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1. Introduction

Seeking and measuring new physics at the im-
minent Large Hadron Collider (LHC) will require
extensive calculations of high-multiplicity back-
grounds in perturbative QCD to next-to-leading
order (NLO). The Les Houches 2005 workshop
defined a target list, reproduced in table 1, for
theorists to attack. In addition to the processes
in the table, one would also like to compute pro-
cesses such as W, Z + 4 jets, which are important
backgrounds to searches for supersymmetry and
other models of new electroweak physics. Such
computations require one-loop amplitudes with
seven external particles, including the vector bo-
son, as depicted in fig. 1. These are challenging
calculations and Feynman-diagrammatic compu-
tations have only recently reached six-point am-
plitudes [1]. (Some of this progress has been de-
scribed in this conference [2].)

The last two decades have produced an increas-
ing collection of explicit expressions for ampli-
tudes in gauge theory. Many of these results
are dramatically simpler in their analytic forms
than would have been expected based on count-
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Table 1
The NLO target list. (From ref. [3].)

process relevant for

(Ve{z,W,})

1. pp = VVjet ttH, new physics

2. pp — ttbb ttH

3. pp — tt + 2jets ttH

4. pp — V'V bb VBF— H —» VV, ttH,
new physics

5 pp— VV +2jets | VBF» H - VV

6. pp = V + 3jets various new physics
signatures

T.pp—>VVV SUSY trilepton

ing Feynman diagrams and terms therein. This is
especially true in the maximally (N = 4) super-
symmetric theory, but is also true of amplitudes
in QCD, directly relevant to collider experiments.

Many of these results were not obtained us-
ing Feynman-diagram techniques, and some (the
one-loop all-multiplicity results, in particular) are
not accessible to calculations done using these
traditional techniques. The traditional approach
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Figure 1. An important background to searches
for missing energy signals of supersymmetry and
other models of physics beyond the Standard
Model is pp — Z+ jets. This calculation involves
seven-point one-loop amplitudes.

makes the Lagrangian manifestly symmetric un-
der Lorentz and local gauge symmetries, and
hence simple in form. The price we pay is the
introduction of many non-physical degrees of free-
dom. To remove the redundant degrees of free-
dom in calculations of scattering amplitudes re-
quires fixing a gauge. This makes computations
more complicated, because individual diagrams
do not preserve gauge invariance, which is recov-
ered only at the end of a long calculation. We
end up calculating a lot of unphysical and redun-
dant information which is thrown away at the
end. From a practical point of view, however,
what matters more than a simple Lagrangian is
simplicity and efficiency of calculation, where we
calculate no more than what is really needed for
the result. What we want is a calculational for-
malism that involves only (perturbative) physical
states. Light-cone gauge is a first step towards
this goal, as it removes the unphysical helicities
propagating inside diagrams. Like all diagram-
matic formalisms, however, it still involves off-
shell states; in a gauge theory, off-shell formula-
tions are inherently non-gauge invariant.

What we are seeking is a way of doing field the-
ory in terms of gauge-invariant, on-shell states.
The possibility of doing this flies in the face of
existing graduate education and a great deal of
lore. Nonetheless, for massless theories we now
understand how to do this explicitly for tree and
one-loop amplitudes; and there is every reason to
believe the procedure will work to all orders in
perturbation theory. A theme that runs through
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the technologies underlying on-shell methods is
the transformation of general properties of am-
plitudes into practical tools for computing them.

There are three basic technologies that underlie
the on-shell approach to calculations in gauge the-
ories. The first is the spinor helicity method [4],
which gives efficient representations for the phys-
ical content of external states. The second to be
developed was the unitarity method [5] for ob-
taining loop amplitudes with multiple kinematic
variables. This method makes use of the basic
unitarity property of field theory to provide a
systematic procedure for constructing amplitudes
with any number of kinematic invariants.

With the four-dimensional version of the uni-
tarity method one can compute complete one-
loop amplitudes in supersymmetric theories, and
all terms containing branch cuts in QCD or super-
symmetric theories to all loop orders. Curiously,
the on-shell method for tree amplitudes, which
is the third technology underlying the on-shell
bootstrap approach, was developed well after the
on-shell technique for loop amplitudes. The tree-
level technique had to await new inspiration from
the twistor-space picture for amplitudes [6]. The
approach at tree level makes use of factorization,
another basic property of field-theoretic ampli-
tudes, to obtain on-shell recursion relations [7,8].
The most recent development, on which we report
here, also gives a method for computing the ratio-
nal parts of gauge-theory loop amplitudes, that
is precisely those terms not accessible to four-
dimensional unitarity (but requiring the compu-
tationally more awkward full D-dimensional uni-
tarity).

A practical method should exhibit only mod-
est growth in its complexity as the number of ex-
ternal legs increases. It should lead to numeri-
cally stable results, allowing for straightforward
numerical integration over all experimentally-
accessible phase space. Conventional methods
have neither of these features; they tend to have
numerical stability issues due to large numbers
of high degree spurious singularities. (Solutions
are being explored, as reported at the confer-
ence [1,2].) The on-shell bootstrap that we de-
scribe in this report does; and it is applicable to
a wide class of processes in a manner that likely
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allows for automation.

2. Hints from Twistor Space

The recent suggestion, that a twistor-space
string theory is dual to the maximally super-
symmetric gauge theory [6], points at additional
structure in scattering amplitudes. It meshes
nicely with the techniques we describe and may in
the future offer a new formal framework for these
developments. An important inspiration for the
recent advances comes from the surprising sim-
plicity amplitudes exhibit in twistor space.

In QCD color-ordering [9] and spinor helic-
ity [4] are widely used at tree and loop level
to provide simplified descriptions of amplitudes.
QCD amplitudes can be expressed entirely in
terms of spinors by representing gluon polariza-
tions in the spinor helicity basis,

+(k' ) = <q_|7l‘ |k_>

Sl V2(gk)
N (AR L)
6u (kiq) - \/i[k q] ’
where

€PN, = (G 1) = (G 1IT) = a_(k;)u (k) ,
6:‘11';5‘?5‘3‘ =[jl]= <j+|l_> = a+(kj)u, (ki)

and ug (k) is a massless Weyl spinor with momen-
tum k and positive or negative chirality respec-
tively. Lorentz inner products of momenta can
also be expressed in terms of spinors via

Sij = Qk]' . kl = <]l)[lj] -

A twistor-space description arises from per-
forming an asymmetric Fourier transform, one
with respect to negative- (but not positive-) he-
licity spinors,

AN, p3) =/H % exp (z Z M?S\id)A()\ia Ai),

where the \; are positive-helicity spinors and
W; are the conjugate variables to the negative-
helicity ones.

Witten conjectured that in twistor space,
gauge-theory amplitudes have delta-function sup-
port on curves of degree

d=q—-1+1L,

where ¢ is the number of negative-helicity legs
and L the number of loops.

Surprisingly, there are multiple descriptions of
the amplitudes in terms of non-degenerate and
degenerate curves [10,11], two of which are dis-
played in fig. 2. The degenerate description in
terms of intersecting degree-one curves (straight
‘lines’) has been the most useful for practical
calculations. This description led to the MHV
rules [10] of Cachazo, Svréek and Witten. They
effectively compute amplitudes in terms of a sum
over all multi-particle factorizations. The rules
provided a concrete demonstration that scatter-
ing amplitudes have a simple underlying structure
not understood previously.

Does this simplicity underlie loop amplitudes
as well? We have ample evidence that it does. In
particular, from quadruple cuts one can demon-
strate that in twistor space the coefficients of all
box integrals in any massless gauge theory are
have delta-function support on intersecting lines
forming a closed loop [12,13]. This corresponds to
the possibility of computing the coefficients of any
box integral in a four-dimensional theory from a
product of four tree amplitudes, by solving four
on-shell constraints [14]. The recent computation
of n-point one-loop QCD amplitudes in refs. [15—
17] also points at the presence of simple underly-
ing structures.

Witten also made a simple observation that has
proven of great practical utility. Ordinarily, one
works with real momenta, in which case three-
point amplitudes vanish identically. This results
from the vanishing of all momentum invariants
sij, which in turn forces the vanishing of all spinor
products (i j) and [i j]. If one were to use complex
momenta, however, the vanishing of momentum
invariants only requires one flavor of spinor prod-
uct to vanish, either (i j) or [i j]. The other spinor
product can be used to define a non-vanishing
three-point amplitude. All other amplitudes can
be built out of this basic amplitude.
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Figure 2. In twistor space amplitudes have delta-
function support on algebraic curves. The dots
represent the external points. The curve (a) rep-
resents a non-degenerate cubic curve. In (b) the
curve degenerates to intersecting straight lines.

3. Unitarity Method

Our approach is based on unitarity, which has
been a fundamental concept in quantum field the-
ory since since its inception [18]. In the 60’s most
attempts to describe the strong interactions relied
on the unitarity and analyticity of the S-matrix.
But with the advent of QCD in the 70’s as the
description of the strong interactions, Feynman
diagrams became the primary tool for describing
scattering at large transverse momentum.

Although an approach based on unitarity offers
advantages because one can avoid using unphysi-
cal (off-shell) states, a number of difficulties pre-
vented its use as a practical tool. The primary dif-
ficulty was the inability to obtain amplitudes de-
pending on more than two kinematic amplitudes
via multiple dispersion relations. Other difficul-
ties include technical issues in applying unitarity
to massless theories, as well as non-convergence
of dispersion relations, which require subtractions
for well-defined results. A resolution of these dif-
ficulties occurred with the advent of the ‘unitarity
method’ [5].

In the unitarity method one systematically con-
structs amplitudes by merging the various unitar-
ity cuts as exemplified in fig. 3 into Feynman-like
integrals which give the correct cuts in all chan-
nels. In this approach both dispersive and absorp-
tive parts are obtained simultaneously, bypassing
the need for dispersion integrals. Furthermore, by
making appropriate use [19] of dimensional regu-
larization within the method one can easily avoid
many of the earlier technical complications.

The unitarity approach has proven to be a pow-
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erful method for determining amplitudes, espe-
cially in supersymmetric theories where complete
one-loop amplitudes may be obtained using only
tree-level four-dimensional helicity amplitudes as
input [5]. In non-supersymmetric theories com-
plete amplitudes may be obtained using unitarity
in D dimensions. The required tree amplitudes
in the latter case are more complicated, so only
a limited number of computations have been per-
formed with this approach [20]. After performing
a series expansion in € = (4— D) /2, the difference
between using four-dimensional or D-dimensional
states and momenta in the cuts gives rise to ra-
tional functions of spinor invariants.

(b)

Figure 3. A two-particle cut (a) as well as a gen-
eralized triple cut (b).

Because the scalar bubble, triangle and box in-
tegrals form a complete basis of cut-containing
functions for dimensionally-regularized one-loop
amplitudes in a four-dimensional theory [21], all
a computation needs to determine are the coef-
ficients of these integrals. Recent improvements
to the four-dimensional unitarity method [14] use
generalized unitarity [18,22,23] to allow for a di-
rect algebraic determination of box integral coeffi-
cients. The efficiency of extracting the coefficients
of bubble and triangle integrals has also been im-
proved recently [24], and has been applied to six-
gluon amplitudes. Combined with the previously-
computed results for the cut-containing pieces [5,
25], these results give a complete analytic solu-
tion for the cut-containing terms in all six-gluon
amplitudes.
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4. On-Shell Recursion Relations

This leaves us to compute the rational terms
efficiently. We again use analytic properties, but
instead of branch cuts we use the poles, in the
guise of on-shell recursion relations. Our focus
here will be on obtaining results with large num-
bers of external legs. Our interest in construct-
ing all-multiplicity amplitudes stems partly from
the desire to study the growth in complexity of
the amplitudes as the number of external par-
tons increases. Because the explosive growth in
complexity with each additional leg has been a
stumbling block in previous methods, it is impor-
tant to understand this behavior with any new
method. Furthermore, experience has shown that
analytic all-n expressions provide a wealth of in-
formation about the general structure of scatter-
ing amplitudes.

The on-shell unitarity bootstrap [15,17,26] has
its origins in an early approach taken to compute
the Z — 4 parton one-loop matrix elements [22]
(or equivalently, by crossing, for pp — W, Z +
2jets). In this more primitive version of the
on-shell bootstrap approach, the cut-containing
(poly)logarithmic terms were obtained using the
unitarity method while purely rational terms were
obtained using on-shell factorization properties,
writing down an ansatz and constraining its form.
It proved difficult to turn the approach into a gen-
eral and systematic one. On-shell recursion for
the rational terms provides such a general and
systematic method.

In special cases, when certain criteria are sat-
isfied by the cuts, one may even use on-shell re-
cursion to obtain the cut-containing terms of am-
plitudes [27]. That is, one may use the kinematic
poles appearing in the coefficients of integral func-
tions to construct them. This technique was used
to obtain the cut-containing parts of all one-loop
n-gluon amplitudes with the helicities arranged
in a ‘split helicity’ configuration.

Very recently, Xiao, Yang and Zhu have pre-
sented a different method for obtaining rational
function terms by applying spinor simplifications
together with integrations that target only the ra-
tional terms [28]. They have used this to obtain
all the rational terms in the one-loop six-gluon

amplitudes.

4.1. Tree-level Recursion Relations

On-shell recursion relations have a curious his-
tory which did not foreshadow their widespread
applicability. = Motivated by Witten’s conjec-
ture that N' = 4 super-Yang-Mills gauge the-
ory amplitudes should have a simple structure in
twistor space, and by Brandhuber, Spence, and
Travaglini’s observation [29] that this simplicity
indeed held beyond tree-level, for the simplest
maximally-helicity-violating class of one-loop am-
plitudes, Del Duca and several of the authors
computed the seven-point next-to-maximally-
helicity violating (NMHV) amplitudes [30], one
of which was also computed by Britto, Cachazo
and Feng [31]. These amplitudes have three neg-
ative helicities, and were expected to lie on a
genus-one, degree-three curve. Subsequently, am-
plitudes with three negative helicities and an ar-
bitrary number of positive-helicity gluons were
computed [13,14].

The compact forms of seven- and higher-
point tree amplitudes [30,13] that emerged from
studying one-loop infrared singularity consistency
equations, together with the observations that
one-loop N = 4 super-Yang-Mills amplitudes are
composed solely of box integrals [5] whose co-
efficients may be algebraically determined from
products of tree amplitudes [14], led Roiban,
Spradlin and Volovich to suggest [32] the ex-
istence of tree-level on-shell recursion relations.
These recursion relations were constructed explic-
itly by Britto, Cachazo and Feng [7].

Because of the indirect way in which on-shell
recursion relations were obtained, at first it was
not clear how widespread their applicability could
be. However, a simple proof of the tree-level re-
cursion relations by Britto, Cachazo, Feng and
Witten [8] followed, based on general factoriza-
tion properties of tree-level amplitudes as well as
elementary complex variable theory. The remark-
able generality and simplicity of the proof allowed
widespread application [33], including to theories
with massive particles [34,35] and gravity [36].

The proof of the tree-level relations employs a
parameter-dependent shift of two of the external
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where z is a complex parameter. Under this shift,
the momenta remain massless, k3(z) = k() =
0, and overall momentum conservation is main-
tained. The z dependence of the momenta makes
the on-shell amplitude, A(z), z-dependent as well.

Figure 4. The contour at infinity used for deriving
tree-level recursion relations. The dots represent
poles in A(z).

At tree level, the amplitude, A(z), is a mero-
morphic rational function of 2z, so we may ex-
ploit Cauchy’s theorem to construct it from its
residues. Assuming A(z) — 0 as z — oo, the
contour integral around the circle at infinity, de-
picted in fig. 4, must vanish,

1 d
— ¢ ZA@)=0.
2t Jo 2
Using Cauchy’s theorem we may evaluate the in-
tegral as a sum of residues which allows us to
solve for the physical amplitude A(0) in terms of

residues on each pole,

A(z)
A(0) = — =4
(0)== > Res —
poles

At tree level, there are many shifts for which A(z)
vanishes as z — oo [7,8,34].

Each residue comes from factorization in a
shifted momentum. Summing over all residues
gives us the tree-level on-shell recursion relation,

a0 =y 3 Ahler) ater) @
P h P
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Figure 5. The recursive diagrams at tree level.
The ‘T’ on each vertex signifies an on-shell tree
amplitude.

where P is the set of ordered partitions of the
legs, separating the two shifted legs j and [, and
h is the helicity of the intermediate state. The
lower-point amplitudes A} (zp) and AR"(zp) are
shifted but with z frozen at the pole,

e KB
ERGLEE

As illustrated in fig. 5, each of the terms in
eq. (2) may be given a diagrammatic interpre-
tation, where the vertices represent lower-point
on-shell tree amplitudes. In them, we must con-
sider states carrying complex four-momentum,
but otherwise on-shell; transversality conditions
as well as overall four-momentum conservation re-
main unchanged.

4.2. Loop-Level Recursion Relations

Figure 6. A schematic of the contour used for
deriving one-loop recursion relations.

At loop level, we face several issues in con-
structing such recursion relations. The most ob-
vious one is the appearance of branch cuts, so in
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(a)

(c)

Figure 7. The recursive diagrams at one loop. A “T” signifies a tree amplitude and an ‘L’ a loop amplitude.

addition to the contour used to derive the tree-
level recursion, we will need contours of the form
shown in fig. 6. We must also deal with spurious
singularities, and in some cases, the non-standard
nature of factorization in complex momenta (dif-
fering from ‘ordinary’ factorization in real mo-
menta). In non-standard factorization channels
(always two-particle ones with like-helicity glu-
ons), double poles and ‘unreal’ poles not present
with real momenta may appear [37,38]. It is best,
and fortunately possible, to avoid these channels
in constructing recursion relations.

This avoidance comes at a price: in general,
when choosing shifts to avoid non-standard fac-
torizations, the shifted amplitude A(z) may not
vanish as z — o0o. The contour integration in
fig. 6 makes it clear that additional ‘boundary’
contributions arise in this case. The approach
taken in ref. [17], is to allow for such contribu-
tions, and to determine them using an auxiliary
shift and recursion relation. Choices for shift mo-
menta with the required properties may be found
in ref. [17].

After applying the shift (1), a loop amplitude
is of the schematic form,

Alz) = Zpolylog terms

Our approach to determining this function uses
the four-dimensional unitarity method to obtain
the polylogarithmic and logarithmic terms, on-
shell recursion to determine the residues and an
auxiliary recursion relation (when needed) using
a different shift to obtain the coefficients a;.

In the on-shell bootstrap one first computes
the cut-containing terms. These will usually con-
tain unphysical spurious singularities that can-
cel against the rational functions. For reasons
of numerical stability it is useful to absorb most

of these into functions that are free of these sin-
gularities. We can construct such functions by
adding appropriate rational functions to the poly-
logarithmic terms. For example, we may com-
plete

In(r) In(r) 1
1-r2 "(Q-r)?2 1-7r’

so that it is singularity-free as r — 1 (r is a ra-
tio of kinematic invariants). The use of a ‘cut
completion’ also aids the construction of an on-
shell recursion, since we do not need to compute
residues at these unphysical poles.

Figure 8. The overlap diagrams corresponding
the to different physical channels.

The recursive contributions, illustrated in
fig. 7, are similar to tree-level ones, except that
they involve loop vertices created from loop am-
plitudes by setting all cut-containing terms to
zero. In addition, we have ‘overlap contributions’
coming from the appearance of physical poles in
the completed-cut terms. We need to subtract
off this overlap; we simply perform the shift (1)
and extract the residues of the poles in all physi-
cal channels. The correspondence of these con-
tributions to physical channels again allows us
to give them a diagrammatic interpretation, as
illustrated in fig. 8. When the amplitude does
not vanish at large values of the shift parame-
ter, the extra contributions may be computed us-
ing an auxiliary recursion relation as described in
ref. [17].



5. Results

The bootstrap approach has already been used
to obtain the rational terms in a variety of new
amplitudes:

1. The finite two-quark (n — 2)-gluon ampli-
tudes, with gluons all of identical helic-
ity [38].

2. All one-loop corrections to MHV n-gluon
amplitudes [15,16,26].

3. All one-loop n-gluon amplitudes with three
color-adjacent negative-helicity gluons and
the rest of positive helicity [17].

A key feature of our construction of these ampli-
tudes is the moderate increase in computational
complexity as the number of external legs in-
creases, in contrast to the explosive growth en-
countered with more traditional methods.

As one example, the rational parts of the six-
gluon QCD amplitude with three color-adjacent
negative-helicity gluons may be expressed as,

AZTP(17,27,37,4%,54,6%) = e [Cs + R .

where cr is the constant prefactor that appears
in all one-loop amplitudes, Cg is the completed
cut, which may be obtained using the four-
dimensional unitarity method, and Rg contains
all the remaining rational terms that we are inter-
ested in obtaining. In ref. [17] these terms were
obtained following the methods outlined above.
They are given by a remarkably compact formula,

By = B2 + g

flip1’

where flip 1 is the flip operation,

X(1,2,3,4,5,6)

=X(3,2,1,6,5,4), and

flip 1

i 1
6[23](56) (5[ (3+4) |2—>{
[46]°[25](56) (13)°(25)[23]
- [L2B461]  (34)(45)(61)
(172 +3)]47)°
[34](61)
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y ((1—| (2-5)]47) L3 [46])
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_ (3 E@7[247) + (17[3]47))
(34)(61)
+M@%3UW5M—»+016M—»}

[34][61] '
Q0

Figure 9. One of the three million Feynman dia-
grams for describing eight-gluon scattering

In addition to providing analytic expressions,
refs. [17,26] also record numerical values at sam-
ple kinematic points for up to eight external glu-
ons. A brute-force computation of eight-gluon
amplitudes using standard Feynman diagrams
would require over three million diagrams, one of
which is displayed in fig. 5. Because of the rela-
tively compact nature of the analytic expressions
for the final amplitudes, the numerical evaluation
of these amplitudes is fast. We do not anticipate
any significant complications arising from round-
off error in numerical evaluation, because of the
mild degree of spurious singularities appearing in
the amplitudes.

6. Outlook

The developments described above open sev-
eral directions that would be interesting to pur-
sue. For massive particles inside loops, suitable
extensions should be possible but remain to be
developed. It would be helpful to have a first-
principles derivation of the complex factorization
properties, as well as of the behavior of loop am-
plitudes at large values of the shift parameter. In
this regard, recent papers [39] linking tree-level
on-shell recursion with gauge-theory Lagrangians
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in particular gauges may prove useful. The uni-
tarity method with D-dimensional cuts [20] may
also be useful for developing a formal derivation
of properties of gauge-theory amplitudes.

The on-shell bootstrap approach we have de-
scribed here has already established a track
record in providing new one-loop amplitudes.
The techniques we have presented in these talks
are systematic and thus should lend themselves
to automation, which will be helpful for dealing
with large numbers of subprocesses. The method
should carry over to amplitudes with external vec-
tor bosons or Higgs particles, as well as quarks.
It offers a promising approach for attacking the
processes needed for LHC physics, and we expect
that it will see widespread application towards
that goal.
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