting and studying collision
events in which pairs of B mesons are produced. Since its
startup in 1999, it has so far collected about 400 million of
such events. The detector consists of many complex sub-
systems and weights 1200 ton.
 The Run Control was designed, using the SMI++
framework, during 1997-1998 and the first prototype was
installed in the second half of 1998, ready for the subsystem
groups to test their equipment.

Partial, simplified, and SMI++ biased view of the system is
shown in Fig. 4. At the top of the hierarchy is SMI++ domain,
which in Fig. 4. is called ‘Master’. It monitors and controls the
BaBar detector hardware such as HV power supplies through
the subdetector domains (DCH, DRC,…). It monitors and
controls the DAS of the BaBar detector through a set of proxy
processes (see oval shapes in the Fig. 4.). It also communicates
with a database, from where it retrieves parameters needed for
various running conditions. It also monitors the status of the
PEP-II accelerator. These tasks are again performed using
proxy processes. Under normal running conditions during
data-taking, ‘Master’ monitors, synchronizes, and controls its
subsystems fully automatically with minimal human
intervention. The most important input for this operation is the
status of the PEP-II accelerator.

Fig. 4. Schematic diagram of BaBar Run Control

The ‘Master’ controls yet another part of the BaBar Run

Control which handles the calibration of subdetectors. For lack

of space and in the interest of simplicity, it is not shown in
Fig.4. It consists of 7 domains and dozens of proxy processes.

Since its first prototype, the BaBar Run Control has been
developed in response to the experience gained from running
the experiment. The inherent flexibility and modularity of the
underlying tool, SMI++, made this development a relatively
easy task.

IX. USE OF SMI++ IN LHC EXPERIMENTS
The four LHC experiments at CERN have combined efforts

by creating a common control project, the Joint Controls
Project (JCOP), in order to develop a control framework that
will be used by different subsystems to control their
equipment.

JCOP has chosen SMI++ as a FSM toolkit to complement
the commercial supervisory control and data acquisition
(SCADA) system that provides the basis for implementing the
common control framework.

The selected SCADA system, PVSS II [10], provides very
useful functionality, like a runtime data base, alarm handling,
archiving, a user-interface builder, etc but no tools for abstract
behavior modeling. SMI++ has been integrated with PVSSII,
and can thus be used as a component of the framework.

In this framework, SMI++, by means of the PVSSII toolkit,
has been complemented with a graphic tool to edit and
generate the SML code, and with a database that allows
archiving the objects and their states. In order to cope with the
common requirements of the four experiments, standard
objects are also included by default in all SMI++ domains,
providing standard functionality like partitioning, i.e., allowing
subsystems to be excluded or included in the control hierarchy
or the enabling/disabling of devices.

All four experiments will use the FSM component (SMI++)
of the framework but to different degrees. ATLAS and CMS
will use it for the monitoring and control of their detector
control systems (DCS), while LHCb and ALICE will use it
also for controlling the data acquisition system (DAQ) and for
the automation of the complete experiment, thus achieving a
homogenous experiment control system (ECS). The schematic
view of the LHCb control hierarchy is shown in Fig. 5. as an
example.

Fig. 5. Schematic diagram of control hierarchy of LHCb experiment

X. CONCLUSION
 The SMI++ framework is a powerful tool, which, while

merging the concepts of object modeling and FSMs, allows the
implementation of a homogeneous, integrated control system,
by providing a standardized approach to the control of all
types of devices, from hardware equipment to software tasks.
From a logical point of view, all devices are mapped into,
controlled and monitored by, and integrated into higher level
control entities. These entities are then responsible for the
correlation of events, and for the overall coordination,
automation, and operation of the full system in its different
running modes. The system is typically distributed over a set
of heterogeneous platforms.

This is achieved by using various SMI++ tools, i.e., SML,
SM, etc.

The SMI++ framework has become a time-tested, robust
tool through its use by major particle experiments: the
DELPHI experiment at CERN in the recent past, the BaBar
experiment at SLAC, which is currently using it in production,
and finally all four LHC experiments at CERN, which are now
using it for the design of either full or partial experiment
control.

The reader interested in technical details of the system can
find these on our Web pages [11]

XI. ACKNOWLEDGMENT
The authors would like to thank some of their colleagues at

CERN for fruitful discussions, in particular, Ph. Charpentier,
M. Jonker, P. Vande Vyvre, and A. Vascotto. The ever-
growing SMI user community also deserves thanks for their
valuable feedback.

XII. REFERENCES
[1] J. Barlow, B. Franek, M. Jonker, T. Nguyen, P. Vande Vyvre and A.

Vascotto, "Run Control in MODEL: The State Manager," IEEE Trans.
Nucl. Sci., vol. 36, pp. 1549-1553, Oct. 1989.

[2] "The DELPHI Detector at LEP," Nucl. Instrum. Meth. vol. A303, pp.
233-276, 1991.

[3] "The BABAR detector," Nucl. Instrum. Meth. vol. A479, pp. 1-116,
2002.

[4] “ALICE technical proposal for A Large Ion Collider Experiment at the
CERN LHC,” CERN/LHCC/95-71.

[5] “ATLAS technical proposal,” CERN/LHCC/94-43.
[6] “CMS technical proposal for Compact Muon Solenoid at the CERN

LHC,” CERN/LHCC/94-38.
[7] “LHCb – the Large Hadron Collider Beauty Experiment, Reoptimised

Detector Design and Performance,” CERN/LHCC 2003-030
[8] Rational Rose/C++, Rational Software Corporation, 2800 San Tomas

Expressway, Santa Clara, CA 95051-0951, USA
[9] C. Gaspar and M. Donszelmann, "DIM – A Distributed Information

Management System for the DELPHI experiment at CERN," in Proc.
IEEE 8th Conf. Comput. Applic. Nucl., Particle, Plasma Phys.,Vancouver,
BC, Canada, 1993, pp. 156-158.

[10] PVSS-II [Online]. Available: http://www.pvss.com
[11] SMI++ - State Management Interface [Online]. Available:

http://www.cern.ch/smi

