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Abstract--In the SMI++ framework, the real world is viewed as 

a collection of objects behaving as finite-state machines. These 
objects can represent real entities, such as hardware devices or 
software tasks, or they can represent abstract subsystems. A 
special language (SML) is provided for the object description. 
The SML description is then interpreted by a logic engine (coded 
in C++) to drive the control system. This allows rule-based 
automation and error recovery. SMI++ objects can run 
distributed over a variety of platforms, all communication being 
handled transparently by an underlying communication system, 
DIM. This framework was first used by the DELPHI experiment 
at CERN for the experiment control. The BaBar experiment at 
SLAC has adopted this framework for the design and 
implementation of their Run Control system. For this purpose, 
the framework was significantly upgraded. The BaBar Run 
Control and the underlying SMI++ framework has been in 
production since the beginning of 1999.  SMI++ has recently been 
adopted at CERN by all LHC experiments for their detector 
control systems as recommended by the Joint Controls Project. 
The main features of the framework and, in particular, of SML 
language, as well as recent and near future upgrades, will be 
discussed. SMI++ has, so far, been used only by large particle 
physics experiments. It is, however, equally suitable for any other 
control applications.   

I. INTRODUCTION 

 SMI++ is based on the original State Manager concept [1], 
which was developed by the DELPHI experiment [2] in 
collaboration with the CERN Computing Division (Geneva, 
Switzerland). 

Since then, the concept has undergone substantial 
development through a series of upgrades. These were 
primarily dictated by the user requirements within the 
experiments, which adopted it as a tool for designing their 
experiment control. The first significant upgrade (SMI++) was 
completed in June 1997. This consisted of rewriting its most 
important tool, State Manager, from ADA to C++. In July 
1997, it was extensively tested in the DELPHI environment. 
During that time, the DELPHI experiment control was fully 
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converted from using the “old” version of SMI to the upgraded 
version, SMI++. At that time, it was also adopted by the BaBar 
experiment [3] at SLAC for the design and implementation of 
their Run Control. From then on, it has been further upgraded 
in smaller steps, increasing its flexibility, capabilities and 
efficiency. 
Recently, all four LHC experiments at CERN [4]-[7] decided 
to use it either fully or partially for their experiment control. 
Through this use by major particle experiments and continuous 
user feedback, SMI++ has become a well-proven, robust and 
time-tested tool. 

II. BASIC CONCEPTS 
The real world to be controlled is typically a set of concrete 

entities, such as hardware devices or software tasks. In the 
SMI++ framework, this world is described as a collection of 
objects behaving as finite-state machines (FSM). These objects 
are called associated objects, because they are associated with 
an actual piece of hardware or a real software task. Each of 
these objects interacts with the concrete entity it represents, 
through a so-called proxy process. The proxy process provides 
a bridge between the real and the SMI++ worlds, while 
fulfilling two functions. First, it follows and simplifies the 
behavior of the concrete entity, and second, it sends to it 
commands originating from the associated object.  

By analogy, the control system to be designed is conceived 
as a set of abstract (or logical) objects behaving as FSMs. 
They represent abstract entities and contain the control logic. 
They can also send commands to other objects (associated or 
abstract). 

The main attribute of an SMI++ object is its state. In each 
state, it can accept commands that trigger actions. An abstract 
object, while executing an action, can send commands to other 
objects, interrogate the states of other objects, and eventually 
change its own state. It can also spontaneously respond to state 
changes of other objects. The associated objects only pass on 
the received commands to the proxy processes. 

In order to reduce complexity of large systems, logically 
related objects are grouped into SMI++ domains. In each 
domain, the objects are organized in a hierarchical structure, 
and form a subsystem control. Usually only one object (the 
top-level object) in each domain is accessed by other domains. 
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The final control system is then constructed as a hierarchy of 
SMI++ domains. These basic concepts are graphically 
summarized in Fig. 1. and Fig. 2. 

 
Fig. 1. Basic concepts of SMI++ 
 
 

 
 
Fig. 2. Basic concepts of SMI++. Hierarchy of domains. 

 The framework consists of a set of tools. The most 
important are State Manager Language (SML), State Manager 
process (SM), and Application Program Interface (API). 

III. STATE MANAGER LANGUAGE  
  The tool used to formally describe the object model of the 
real world and of the control system is SML. This language 
allows for detailed specification of the objects, such as their 
states, actions, and associated conditions. The main 
characteristics of this language are the following. 

• Finite-State Logic 
   Objects are described as FSMs. The main attribute of an 
object is its state. Commands sent to an object trigger object 
actions that can bring about a change in its state. 

• Sequencing 
An action performed by abstract object is specified as a 

sequence of instructions. These consist mainly of commands 
sent to other objects, and of logical tests on states of other 
objects. Commands sent to objects representing concrete 
entities (associated objects) are sent off as messages to the 
proxy processes. 

• Asynchronous Behavior 
In principle, all actions proceed in parallel. A command sent 

by object A to object B does not suspend the instruction 
sequence of object A (i.e., object A does not wait for 
completion of the command sent to object B before it 
continues with its instruction sequence). Only a test by object 
A on the state of object B suspends the instruction sequence of 
object A, until object B reaches a stable state. 

• AI-Like Rules 
Each object can specify logical conditions based on states of 

other objects. These, when satisfied, will trigger an execution 
of the action specified in the condition. This provides the 
mechanism for an object to respond to unsolicited state 
changes of other objects in the system. 

 
Example of SML code is shown below: 
 
object : RUN-CONTROL 
    state : READY 
        action : START-RUN 
            do INITIALISE DATA-LOGGER 
            if ( DATA-LOGGER not_in_state READY) then 
                move_to ERROR 
            endif 
            do START CONTROLLER 
            if (CONTROLLER in_state RUNNING) then 
                move_to RUN-IN-PROGRESS 
            endif 
            … 
    state : RUN-IN-PROGRESS 
        when (DATA-LOGGER in_state FILE-FULL) 
                                                                          do PAUSE 
        when (CONTROLLER in_state ERROR) do ABORT 
 



 

        action : ABORT 
            … 
        action : PAUSE 
            do PAUSE CONTROLLER 
            do INITIALIZE DATA-LOGGER 
                … 
            move_to PAUSED 
 
object : CONTROLLER / associated 
    state : READY 
        action : START 
            … 
    state : RUNNING 
        action : PAUSE 
        action : ABORT 
 

IV. STATE MANAGER   
This is the key tool of the SMI++ framework. It is a program 
which, at its startup, uses the SML code for a particular 
domain, and becomes the SM of  that domain. In the complete 
operating control system there is, therefore, one such process 
per domain. When the process is running, it takes full  control 
of the hardware components assigned to the domain, 
sequences and synchronizes their activities, and responds to 
spontaneous changes in their behavior. It does this by 
following the instructions in the SML code, and by sending the 
necessary commands to proxies through their associated 
objects.  In a given domain, it is possible to reference objects 
in other domains. These are then locally treated as associated 
objects, with their relevant proxies being the other SMs. This 
way, full cooperation among SMs in the control system is 
achieved.  

 SM was designed using an object-oriented design tool 
(Rational Rose/C++) [8] and coded in C++. Its main C++ 
classes are shown in Fig. 3. They are grouped into two class 
categories:   

• SML Classes 
These classes represent all the elements defined in the 

language, such as states, actions, instructions, etc. They are all 
contained within the SMIObject class (representing SMI++ 
objects). At the startup of the process, they are instantiated 
from the  SML code. 

• Logic Engine Classes 
Based on external events, these classes 'drive' the 

instantiations of the language classes.  
CommHandler takes care of all the communication issues. 

It detects state changes in remote SMI++ objects and “feeds” 
the state queue (StateQ). It receives external actions coming 
from remote objects or from an operator and “feeds” the 
relevant queue (ExternalActionQ). It also communicates the 
state changes in local SMI++ objects to the outside world and 
sends commands from local SMI ++objects to remote objects. 

Scheduler takes the information from the state and action 
queues and operates on the SMIObject instantiations in such a 
way that in effect each local object executes its own thread. 
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 Fig. 3. Main classes of the SM. 

V. APPLICATION PROGRAM INTERFACE 

There are two API libraries available to application designers, 
in C, C++, and FORTRAN: 

1. SMIRTL library 
It provides the routines used by proxies to connect and 

transmit state changes to their associated objects in the SMI++ 
world, and to receive commands from them. 

2. SMIUIRTL library 
It provides the routines used by the processes that require 

information about the states of objects in the running system. 
This information is provided in an asynchronous manner ; the 
process is notified about the state change as soon as it happens. 
The library also provides the routines to send commands to 
any object in the running system. An example of such a 
process is a user interface. 

There is a generic user interface provided. It is configurable, 
i.e., the monitored objects can be selectively displayed, moved 
around the display, etc. It is based on Motif. However, we 
found from experience that users generally prefer to write their 
own user interfaces, tailored to the specifics of their control 
systems. 



 

VI. DISTRIBUTED ENVIRONMENTS 

SMs representing SMI++ domains can run on a variety of 
computer platforms. The cooperation between the domains, 
including all exchanges between objects, are embedded in the 
SMI++ system. All issues related to distribution and 
heterogeneity of platforms are transparently handled by the 
underlying communication system DIM [9] on top of TCP/IP. 
The asynchronous communication mechanism allows the 
objects to operate in parallel when required.  

At run time, no matter where a SMI++ process (SM or 
proxy) runs, it is able to communicate with any other process 
in the system, independently of where the processes are 
located. At user level, the name of the object and its domain 
uniquely determine its location (address). Processes can move 
freely from one machine to another, and all communications 
are automatically re-established. This feature also allows for 
machine load balancing.  

The communication layer also provides an automatic 
recovery from crash situations, such as restarting a process. 

SMI++ is available on any mixed environments comprised 
of VMS (VAX and ALPHA) and UNIX flavors (OSF, AIX, 
HPUX, SunOS, Solaris), Linux, Windows, OS9, LynxOS, and 
VXWorks 

VII.  USE OF SMI++ IN DELPHI 
In DELPHI, the full online system was designed and 

implemented using this framework. The various areas of 
DELPHI have been mapped into SMI++ domains: sub-
detector domains, data acquisition system (DAS) domain, slow 
controls (SC) domain, TRIGGER domain, etc. The full system 
consisted of about 1000 objects in 50 different domains and 
distributed over 40 computers.  

A high level of automation of the experiment's control 
system was very important, in order to avoid human mistakes 
and to speed up standard procedures. 

Using the SMI++ framework, the creation of a top-level 
domain, ‘BIG BROTHER’, which contained the logic 
allowing interconnection of the underlying domains (LEP, 
DAS, SC, etc.) was a relatively easy task. 

Under normal running conditions, BIG BROTHER piloted 
the system with minimal operator intervention. During test and 
setup periods, the human operator effectively replaced the top-
level object and using the user-interfaces, he could send 
commands to any SMI++ domain. 

 

VIII. USE OF SMI++ IN BABAR  
BaBar is a detector that has been designed and built by a 

large international collaboration of physicists. The 
collaboration includes over 550 physicists and engineers from 
the USA, Canada, China, France, Germany, Italy, Norway, 
Russia, and the United Kingdom. There are currently 72 
collaborating institutions. The detector is exploiting the PEP-II 

facility at SLAC, Stanford, CA, USA. Its primary purpose is to 
study matter-antimatter asymmetry in electron-positron 
collisions. It does this by collecting and studying collision 
events in which pairs of B mesons are produced. Since its 
startup in 1999, it has so far collected about 400 million of 
such events. The detector consists of many complex sub-
systems and weights 1200 ton. 
 The Run Control was designed, using the SMI++ 
framework, during 1997-1998 and the first prototype was 
installed in the second half of 1998, ready for the subsystem 
groups to test their equipment. 

Partial, simplified, and SMI++ biased view of the system is 
shown in Fig. 4. At the top of the hierarchy is SMI++ domain, 
which in Fig. 4. is called ‘Master’. It monitors and controls the 
BaBar detector hardware such as HV power supplies through 
the subdetector domains (DCH, DRC,…). It monitors and 
controls the DAS of the BaBar detector through a set of proxy 
processes (see oval shapes in the Fig. 4.). It also communicates 
with a database, from where it retrieves parameters needed for 
various running conditions. It also monitors the status of the 
PEP-II accelerator. These tasks are again performed using 
proxy processes. Under normal running conditions during 
data-taking, ‘Master’ monitors, synchronizes, and controls its 
subsystems fully automatically with minimal human 
intervention. The most important input for this operation is the 
status of the PEP-II accelerator. 

 
Fig. 4. Schematic diagram of BaBar Run Control 
 
The ‘Master’ controls yet another part of the BaBar Run 

Control which handles the calibration of subdetectors. For lack 



 

of space and in the interest of simplicity, it is not shown in 
Fig.4.  It consists of 7 domains and dozens of proxy processes. 

Since its first prototype, the BaBar Run Control has been 
developed in response to the experience gained from running 
the experiment. The inherent flexibility and modularity of the 
underlying tool, SMI++, made this development a relatively 
easy task. 
 

IX.  USE OF SMI++ IN LHC EXPERIMENTS 
The four LHC experiments at CERN have combined efforts 

by creating a common control project, the Joint Controls 
Project (JCOP), in order to develop a control framework that 
will be used by different subsystems to control their 
equipment. 

JCOP has chosen SMI++ as a FSM toolkit to complement 
the commercial supervisory control and data acquisition 
(SCADA) system that provides the basis for implementing the 
common control framework. 

The selected SCADA system, PVSS II [10], provides very 
useful functionality, like a runtime data base, alarm handling, 
archiving, a user-interface builder, etc but no tools for abstract 
behavior modeling. SMI++ has been integrated with PVSSII, 
and can thus be used as a component of the framework. 

In this framework, SMI++, by means of the PVSSII toolkit, 
has been complemented with a graphic tool to edit and 
generate the SML code, and with a database that allows  
archiving the objects and their states. In order to cope with the 
common requirements of the four experiments, standard 
objects are also included by default in all SMI++ domains, 
providing standard functionality like partitioning, i.e., allowing 
subsystems to be excluded or included in the control hierarchy 
or the enabling/disabling of devices. 

All four experiments will use the FSM component (SMI++) 
of the framework but to different degrees. ATLAS and CMS 
will use it for the monitoring and control of their detector 
control systems (DCS), while LHCb and ALICE will use it 
also for controlling the data acquisition system (DAQ) and for 
the automation of the complete experiment, thus achieving a 
homogenous experiment control system (ECS). The schematic 
view of the LHCb control hierarchy  is shown in Fig. 5. as an 
example. 

 
 
Fig. 5.  Schematic diagram of control hierarchy of LHCb experiment 

X. CONCLUSION 
 The SMI++ framework is a powerful tool, which, while 

merging the concepts of object modeling and FSMs, allows the 
implementation of a homogeneous, integrated control system, 
by providing a standardized approach to the control of all 
types of devices, from hardware equipment to software tasks. 
From a logical point of view, all devices are mapped into, 
controlled and monitored by, and integrated into higher level 
control entities. These entities are then responsible for the 
correlation of events, and for the overall coordination, 
automation, and operation of the full system in its different 
running modes. The system is typically distributed over a set 
of heterogeneous platforms. 

This is achieved by using various SMI++ tools, i.e., SML, 
SM, etc. 

The SMI++ framework has become a time-tested, robust 
tool through its use by major particle experiments: the 
DELPHI experiment at CERN in the recent past, the BaBar 
experiment at SLAC, which is currently using it in production, 
and finally all four LHC experiments at CERN, which are now 
using it for the design of either full or partial experiment 
control. 

The reader interested in technical details of the system can 
find these on our Web pages [11] 
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